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Migraine headaches are highly prevalent, a�ecting 15% of the population.

However, despite many studies to determine this disease’s mechanism and

e�cient management, its pathophysiology has not been fully elucidated.

There are suggested hypotheses about the possible mediating role of mast

cells, immunoglobulin E, histamine, and cytokines in this disease. A higher

incidence of this disease in allergic and asthma patients, reported by several

studies, indicates the possible role of brain mast cells located around the brain

vessels in this disease. The mast cells are more specifically within the dura

and can a�ect the trigeminal nerve and cervical or sphenopalatine ganglion,

triggering the secretion of substances that cause migraine. Neuropeptides

such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin

(NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P

(SP) trigger mast cells, and in response, they secrete pro-inflammatory and

vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial

growth factor (VEGF) as a selective result of corticotropin-releasing hormone

(CRH) secretion. This stress hormone contributes to migraine or intensifies it.

Blocking these pathways using immunologic agents such as CGRP antibody,

anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1

receptor type 1 (IL-1R1) axis-related agents may be promising as potential

prophylactic migraine treatments. This review is going to summarize the

immunological aspects of migraine.
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Introduction

Migraine is the sixth most common disease globally,
affecting about 15% of the population, and is a leading cause of
disability (1). Migraine attacks are known to cause vasomotor
lability originated genetically and contribute to neurological,
metabolic, and immunological factors. The mystery of how
migraine affects our body is not ultimately revealed yet.

The sensory sensitivity that is a typical sign of migraine is
probably due to an impairment of the monoaminergic sensory
control system, located in the brainstem and the hypothalamus.
Experimental studies suggested that neuroinflammatory
mechanisms are involved in the pathophysiology of migraine.
Preclinical models demonstrated the role of neuroinflammation
in activating the trigeminal pathway at numerous peripheral
and central sites such as dural vessels, Gasser’s ganglion, and the
trigeminal nucleus caudalis.

Many studies showed that inflammation, particularly
neurogenic inflammation, has been implicated in the
pathophysiology of migraine (2). Non-steroidal anti-
inflammatory drugs (NSAIDs) have long been used in treating
migraine attacks (3), so that multiple cytokines, such as IL-1β,
tumor necrosis factor (TNF), and IL-6, have been associated
with the pathogenesis of migraine, as their levels are altered in
migraine patients (4). Moreover, the evidence of elevation in
pro-inflammatory cytokines, the prevalence of T helper 1 (Th1)
lymphocytes, and depletion in regulatory lymphocyte subsets
in peripheral blood of migraine patients seems to support the
role of inflammation in the pathophysiology of this disease.
The effect of inflammatory conditions on the pathophysiology
of migraine has encouraged the researchers to investigate the
human leukocyte antigen (HLA) phenotypes and cytokine
polymorphisms to study their possible association with the risk
and severity of migraine.

Migraine headaches have also been claimed to be
a neurological appearance of many autoimmune and
immunological disorders which involve the central nervous
system (CNS), such as multiple sclerosis (MS), or diseases
with systematic aspects such as systemic lupus erythematosus
(SLE) (2, 5–11).

This study aims to discuss the potential immunological
aspects of migraine to attain a more comprehensive
understanding of the pathophysiology of this disease.

Materials and methods

This review covers various articles published in English
from 1999 to the present, gathered from medical research
databases including PubMed and Scopus, using mesh-search of
the following terms: immunology—allergy—autoimmunity—
migraine—cytokines—chemokines—immunoglobulin E
(IgE)—mast cells –inflammation—CGRP. We also searched the

references of selected articles and used the “cited by” tool in the
Scopus database to find the latest studies.

Pathophysiology of migraine

Migraine has been a known disease for centuries (12).
Over the past 50 years, advances have helped to understand
the pathophysiology of migraine (12–14). Scientific findings
showed that migraine could be explained by vasodilation and
neurological events (13). According to the studies, during
migraine attacks, there is no change in the diameter of
the external carotid artery system (middle meningeal artery
and superficial temporal artery). In contrast, the vessels are
significantly dilated during the attacks in the internal carotid
artery (intracranial and extracranial internal carotid artery and
middle cerebral artery) (15).

On the other hand, the neurovascular hypothesis suggests
that the vascular activating neuropeptides, which are released
from the end of the trigeminal nerve (trigeminovascular (TGV)
system), are involved in the development of migraine (13,
16, 17). In fact, during cortical spreading depression (CSD),
activating trigeminal sensory afferents causes the onset of
migraine headaches (18, 19). Furthermore, among the three
trigeminal nerve branches, the ophthalmic branch contributes
most to migraines (20).

Calcitonin gene-related peptide induces the dilation of the
vessels, neurogenic inflammation, and synthesis processes in
environmental and central events during a migraine attack
(14, 16, 20–23). The CGRP molecule, expressed in half of the
trigeminal ganglion neurons, is stored in the nerve terminals,
and when neurons stimulate, CGRP is released to the synaptic
space (24). Studies have shown that during migraine attacks, the
levels of CGRP increase in extra-cerebral circulation, external
jugular vein, saliva, and cerebrospinal fluid (CSF) (25–28). Also,
it is demonstrated that CGRP infusion in migraine patients
causes migraine-like attacks (29, 30). As a result, the CGRP is
a potential biological marker in acute migraines (31).

Imaging studies have reported an increase in blood flow to
the hypothalamus area early stages, so it illustrates the role of
the hypothalamus in migraine attacks (32).

Neuroinflammation and migraine

Many cytokines, including IL-1β, IL-6, and TNF, are
associated with the pathophysiology of migraine because their
levels vary among migraine patients (33).

However, the involvement of CNS inflammation in the onset
of the migraine attacks is not proven, as changes in blood–brain
barrier (BBB), leukocyte infiltration, and glial cell activation have
not been detected in migraineurs (2). According to the increase
in the TGV system-related inflammatorymarkers, the peripheral
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nervous system (PNS), particularly the trigeminal ganglion, is
suggested to be the site of inflammation (2).

Chronification and sensitization

An increase in CGRP levels in plasma from the jugular
vein is detected during an attack of migraine (34). CGRP is
released directly from the somata of neurons to synaptic sites in
the environment (35). Based on the isolated trigeminal neuron
recordings, CGRP was excitatory, leading to spontaneous firing
or decreasing the threshold for action potentials (36).

