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Background: The Symbol Digit Modalities Test (SDMT) is most frequently used

to test processing speed in patients with multiple sclerosis (MS). Functional

imaging studies emphasize the importance of frontal and parietal areas for

task performance, but the influence of frontoparietal tracts has not been

thoroughly studied. We were interested in tract-specific characteristics and

their association with processing speed in MS patients.

Methods: Di�usion tensor imaging was obtained in 100MS patients and

24 healthy matched controls to compare seed-based tract characteristics

descending from the superior parietal lobule [Brodman area 7A (BA7A)],

atlas-based tract characteristics from the superior longitudinal fasciculus (SLF),

and control tract characteristics from the corticospinal tract (CST) and their

respective association with ability on the SDMT.

Results: Patients had decreased performance on the SDMT and decreased

white matter volume (each p < 0.05). The mean fractional anisotropy (FA) for

the BA7A tract andCST (p< 0.05), but not the SLF, di�ered betweenMS patients

and controls. Furthermore, only the FA of the SLFwas positively associatedwith

SDMT performance even after exclusion of the lesionswithin the tract (r= 0.25,

p < 0.05). However, only disease disability and total white matter volume were

associated with information processing speed in a linear regression model.

Conclusions: Processing speed in MS is associated with the structural integrity

of frontoparietal white matter tracts.
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Introduction

Cognitive impairment is common in up to 40%−50% of

patients with multiple sclerosis (MS) (1) and has been associated

with both gray (2, 3) and white matter (4, 5) pathologies.

Previous studies related to white matter abnormalities associated

with cognitive impairment in MS have focused on lesion load

(4), lesion location (5), or whole-brain white matter tract

integrity (6). With these approaches, several fiber tracts, such

as the fornix, corpus callosum, thalamic radiation, and superior

longitudinal fasciculus (SLF), have been related to cognitive

disturbances (7, 8).

The Symbol Digit Modalities Test (SDMT) assesses

information processing speed and working memory,

discriminating patients from healthy controls with high

sensitivity (1, 9, 10). When applying functional magnetic

resonance imaging (fMRI) to investigate the underlying

neural resources, a network consisting of frontal (Brodman

area [BA] 6 and 9), parietal (BA7), occipital (BA17),

and medial posterior cerebellar (declive) regions have

been identified (11–13). Based on the involvement of a

widespread functional network in processing speed, the

SLF, and especially its subdivisions SLF1 and SLF2, is

presumably important because this tract bundle connects

the super parietal lobule with the superior and middle frontal

areas (14–16).

A recent fMRI approach of the oral version of the SDMT

also emphasized the role of the superior parietal lobe (SPL),

especially BA7A, for SDMT performance (17). This area is

particularly involved in spatial attention and visual working

memory (18, 19), which represent key components of the SDMT

(20). Anatomically, BA7A is structurally interconnected with

frontal, temporal, and brainstem areas, at least in part via the

SLF (15), again highlighting the importance of this white matter

tract bundle for cognition in MS.

Here, we investigated structural white matter alterations in

MS patients to better understand the role of specific parietal

white matter tracts, especially the SLF, and their associations

with ability on the SDMT. We focused on tract integrity

as quantified by fractional anisotropy (FA) using diffusion

tractography (DTI) on diffusion weighted imaging (DWI), as

FA is a highly sensitive, early, diffusion tensor-derived metric

for demyelination (21). In the literature, different DTI methods

are used – either in a whole brain approach, called tract

based spatial statistics (6), or with a more hypothesis driven,

regional approach. Based on the literature that highlights the

importance of the SLF and BA7A, we chose a regional-based

approach to associate the clinical impairment in the SDMT with

white matter tract pathology, using a predefined probabilistic

region-of-interest of the SLF and by performing probabilistic

tractography originating in BA7A. As a reference tract we

selected the corticospinal tract (CST), the integrity of which has

been associated with motor, but not cognitive, performance (22).

Whole-brain and tract-specific metrics were compared between

MS patients and healthy controls.

We further analyzed the tract metrics for the whole tract and

after exclusion of the lesions within the tract because we were

especially interested in an association with the so-called normal

appearing white matter (NAWM) tract alterations, which are

also accompanied by a reduction in FA in MS (23, 24). In a final

step, we performed correlation and linear regression analyses to

investigate clinical and imaging variables and their association

with SDMT.

Methods

Participants

A total of 100MS patients were enrolled in this study [70

females, mean age 44.3 years, median Expanded Disability Status

Scale (EDSS) 2.0]. All MS patients fulfilled the criteria for

multiple sclerosis according to the 2017 McDonald criteria (25).