According to the in vivo studies on Sprague-Dawley rats
as a model of trigeminal nerve activation, CGRP might
induce continuous activation of satellite glial cells (SGCs)
(37) and Aδ fibers in migraine (38, 39). These cells express
CGRP receptors in the trigeminal ganglia (40), and such
activation is powerfully demonstrated. For instance, CGRP
increases dorsal root ganglion (DRG) neuronal soma excitability
(36), intraganglionic CGRP injection leads to hyperalgesia
(41), and the effect of CGRP stimulation on trigeminal
neurons alters the activity of the pain-related molecules
of intracellular signaling such as cAMP-response element-
binding protein (CREB), cyclic adenosine monophosphate
(cAMP), extracellular signal-regulated kinase (ERK), and
mitogen-activated protein kinase (MAPK) p38 (42). This
activation increases inflammatory cytokine expression in the
dura mater and probably in the cell bodies of neurons
and the SGCs in the trigeminal ganglion. “Neurogenic
neuroinflammation” is the term that defines inflammatory
reactions in the nervous system as a response to neuronal
activity (2). Chemokines and cytokines are released by neurons,
astrocytes, microglia, T cells, and macrophages. These factors
might directly or by activating non-neuronal cells trigger
nociceptive neurons, depending on which receptors they
express (2).

It is postulated that continuous stimulation of C fibers
during recurrent migraine attacks, and subsequent activation
of SGCs and Aδ fibers, causes neurogenic neuroinflammation
in the trigeminovascular system, enhancing the process of
chronification (2). The findings suggest that activation of an
inflammatory signal pathway dependent on MAPK is involved
in CGRP overexpression in nociceptive neurons, which can
contribute to pain hypersensitivity (43). It is observed that local
inflammation in the temporomandibular joint (TMJ), induced
by Complete Freund’s adjuvant, leads to an inflammatory
response in the trigeminal ganglion, at which the TMJ sensory
fibers’ cell bodies are located. This mechanism signifies a
single anatomical and functional unit involving neurons and
SGCs (44).

Given the lack of standard markers of CNS inflammation,
such as changes in glial cell activation, BBB integrity, or
leukocyte infiltration, involvement of CNS inflammation
in the onset of a migraine attack is not suggested. The

findings of inflammatory markers in migraineurs could be
explained by the idea of neurogenic neuroinflammation,
which occurs in the trigeminal ganglion. Neurogenic
neuroinflammation due to the continuous release of
neurotransmitters can play a crucial role in realizing migraine
chronification (2).

Cytokines and inflammatory markers

Among sick children, patients without aura had higher
amounts of IL-1β than those with aura (45). Still, some
studies did not illustrate a significant difference in IL-
1β and tumor necrosis factor alpha (TNF-α) amounts
between attack-free periods and attack periods (46, 47).
Anti-inflammatory cytokines, including interleukin 4 (IL-
4) and interleukin 5 (IL-5), decreased within the attack
periods (48, 49). Interleukin 10 (IL-10) within attack
periods compared with the interictal periods was increased
(8, 48, 50). IL-10 decreased by sumatriptan (one of the
triptans) (8). The amounts of TNF and other cytokines
have been shown during migraine attacks; however, the
relevance of these changes to migraine pathophysiology is
unclear (51).

IL-6, TNF-α, soluble intercellular adhesion molecule-1
(sICAM-1), and nuclear factor (NF)-κB significantly increased
in parallel during 2 h of attack onset in contrast to the time of
catheter putting (52). Significant increased CGRP levels after
1 h and the highest level of interleukin 8 (IL-8) at 4 h were
seen, although monocyte chemoattractant protein-1 (MCP-1)
and RANTES (CCL5) did not significantly alter at any time point
(53). The IL-1β levels increased slightly from 1 to 4 h. However,
decreased levels of IL-1β at the end of the attack reached similar
values at the time of catheter putting (48).

The serum levels of TNF-α in patients with chronic
migraine (CM) were normal. However, levels of TNF-α, MCP-
1, interleukin 1 receptor antagonist (IL-1RA), and transforming
growth factor-β were higher in the CSF of individuals with
episodic tension-type headaches and migraine with and without
aura compared to those without pain (54). However, there was
no adequate differentiation between increased amounts in these
headache types (55).

Blood–brain barrier permeability

There are few reasons to believe that integrity of
the blood–brain barrier (BBB) is affected during an
actual migraine attack, as primary headaches have not
been linked with the opening of BBB in any clinical
studies (56, 57). Furthermore, the BBB was intact during
spontaneous migraine attacks without aura (58), and
dural inflammation, which was induced, did not affect
BBB integrity (59).
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CNS inflammation: The hypothalamus and
limbic system

Schulte and May observed increased hypothalamic
activation in the prodromal phase compared to the interictal
state as the most robust evidence for hypothalamus involvement
in migraine (60). No studies have directly related to
hypothalamic neuroinflammation to migraine (2). A study
showed that positron emission tomography (PET) could detect
hypothalamic inflammation, but PET and other imaging studies
in migraine patients did not demonstrate visible inflammatory
alterations in the hypothalamic area (61). Hypothalamic
activation results in the activation of the trigeminocervical
complex (TCC) or the trigeminal nucleus caudalis (TNC),
indicating a connection between these regions of CNS in early
migraine (60). There is no evidence showing that inflammation
occurs in TNC itself in migraineurs. However, some evidence
suggested the contribution of inflammatory mediators to TNC
sensitization (2).

Migraine and neuroinflammation-related genes

Migraine is a complex neurovascular disease with a solid
genetic background, meaning it is formed by a combination
of multiple genetic and environmental factors (62, 63). In
total, three definite hemiplegic migraine genes have been found
now, which are CACNA1A (FHM1), ATP1A2 (FHM2), and
SCN1A (FHM3). Despite recent technological advances in whole
genome/exon next-generation sequencing, no other migraine
hemiplegic genes have been identified (64).

A study revealed that cortical chemokine (C-C motif)
ligand 2, IL-1β, and TNF-α mRNA expression increased at 1,
2, and 4 h, respectively, caused by non-invasively optogenetic
induction of multiple CSDs through the intact skull in Thy1-
channelrhodopsin-2 transgenic mice. This response decreased
in IL-1 receptor knockout mice, which indicated IL-1β to be
an upstream mediator (65). A re-analysis of the data by Eising
et al. (66), which investigated alterations of gene expression
24 h after CSD in the transgenic knock-in mouse model in
which missense mutation of the human FHM1 R192Q was
inserted (67), indicated a greater expression of IL-1 receptor
antagonist (IL-1RN). Also, IL-6 expression was higher in the
FHM1 mutant mice’s brains than in wild-type mice. In contrast,
interleukin 2 (IL-2), IL-4, IL-10, and interleukin 13 (IL-13)
showed no difference in genotypic expression (68). That study
speculated a possible homeostatic role of IL-6 and IL-1RN in
ongoing immunoinflammatory events. Eising et al. (66) showed
that CSD events produce a unique delayed inflammatory effect
determined by interferon-mediated inflammatory signaling. An
overrepresentation of interferon-related transcription factor-
binding sites [interferon consensus sequence-binding protein
(ICSBP), the interferon regulatory factor (IRF), and IFN
regulatory factor (ISRE)] in the promoter regions of the found
genes confirmed it. In addition, CSD led to a noticeable

continued upregulation of genes, including Cd53, Ms4a6d, Ccl2,
C3ar1, Anxa2, Timp1, and Vim, which are primary drivers of
signaling in inflammation (69).

A comparison between genetic data of 59,674 migraineurs
and 316,078 controls performed by a genome-wide association
analysis (GWAS) showed thirty-eight genomic susceptibility
loci in humans. Among the genomic susceptibility loci, five
genes were related to the inflammation, namely, MEF2D,
JAM3, TSPAN2, NOTCH4, and NLRP1 (70). Further genetic
confirmation for the involvement of neuroinflammation in
migraineurs is obtained by comparing the genetic data of
4,505 migraines with aura and 4,038 migraines without aura
(and corresponding control sets) in a setting of genome-wide
association studies (GWASs), which showed both types of
migraine to be more similar rather than being different and that
among their genetic overlap, there was a significant number of
inflammation-related genes, as well as genes associated with the
cardiovascular system and connective tissue (71).

Meningeal neurogenic inflammation and
nociceptor activation

Significant recent advances in molecular pharmacology
have clarified the molecular mechanisms behind neurogenic
inflammation. Trigeminal neurons by releasing tachykinins
and endothelin-3 (ET-3) on tachykinin receptor 1 (Tacr1)
and endothelin receptor type B (Ednrb) on endothelial
cells activate them and result in increased dural vascular
permeability and vasodilation. Cellular contraction brought
on by endothelial cell receptor stimulation results in plasma
protein extravasation (PPE), neurogenic inflammation’s (NI’s)
most prominent physiological feature, and nitric oxide-induced
vasodilatation. The calcitonin gene-related peptide (CGRP), a
crucial component of NI, does not affect vascular permeability;
however, it causes neurogenic vasodilatation (NV) by directly
relaxing vascular smooth muscle, which is endothelium-
independent (72).

At the place where the nociceptive fibers are stimulated,
pain is usually accompanied by an inflammatory response
in different degrees. Much experimental evidence, particularly
from rats, shows that the nociceptive trigeminocervical afferents
that mediate headache can be triggered by a sterile meningeal
inflammatory process (73). Studies on premonitory symptoms
(61) and continuous scanning of the migraine cycle (60, 74)
support the current idea that migraine is a brain condition
in which attacks are triggered in subcortical areas (61). The
discovery of neurotransmitters and neuromodulators that may
be involved in the pathogenesis of migraine is a critical problem
in migraine research (75). However, the existing clinical data
show that substance P is not involved in acute migraine
episodes (72) because substance P receptor antagonists have
no role in this scenario (76–78). The production of cytokines,
chemokines, reactive oxygen species (ROS), and secondary
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messengers such as nitric oxide (NO) and prostaglandins
modulates neuroinflammation in the brain and spinal cord (76,
79). The trigeminovascular system (TVS), which CSD activates,
is related to migraine aura development. Trigeminal ganglion
neurons’ antidromic conduction, opposite to the orthodromic
conduction, releases neuropeptides from their nerve terminals,
including CGRP, which causes vasodilation and plasma
extravasation. Sensory nerve fibers contain neuropeptides
coming from the trigeminal ganglion (TG) that innervate the
dura, generating neurogenic inflammation in the dura. The
direct conduction of TG neurons can activate c-fos in the TNC,
resulting in a pain sensation that is eventually experienced as a
headache (77). Furthermore, evidence frommice and rat studies
showed that parenchymal neuroinflammatory signaling between
neurons, astrocytes, and microglia, which finally migrates to the
meninges (65, 66, 78, 80–85), might be the potential pathway of
transferring a non-homeostatic activity in the unconscious brain
to pain-sensitive meninges (86, 87).

According to the rodent experiments, a sterile meningeal
inflammation triggered by the release of peptides from
trigeminocervical C-fibers and the activation of resident
inflammatory cells (mast cells, macrophages, and dendritic cells)
may contribute to the sustained activation and sensitization
of meningeal nociceptors (16, 88–90). The data imply that
this inflammatory signaling occurs in the trigeminocervical
ganglia and the meninges. This signaling may be involved in
the central nociceptive pathways of headache chronification
(91, 92). When meningeal nociceptive fibers are activated for
a long time, they can release a variety of vasoactive peptides
such as CGRP, pituitary adenylate cyclase-activating polypeptide
(PACAP), substance P, and neurokinin-A (73, 93). Research
on isolated human middle meningeal and cerebral arteries
has shown the vasodilator effects of several neuropeptides (94,
95). Experimental studies have shown that systemically given
fremanezumab (CGRP antagonist) did not affect post-CSD
middle meningeal artery (MMA) dilation and dural plasma
protein extravasation (which has a parallel time course to
MMA dilation) but inhibited A-fiber mediated nociception,
supporting the theory that MMA dilation is not directly related
to nociception (39, 96).

In rats, CGRP alone or the inflammatory mediator
prostaglandin E2 could not cause extravasation of dural plasma
proteins (97). In humans, except for rare case reports, there
is minimal evidence of protein plasma extravasation during
migraine (98). Furthermore, even in animal models, CGRP
alone does not cause mast cell degranulation (99), with only
one research reporting positive findings. Also, the receptor
components required for a CGRP response are not expressed
in human mast cells (100). As a result, the theory that mast
cell degranulation plays a role in migraine episodes in humans
does not hold up (2). However, CGRP has a significant role in
migraine pathophysiology because CGRP levels in the jugular
vein plasma increase significantly during migraine episodes

(34). In migraineurs, an intravenous CGRP infusion causes
migraine-like symptoms (101), and clinically effective anti-
migraine medications target either CGRP release (triptans) or
CGRP peptide or its receptor (CGRP antagonists) (102). Mast
cells also release tryptase, which generates migraine-like pain
responses in mice by activating the protease-activated receptors
(PAR) on dural afferents (103–105). Much research in rodents
(106) has shown a significant role in neurogenic inflammation
in migraine pathogenesis.

Inflammation response provoked by CSD

Cortical spreading depression is a characteristic feature of
migraine with aura, displaying a powerful wave of neuronal
depolarization with vascular and glial activation (107, 108).
There is actual documentation that shows CSD causes
neuroinflammation, although the suppression of inflammation
could not necessarily treat migraine. Studies showed that
inflammation of the meninges by stimulating mast cells and
macrophages and increasing the amounts of pro-inflammatory
cytokines, such as IL-1β, IL-6, and TNF-α, caused the
development of CSD (82, 84, 109–111). In vitro analysis
of spreading depression in hippocampal organotypic cultures
(112) and astrocytes (84) illustrated the upregulation of pro-
inflammatory cytokines, including IL-6, IL-1β, and TNF-α.

Figure 1 illustrates the association between
neuroinflammation and migraine.

Inflammasomes in migraine

General concepts of inflammasomes

Pattern recognition receptors (PRRs) detect pathogenic
molecular patterns (PAMPs), and the environment- or host-
derived danger-associated molecular patterns (DAMPs) detect
pathogenic signals. In the CNS, the PRRs are mainly found
in microglia, astrocytes, and macrophages, and also, neurons,
endothelial cells, and oligodendrocytes have PRRs (113, 114).
PRRs are found at the cell membrane and in the cytoplasm. PRRs
at the cell membrane are Toll-like receptors (TLRs), which detect
extracellular signals. PRRs in the cytoplasm include nucleotide-
binding domain and leucine-rich repeat-containing receptors
(NLRs) and A melanoma 2 (AIM2)-like receptors (ALRs), and
they detect intracellular signals. “Inflammasomes” that are part
of the innate immune response are created by intracellular
PRRs (115).

So far, few rodent studies have sought the association
between inflammasome and migraine. One study showed that
NLR family pyrin domain containing 3 (NLRP3) inflammasome
pathway involved in the peripheral trigeminal ganglion
(TG) response of the intracranial pain model induced by
inflammatory dural stimulation in the rat (116). Another
study revealed an increase in the production of NLRP3
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FIGURE 1

Neuroinflammation and migraine. Stimulation of the trigeminal neurons causes the release of neuropeptides, including CGRP, substance P (SP),

leading to mast cell degranulation, leukocyte infiltration, glial cell activation, and increased production of inflammatory TNF-α, IL-1, and IL-6

cytokines. Besides, satellite glial cells (SGCs) and trigeminal ganglions (TG) express receptors for CGRP, and CGRP can stimulate intracellular

signaling molecules that are relevant to pain, such as cAMP, CREB, MAPK, and ERK. Under the influence of inflammation, activated microglia, T

cells, and mast cells can boost the inflammation loop and production of cytotoxic mediators in the CNS.

inflammasome and IL-1β activation in a migraine-related pain
mouse model (induction of pain by repeated nitroglycerin
(NTG) stimulation) (117). It also showed that blockade of
NLRP3 and IL-1β reduced hyperalgesia and prevented increased
markers related to chronic migraine central sensitization
such as c-Fos, CGRP, and phospho-ERK (p-ERK) in the
trigeminal nucleus caudalis (115). A review suggested the
involvement of D-β-hydroxybutyrate (D-BHB), as a ketone
body, in the pathophysiology of migraine, that is, mitochondrial
function, oxidative stress, inflammation, cerebral excitability,
and the microbiome of the gut (118). No data confirm
the relationship between cortical spreading depolarization
(CSD) or migraine and NLR family pyrin domain containing
1(NLRP1) or NLR family pyrin domain containing 2(NLRP2)
inflammasomes. Therefore, the role of NLRP1, NLRP2, NLRP3,
AIM2, and other inflammasomes in migraine with aura (MA)-
associated parenchymal neuroinflammation, for instance, in
response to CSD, needs to be investigated in the future
studies (115).

Inflammasome complex formation and release
of IL-1β and HMGB1 from neurons

More studies illustrated that some inflammatory mediators,
including IL-6, IL-1β, TNF-α, prostaglandin E2, and nitrite
levels in the internal jugular vein (which drains the brain
parenchyma but not the meninges) increased within the first
hour of a moyamoya (MO) attack (52, 53, 119). High expressed
DNA-binding non-histone proteins called high mobility group
box protein 1(HMGB1) (120) are responsible for chromosome
stabilization, DNA repair, control of transcription by binding to
DNA, and nucleosome mobility (120). These alarmin proteins
are passively released from necrotic or damaged cells and
actively leak after an inflammatory condition such as infection,
cell swelling, and tissue injury (121, 122) and provoke a rapid
inflammatory response following release from the cell (123). The
release of HMGB1 and IL-1β stimulates the nuclear factor-κB
(NF-κB) pathway in adjacent cells, and this pathway regulates
the neuroinflammatory response in astrocytes and microglia
(124, 125).
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Mitochondria, migraine, and the inflammasome

Abnormalities of mitochondria have been identified in
patients with migraine, as indicated by directly observing
biopsies of muscle that showed giant mitochondria with
paracrystalline inclusions, cytochrome-c oxidase-negative
fibers, and ragged red, and the gathering of subsarcolemmal
mitochondria (126, 127). Common polymorphisms of
mitochondrial DNA (mtDNA) (3010G-A and 16519C-T)
are associated with migraine and pediatric cyclic vomiting
syndrome (128). Moreover, various missense mutations of
POLG have been linked to migraine (129). However, the
importance of these variants for migraine pathophysiology
is unclear. Perhaps unsurprisingly, a current migraine
mitochondrial GWAS failed to find a genetic factor (130). A
highmigraine headache frequency was present inMitochondrial
Encephalopathy, Lactic Acidosis, and Stroke-like episodes
(MELAS) patients with mutation m.3243A> G (131). This
mutation in endothelium and vascular smooth muscle cells,
glial cells, and neurons causes long-term subjection to toxic
materials, such as reactive oxygen species (ROS), which might
contribute to migraines at older ages. Besides high ROS
production, narrowing the vascular lumen and the subsequent
peroxidation of lipid, ionic homeostasis, hypoxia/ischemia,
and altered glutamate metabolism may be associated with
CSD stimuli. These pathways, including the inflammatory
pathways caused by the production of ROS, have been proposed
as new targets for new drug classes for the treatment of
mitochondrial migraine in patients with m.3243A> G (131).
Mitochondria also interact with the immune system, i.e., with
inflammasome induction. Mitochondrial ROS (mtROS) that
damages mtDNA and interacts with NLRP3 inflammation
through inflammatory events can be produced by mitochondria
(132, 133). The overproduction of mtROS is detected bymtDNA
or thioredoxin-interacting protein (TXNIP), which attaches to
the leucine-rich replication repeat of NLRP3, thereby activating
the NLRP3 inflammasome (133). Activation of inflammasome
and ROS production was reduced by rotenone, an inhibitor
of mitochondrial I complex (134). Mito-TEMPO, a specific
mitochondria ROS scavenger, stopped the release of mtROS,
consequently reducing the positive regulation of interleukin 18
(IL-18) and IL-1β induced by lipopolysaccharide/ATP or ethanol
and restraining the activation of NLRP3 inflammasome (135).

Cholinergic anti-inflammatory pathway and
the inflammasome

Extracellular ATP induces a rapid influx of acetylcholine
(Ach) into the cytoplasm. ACh stops the release ofmitochondrial
DNA and NLRP3 ligand via Alpha7 nicotinic acetylcholine
receptor (α7 nAChR), thus suppressing the activation
of NLRP3 inflammasome in peritoneal macrophages of
lipopolysaccharides (LPS)-primed mice (136). In these settings,
vagus nerve stimulation (VNS) or cholinergic receptor

agonists significantly inhibit inflammasome activation, whereas
inflammasome activation is notably increased by genetic
ablation of α7 nAChR.

Pharmacotherapy in migraine

Migraine management began with ergot alkaloids, followed
by the emergence of the triptans, and later expanded to
other targets of therapeutic type, particularly calcitonin gene-
related peptide (CGRP)-related products (137, 138). Significant
recent advances in molecular pharmacology have clarified the
molecular mechanisms behind neurogenic inflammation.

Triptans mainly target serotonin 1A receptor (5-HT1)
receptors as an agonist (139, 140). 5-hydroxytryptamine
(serotonin) receptor 1D (5-HT1D) receptors inhibit
neuropeptides’ release in guinea pigs, which leads to the
modification of the dural response of the neurogenic
inflammatory type (141). Serotonin-1F receptor (5-HT1F)
receptors can be selectively activated by Ditans (142), inhibiting
CGRP release and possibly substance P from the peripheral
endings of the trigeminal nerve in the dura mater and affecting
the thalamus or the caudal trigeminal nucleus (143).

Non-steroidal anti-inflammatory agents (NSAIDs) and
ergot alkaloids as treatments for headaches in migraine may
reduce the neurogenic inflammatory response (144). NSAIDs
disrupt the synthesis of prostaglandins involved in hyperalgesia
and the inflammatory cascade by impeding the function of
the enzymes cyclooxygenase-1(COX-1) and cyclooxygenase-
2 (COX-2) (145, 146). The endocannabinoid system could
modulate the neurogenic-induced migraine (147) based on
cannabinoid receptor type 1 (CB1) receptors localization along
the trigeminal tract and its afferents (148, 149).

Calcitonin gene-related peptide secretion in pathogenesis
of migraine includes the regulation of sensory processing (150)
and peripheral vasodilation, which leads to the mediation of
meningeal neurogenic inflammation via release of other
neuropeptides (151, 152). CGRP-targeted monoclonal
antibodies (mAbs) and gepants, as small-molecule antagonists,
are two groups of therapeutic agents that have been elaborated
to date to disrupt the function of CGRP. Currently, three
gepants and four CGRP-targeted mAbs are approved by the
United States (US) Food and Drug Administration (FDA) for
treating migraine (153); three of the CGRP-targeted mAbs
are against CGRP, and the other one is against the receptor of
CGRP (154).

In addition to CGRP, the neuropeptide PACAP has also
received attention as a possible anti-migraine target (155). Early
research on neuropeptides and migraine showed that only
CGRP was raised during a migraine attack (34). However, a
further investigation found higher PACAP levels during the
ictal period compared to the attack-free time (156, 157), and
patients with migraines experienced migraine-like symptoms

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2022.944791
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Salahi et al. 10.3389/fneur.2022.944791

after injections of both CGRP and PACAP (158). PACAP may
appear before CGRP and be significant during the initial stages
of a migraine episode. After administering vasoactive intestinal
peptide (VIP) and PACAP to migraine sufferers, VIP did not
cause a migraine attack, in contrast to PACAP (159, 160).
PACAP and VIP have a similar ability to engage VPAC1 (VIP
and PACAP receptor 1) and VPAC2 receptors. However, PACAP
has a significantly stronger affinity for binding to VPAC1 than
VIP (161). These findings suggest that the VPAC1 receptor is
the most plausible pathway by which PACAP induces migraine.
As a side point, it appears that only VPAC1/2 receptors in
investigations of dural vessels are causing dilatation (162),
indicating that the PACAP migraine mechanisms are probably
unrelated to vasodilation. Amgen developed and began clinical
testing a mAb against the VPAC1 receptors (AMG301) (38).
A mAb directed against PACAP-38 has been developed and is
undergoing clinical testing by Leder, similar to the CGRPergic
system (ALD1910). Recent data from preclinical investigations
on ALD1910 in a umbellulone-induced rat model of neurogenic
vasodilation and parasympathetic lacrimation demonstrated
promising outcomes (163).

Ghorbani et al. (164) aimed to assess the effects of
supplementation with vitamin D3 on characteristics of headache
and pro-/anti-inflammatory markers in patients with migraine,
considering the anti-inflammatory effects of this vitamin. In
total, eighty episodic patients with migraine were studied
double-blindly, randomly divided into two groups one group
daily received vitamin D3, and a placebo was provided for the
other group. Determination of headache characteristics using
diaries and assessing levels of IL-6, IL-10, cyclooxygenase-
2 (Cox-2), and inducible nitric oxide synthase (iNOS) in
serum were performed at baseline and the end of the study.
The results showed that the group that received vitamin D3
supplementation experienced a reduced duration of attacks,
fewer headache days per month, headaches with lower severity,
and lower painkiller consumption per month compared to the
placebo group. Vitamin D3 could be thought of as a regulator of
the proliferation, differentiation, and activation of inflammatory
and immune cells such as macrophages considering expressed
nuclear receptor of vitamin D3 in these cells, and stimulated
macrophages might synthesize the main metabolite of vitamin
D3 as known as 1,25 (OH)2 D (165, 166). Anti-inflammatory
effects of vitamin D3 could be applied by suppressing the activity
of NF-κB through various mechanisms, such as stimulating
its inhibitory protein (IκB) production (165, 166). NF-κB is a
critical transcription factor in regulating inflammatory cytokine
synthesis and secretion, including nitric oxide (NO), iNOS, and
IL-6. According to these findings, increased activity of NF-κB
and levels of NO and iNOS in ictal phases in migraineurs can be
alleviated by vitamin D3 supplementation and lead to reduced
inflammation in migraine (52).

Zareie et al. (167) assessed the effect of cinnamon on
the inflammatory status and migraine attacks. They randomly

divided fifty migraineurs into two groups; the experimental
group received daily cinnamon powder, and the control group
received a placebo for 2 months. They measured the serum
levels of CGRP, IL-6, and NO at baseline and the end
of the trial. A questionnaire was also used to record the
frequency of pain attacks, duration, and severity. Significant
reduction in serum IL-6 and NO concentrations and frequency,
duration, and severity of migraine attacks were observed in the
group that received cinnamon compared to the control group.
However, serum CGRP levels had no change in any of the
groups. Cinnamon has neuroprotective and anti-inflammatory
roles (168, 169). Cinnamaldehyde, as the main bioactive
component of cinnamon, can decrease the inflammatory
cytokines, including TNF-α, IL-6, and IL-1β, by inhibiting the
expression of nitric oxide synthase (iNOS) and cyclooxygenase
(168, 170–173).

Moreover, a possible regulating role for cinnamon in
inflammatory mediator’s release is revealed in the animal
studies (174, 175). They also demonstrated the beneficial
effects of cinnamon on migraine complications by influencing
IL-6 (167) and NO. NO has a role in pain processing
(176, 177). Considering the pro-inflammatory effect of
NO in inflammatory pain, inhibition of NO production
improved neuropathic and inflammatory pain (178). Therefore,
NO levels reduction may be considered a pain and other
migraine complications reliever (167). Cinnamon reduces NO
metabolites, including peroxynitrite and superoxide, reducing
NO-induced inflammation and pain (168, 179, 180).

Migraine and immunologic disorders

Several studies have investigated the links between migraine
and immunologic disorders, including multiple sclerosis (MS),
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),
type 1 diabetes mellitus (T1D), and psoriasis (Figure 2).

Migraine and multiple sclerosis (MS)

Overall, 29–86% of patients with MS suffer from pain (181,
182). Although pain is not a key symptom forMS, many patients
complain of various pains. One of the pain syndromes linked
to MS, which make up between 11 and 37% of the symptoms
of MS, is headache (183, 184). Recent research has found that
the prevalence of headaches in patients with MS varies greatly
(185). Depending on where the lesions are located, patients
with MS can show various neurological symptoms, including
visual problems (optic neuritis), sensory or motor difficulties,
and cognitive dysfunction.
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FIGURE 2

The association between migraine and autoimmune disorders.

Migraine and MS: Prevalence

Several studies have investigated the prevalence or incidence
of migraine headaches among patients with MS. Fragoso et al.
(186) showed that 746 patients (625 women and 121 men) had
both MS and headaches. Among them, 54.1% (404 patients)
were diagnosed with migraines, and 68.3% had a moderate to
severe disease burden observed in 68.3% of those patients. Also,
a 3-fold higher prevalence of migraine among patients with MS
compared to controls was reported by a cross-sectional study by
Kister et al. (187). Also, a study byWatkins et al. (188) confirmed
a higher incidence of migraine among patients with MS than in
controls, and a higher incidence of migraine was observed in
women compared to men. Family history of migraine showed
a higher incidence in patients with MS than in controls. Few
cases of the MS patients’ group already had MS symptoms
after experiencing migraine for the first time. These findings
suggest that the disease stress due to the neurological disability is
probably involved in migraine development. Conversely, several
patients withMS hadmigraines beforeMS onset; therefore, these
cases do not support the idea explained before. It is shown that
some treatments for MS, such as interferon-beta (189, 190),
fingolimod, and natalizumab, might increase the frequency and
severity of migraine attacks in patients with MS, and migraine

certainly is a frequent type of primary headache reported in
patients suffering fromMS (186).

Moisset et al. designed a cohort study that measured
the comorbidity of migraine and pain with neuropathic
characteristics (NC) in MS using a questionnaire. Out of 1,300
patients, 79% had experienced pain in the past month, 51% had
pain with neuropathic characteristics (NCs), 46% hadmigraines,
and 32% had both migraines and neuropathic characteristics
(NCs) at the same time. Patients with migraines compared to
rest were young, their disease duration was short, and most
had relapsing remitting MS (RRMS) and a lower Expanded
Disability Status Scale (EDSS). Higher EDSS and MS duration
were associated with a reduced rate of migraine. The prevalence
of migraine was age-related and decreased with aging, whereas
neuropathic characteristics (NCs) were not related to age (191).
The inflammatory phase of MS was associated with migraines
(192), and it seems that CNS lesions can also cause neuropathic
pain (191).

However, Gustavsen et al. reported no significant difference
in the prevalence of headaches and migraines between patients
with MS and controls. Patients with EDSS≥4.0 had few
migraines. It might be due to the older age of participants
compared to the participants in other studies (193). Also,
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Katsiari et al. showed no link among MS disease activity, clinical
manifestations, and autoantibody and the presence or type
of headache in patients with MS. This study concluded that
migraine should not be considered a neurologic indication in
MS (194).

Migraine and MS: Structural changes

Several studies have investigated the structural changes
explaining migraine in patients with MS. Pravatà et al. designed
a study to determine whether changes in the resting-state
functional connectivity (RS-FC) will distinguish the occurrence
of migraine in patients suffering from MS. They reported
that the loss of periaqueductal gray matter (PAG) negative
connectivity with the sensorimotor and visual network was
related to the severity of migraine symptoms and their impact
on daily activities of patients with MS (195).

Tortorella et al. (196) assessed the presence and frequency
of structural abnormalities detected by magnetic resonance
imaging (MRI) in patients withmigraine andMS. They recorded
the presence of hyperintense lesions implicating the brainstem
structures by brain dual-echo scans taken from a group of
patients with migraine (with or without aura), a group of MS
patients with migraine not experiencing aura, and a group
of MS patients without migraine. Substantia nigra (SN), red
nucleus (RN), and PAG lesions were observed in all the
groups of patients, with some differences in these regions. Aura
presence in migraine patients made no difference compared
to those without aura. The RN and SN were more involved
in MS patients with migraine than those without migraine.
The SN and PAG were noticeably involved in MS patients
with migraine compared to migraine patients. Results of the
brainstem structures lesions assessment illustrated that migraine
aura is not correlated with increased involvement of these
structures. An explanation for these observed lesions is that they
might be due to repeated blood flow reductions resulting in
ischemia (197, 198). Based on the lesions of brainstem nuclei
observed in migraineurs, damage to these structures is suggested
to play a role in migraine genesis with the independence of the
causative lesion.

Children have a higher incidence of headaches at the first
clinical event of MS than adults, and the frequent involvement
of the brainstem in pediatric MS and the existence of large
white matter lesions could explain it. Mariotti et al. reported a
5-year-old case of MS who presented a migraine-like headache
at both the initiation of the disease and the subsequent
two relapses. In this case, the neuroradiologic findings did
not fade with time l/ with each relapse, which explains the
persistence of headache as the primary complaint during her
two subsequent MS exacerbations. The anatomical location
of the lesions may influence the presence of a headache
with MS. Most of the essential structures for migraine were
implicated in the inflammatory process in the brain and

cervical spinal cord in the MRI results. MRI revealed minimal
effacement of subarachnoid spaces and somemodest evidence of
leptomeningeal engorgement during the first attack and the first
relapse, indicating inflammatory changes in the meninges. The
initial and subsequent MRIs revealed diffuse brain edema. The
relief of pain following lumbar puncture revealed a role of brain
swelling as a pathogenic cause of headache in the patient (199).

Migraine and MS links: Potential mechanisms

Probable mechanisms might be responsible for these results.
Migraine can increase the permeability of the BBB and
neuroinflammation (200), thereby exposing antigens derived
from the sequestered CNS compartment to circulating T cells
and sensitizing them to myelin products. Migraine also may
change cytokine profile in a manner that causes autoimmune
reactions in CNS; for example, IL-10 and TNF-α tend to be
enhanced in both migraine attacks and during an MS relapse
(4, 201).

Demetgul et al. (202) focused on studying the prevalence
of primary headaches in MS sufferings and discovered the type
of headache in these patients and found out the relationship
between primary headache type and MS subtype and the
correlation between the localization of plaques in the brain
magnetic resonance imaging (MRI) with clinical findings in MS.
The patients with MS were asked about headache features in
succession to characterize headache type. The results showed
that the mean EDSS score in patients with tension-type
headache (TTH) and patients with migraine-type headache
was 4.7 and 1.8, respectively, and was statistically significant.
Of the participants with migraine-type headaches, 100% had
pericallosal, 98% had juxtacortical, 45.9% had cerebellar, and
78.6% had infratentorial lesions. The mean total number of
cerebral lesions in patients with TTH was significantly higher
than migraine-type headaches. The mean number of brain
lesions in patients with headaches was significantly higher than
in those without headaches. Migraine was common in patients
with sensory, cranial, optic, or cerebellar symptoms at baseline.
At the same time, TTH was common in polysymptomatic
patients and patients with motor symptoms at baseline.

Gee et al. examined whether or not the prevalence of
migraine-like headaches in MS suffering correlates with a
plaque in the brainstem. Approximately 17% of subjects
were diagnosed with secondary progressive MS, 17% with
primary progressive MS, and 66% with RRMS (203). Along
the lines of a former study (52%) (204), 55.6% of people
suffered from headaches, and separately 61.7% had features
of migraine-like headaches, 25.3% of tension-type headaches,
and 13% of migraine and tension-type headaches. Subjects
with a plaque within the midbrain/periaqueductal gray matter
(PAG) areas compared with MS subjects without had a
significantly 4-, 2.5-, and 2.7-fold increases in migraine-like,
tension-type, and combination of migraine and tension-type
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headaches. Patients with MS with three or more lesion locations,
contrary to patients with MS with 0 to 2 locations, were
established to be nearly two times more to have migraine-
like headaches, but it was not statistically significant. There
was a significant linear tendency between the number of
lesion locations and migraine-like headaches. To summarize,
midbrain plaque in MS patients is associated with an
increased likelihood of migraine-like headaches (203). Different
parts of the midbrain [dorsal raphe nucleus (DRN), locus
coeruleus (LC), and periaqueductal gray (PAG)] have roles
in migraine pathogenesis (205–209). In patients with MS,
demyelinating process affects PAG similar to white matter
(210–220), but other brain structures such as substantia
nigra, red nucleus, and hypothalamus could be involved in
migraine (221–223).

Migraine headache in MS suffering may be a sign of
relapse or may even notify the onset of the severity of
manifestations of MS (224, 225). Freedman and Gray suggested
that demyelinating lesions in the brainstem may trigger
a migraine center or interlope with inhibitory modulating
impulses to activate the vascular changes that occur at the
beginning of migraine headaches (224). On the other hand, they
suggested that inflammatory reactions could release vasoactive
substances such as ATP, bradykinin, and vasoactive amines
during a relapse and provoke a migraine attack. In addition,
Sicuteri believed that cerebral 5-hydroxytryptamine (5-HT)
deficiency decreases the pain threshold and causes migraine
headaches (226, 227). Some observations that support the 5-HT
hypothesis are that the symptoms were relieved after receiving
the 5-HT precursor tryptophan. During a migraine attack,
plasma 5-HT levels (227, 228) and CSF concentrations of 5-
hydroxy indole acetic acid (5-HIAA) diminish (229–232), and
urinary 5-HT and 5-hydroxy indole acetic acid (5-HIAA)—
its major metabolite—may increase (227, 228); in addition,
nightly migraine generally occurs during rapid eye movement
(REM) sleep when plasma 5-HT levels suddenly fall (233,
234). Pharmacological studies using selective 5-HT receptor
agonists and antagonists to provoke or diminish migraine
headaches showed more information about the role of 5-HT in
migraine (228, 235–241). 5-HT deficiencies may be responsible
for increased permeability of the BBB and then increase
susceptibility to relapse of MS and occurrence of migraine
(228, 242–246); in addition, the pineal gland’s melatonin could
interact with the 5-HT system and may be responsible for the
beginning of relapse of MS along with the occurrence of a
migraine headache (247–261). Moreover, experimental animal
studies showed the role of 5-HT in the pathogenesis of MS
(247, 262–265).

Figure 3 indicates a schematic association between migraine
and MS.

Migraine and rheumatoid arthritis (RA)

Studies have shown that RA, a disease of inflammatory
synovitis in joints, is more prevalent in patients with
migraines (266).

Yoo Hwan Kim et al. (267) reviewed two longitudinal
follow-up studies examining migraine’s association with RA.
Group1 evaluated the risk of RA in people with migraine, and
group 2 examined the risk of migraine in people with RA. The
outbreak of RA in the migraine group was higher than in the
control I group, and the outbreak of migraine in the RA group
was higher than in the control II group. In general, migraines
increase the risk of RA, and RA is also associated with an
increased risk of migraines.

Also, a cross-sectional study by Jacob et al. on 2,649 adults
(268–270) showed a significant association between migraine
and arthritis (OR = 1.83, 95% CI = 1.20–2.81), especially in
women aged <45 years and more than 65 years old. Several
points may explain the identified relationship between arthritis
and migraine. First, they have expected consequences such as
stress, neck pain, and sleep disorders. The second exercise is
recommended as a non-pharmacological treatment for both.
Overall, the fact that migraine and arthritis may coexist (271)
leads to medical and economic burdens and should be planned
for (272).

El-Sonbaty et al. realized that the relationship between
migraine and rheumatoid arthritis (RA) is complex and not
completely understood (273, 274). Therefore, they conducted
a cross-sectional study (275) on 210 consecutive patients with
RA from Egypt within 6 months. They also observed brain
MRI white matter hyperintensities (WMHs) and found out that
more disease activity, fibromyalgia (276) and functional losses,
longer migraine duration, longer rheumatoid duration, and
elevated erythrocyte sedimentation rate (ESR) were considerable
in patients with both diseases (275).

Yoo Hwan Kim et al. suggested a bidirectional association
between migraine headache and rheumatoid arthritis on the
ordinary pathophysiologic mechanisms of the immune system
between migraine and RA (271, 277, 278). To test this theory,
they designed two longitudinal follow-up studies measuring
the risk for RA in persons with migraine and the risk for
incident migraine in persons with RA (279, 280). Because the
incidence of both diseases was higher in both studies than in the
control group, they concluded that migraine and RA exacerbate
each other. The pathophysiologic mechanism of inflammation,
vascular endothelial cells, and the immune system between
mentioned diseases could lead to the two-sided relation between
migraine and RA. Wang et al. investigated the prevalence of
rheumatoid arthritis in migraineurs in a cohort study. The
occurrence rate of RA was expressed at 3.18 per person-years
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FIGURE 3

The schematic illustration of the association between MS and migraine. Migraine is a forecaster of MS. 5-hydroxytryptamine (5-HT), a

compound produced in the body from the tryptophan, is diminished during migraine headaches. 5-HT induces T cell di�erentiation to Treg

cells; therefore, 5-HT deficiency may a�ect T cell di�erentiation toward e�ector T cells. 5-HT deficiencies may also be responsible for increased

permeability of the blood–brain barrier (BBB), resulting in the recruitment of more inflammatory immune cells to the CNS.

for the migraineurs group and 1.54 per person-years for the
non-migraineurs group (271).

Although the precise mechanism that supports the relation
between migraine and RA has not been known yet, two
conceivable explanations are provided. First, the relation
between RA and migraine may be due to a common pathogenic
mechanism called dysfunction of the serotonergic system.
Second, the high risk of RA in migraineurs may be due to the
high prevalence of sleep disorders. As a result, migraine can
increase the risk of developing RA in migraineurs (271).

Systemic lupus erythematosus (SLE) and
migraine

Systemic lupus erythematosus is a multi-organ autoimmune
disease. The most important clinical features are mucosal,
skin, joints, kidney, serous, hematological, immunological, and
neurological involvements. CNS involvement can occur in 14–
75% of patients with SLE (281, 282). Headache is one of the
most common neurological findings in 32 to 78% of patients
with SLE (283–292).

In a study by Bicakci et al., no link was discovered between
headache characteristics (duration of history, therapeutic agents,
location, accompanying signs, course, kind of pain, and family
history) and the existence and size of cerebral lesions in
patients with SLE. As a result, headache in SLE and its
accompanying symptoms did not provide clues about the
intracranial lesion. However, if the onset of headache and SLE
co-occurs in elderly individuals with long-term SLE, a link could
be considered (293).

A meta-analysis in 2004 showed no specific pathogenic
mechanisms of headache in adult patients with SLE, and no
association was found between headache and disease status,
including CNS involvement (294). Also, no association was
found in the prevalence of headaches between patients with SLE
and controls (294).

In a study by Katsiari et al., the prevalence of chronic
tension-type headache (CTTH) in patients with SLE was
significantly higher than in controls at baseline and during the
1-year follow-up. There was no difference in the prevalence of
migraine (with or without aura) between the MS group (23%),
the SLE group (21%), and the control group (22%). The severity
of migraine attacks in SLE was lower than control andMS. There
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FIGURE 4

Migraine is a possible risk factor for RA, SLE, and proteus syndrome (Ps) but not T1DM.

was no link among disease activity, clinical manifestations, and
autoantibody and the presence or type of headache in patients
with SLE or MS. Lower quality of life, anxiety symptoms,
and depression were higher in SLE sufferings than in patients
with MS or controls but were insignificant (194). Appenzeller
and Costallat showed that migraine was prevalent among SLE
suffering and was associated with Raynaud’s phenomenon, anti-
phospholipid antibodies, disease activity, and organ damage.
Still, these study’s subjects were not wholly homogenous; only
premenopausal women participated, and headache diaries were
not used (295). However, migraine is a CNS indication of SLE
(296), and SLE affects the brain; recent studies did not show
a correlation between brain lesions and any headache type in
SLE (293, 297–299).

Migraine and type 1 diabetes mellitus

Diabetes mellitus (DM) is a metabolic disease characterized
by hyperglycemia due to defective secretion and insulin
function. This blood sugar status is associated with damage to
multiple organs and dysfunction, heart, blood vessels, nerves,
eyes, and kidneys. DM type 1 (insulin-dependent), DM type 2

(non-insulin-dependent), and other specific types are known as
different forms of the disease (300).

Hagen et al. (301) conducted a study to assess the
associations between type 1 and 2 DM and migraine. Adjusted
analysis of the 26,121-participant group revealed an association
of classical type 1 DM with lower headache and migraine
prevalence compared to those without experiencing DM. Similar
results were obtained in the merged group of autoimmune
diabetes of adults [latent autoimmune diabetes in adults
(LADA)] and classical type 1 DM. The 39,584-participant group
analysis also observed this inverse association. The results
indicated no specific association between headache and type
2 DM.

The observed adverse association may reveal a protecting
action of one status on the other, but the cross-sectional study
cannot ascertain the direction of causality. Arteriosclerosis
due to type 1 DM, considering vascular reactivity in the
pathophysiology of migraine, and diabetic neuropathy caused
by type 1 DM micro-vascular alteration (302) can be included
as some explanations for minor migraine and headache
prevalence in these patients. Insulin metabolism involved
in migraine pathogenesis concluded in other studies (303),
and some possible genetic factors (304, 305) may better not
be neglected.
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Migraine and psoriasis

A meta-analysis by Rui Xu et al. in 2020 showed that
migraine occurred severely in patients with psoriasis [pooled OR
1.64; 95% confidence interval (1.28; 2.11)]. This study indicated
a significant association between migraine and psoriasis OR
1.64 (95% CI 1.28; 2.11). Although the underlying causes for
this association have not been observed, pathophysiological,
molecular, and therapeutic aspects should be considered
explanatory factors (306). Migraine with aura (MA) is an
independent risk factor for the cardiovascular system (CV) in
people under 45 years of age (307, 308), and the number of MA
crises is a sign of the severity of CV (309, 310). Patients with CV
impairment also have high mortality due to psoriasis, indicating
that MA can be a risk factor in psoriasis for CV. Anti-CGRP
monoclonal antibodies are an innovative treatment for migraine
relief (311). Biologic drugs that inhibit the TNF-α inactivate
the pain-related signaling pathway in psoriatic arthritis (259),
indicating a potential anti-inflammatory therapy target in
migraine headaches. Evidence suggests that sterile inflammation
in the intracranial meninges activates the trigeminal meningeal
nociceptors (312). Due to this, a significant correlation and
overlap of pro-inflammatory mediators in the neuromuscular
and neuro-inflammatory mechanisms play an important role in
migraine and psoriasis (312–314).

Figure 4 summarizes the associations between migraine and
RA, SLE, type 1 DM, and psoriasis.

Conclusion

Evidence is provided in different literature indicating the
immune system’s involvement in migraine pathophysiology.
A vital mechanism is a neuroinflammation which follows
trigeminovascular afferents activation and sensitization. The
afferents, which project to the brainstem second-order neurons,
cause neuroinflammation and dilation of the meningeal vessels
by locally releasing neurotransmitters and neuropeptides.
Considering cytokines as potential mediators of pain in
neurovascular inflammation, they may cause migraine pain
generation. Cytokines can induce sterile inflammation of blood
vessels in meninges in migraine. As mentioned, observations
indicate a critical role of mast cells in migraine pathogenesis.

Migraine triggers could directly or indirectly cause meningeal
mast cells to activate the trigeminovascular system by releasing
inflammatory mediators. CGRP involvement is essential in
peripheral sensitization, neurogenic vasodilation, and migraine
cascade initiation. The manifestation of headaches, especially
migraines, is identified in many autoimmune disorders such
as MS and SLE. Among other systemic autoimmune disorders,
RA is more common in migraineurs than in people without
migraine. The immunological system dysfunction could be a
common pathophysiological relation between immunological
disorders and migraine since it is suggested that some
immunological dysfunction could involve the pathogenesis
of migraine. Further trials investigating the effects of anti-
inflammatory drugs on features of inflammation and pain in the
context of migraine can provide a more profound view of more
effective management of the disorder. Treatment of migraine
would be better if it involved multidisciplinary approaches.
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