Exclusion criteria were an acute relapse or steroid treatment

within the previous 3 months and another central neurological

disease. Twenty-four healthy controls (HCs) were added as a

control group without any neurological or psychiatric disorder.

The study was approved by the Ethics Committee of the

Medical Faculty of the University of Greifswald (BB028/13) and

all participants provided informed consent. Demographics are

summarized in Table 1.

Neurological and neuropsychological
examination

Each patient was investigated clinically and

neuropsychologically with respect to clinical disability (EDSS)

(26), depression [Beck Depression Inventory-II (BDI-II)] (27),

fatigue [Fatigue Scale for Motor and Cognitive Functions

(FSMC)] (28), and information processing speed (SDMT).

The control group was investigated with only the SDMT.

Figure 1A demonstrates an example of the SDMT. All clinical

assessments and MRI measurements were performed within

2 weeks.

MRI data acquisition

MRI was performed on a 3-T scanner (Magnetom Verio,

SIEMENS, Erlangen) using a 32-channel head coil. The standard

imaging protocol in all patients included a sagittal T1-weighted

3D-Magnetization Prepared Rapid Acquisition with Gradient

Echoes (MPRAGE) sequence (TR: 1,690ms; TE: 2.52ms; TI:

900ms; flip angle: 9◦; matrix: 256 × 256; 176 slices; voxel

size 0.98 × 0.98 × 1mm), a 3D-T2-FLAIR sequence [TR:
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TABLE 1 Group characteristics.

Patient group Control group Test statistics

N 100 24

Age (years) 44.1± 12.5 41.1± 11.56 t = 1.1; p= 0.28

Sex (male/female) 30/70 10/14 χ2
= 2.8; p= 0.12

Education (years) 14.5± 1.8 14.2± 2.8 t = 0.59; p= 0.55

Disease duration (years) 8.9± 7.0

Disease course (RRMS/SPMS) 93/7

EDSS 2.0 (0–7)

zSDMT −0.47± 1.3 0.12± 1.2 t = 2.04; p= 0.04

Gray matter volume (cm3) 615.1± 72.8 644.4± 72.1 t =−1.77; p= 0.08

White matter volume (cm3) 498.5± 65.8 546.3± 63.2 t =−3.22; p= 0.002

Lesion volume (cm3) 8.5± 8.0 2.0± 1.2 t = 7.8; p < 0.001

FA, SLF 0.436± 0.02 0.439± 0.02 t = 0.4; p= 0.69

FA, BA7A tract 0.429± 0.04 0.447± 0.03 t = 2.2; p= 0.03

FA, CST 0.455± 0.02 0.465± 0.02 t = 2.3; p= 0.02

Lesion overlap (%): SLF 1.019± 1.344 n/a

Lesion overlap (%): BA7A tract 1.951± 1.509 n/a

Lesion overlap (%): CST 1.683± 1.281 n/a

Values are given as mean± standard deviation or median (range) unless otherwise noted.

FIGURE 1

(A) Example for the Symbol Digit Modalities Test (SDMT). (B–D) Slices showing the three tracts from the di�usion-weighted imaging data for all

participants. The direction of tractography is encoded in standardized colors: z, blue; y, green; x, red. (B) coronal slices depicting the tract

originating in M1; (C) coronal slices showing the tract originating in BA7A; and (D) axial slices showing SLF. Slice position is indicated in the

respective direction below slice.

5,000ms; TE: 388ms; TI: 1,800ms; matrix: 512 × 512 (k-space

interpolation); 160 slices; voxel size 0.49 × 0.49 × 1mm], and

a Siemens- Multi- Directional Diffusion Weighted (MDDW)

sequence [TR: 10,900ms; TE: 107ms; flip angle: 90◦; matrix: 128

× 128; voxel size: 1.8 × 1.8 × 2mm; 70 slices; 1× unweighted

volume (b= 0); 64× diffusion-weighted volumes (b= 1,000)].
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MS lesion segmentation

Lesions were segmented by the lesion prediction

algorithm (LPA) as implemented in LST toolbox version

3.0.0 (www.statistical-modeling.de/lst.html) for statistical

parametric mapping (SPM; Wellcome Center, London, UK)

(29). The LPA classifier was trained using a logistic regression

model as described in detail elsewhere, providing an estimate

for the lesion probability of each voxel (29). The 3D-T2- fluid-

attenuated inversion recovery (FLAIR) sequence is sufficient

as an exclusive source for lesion segmentation when using this

prediction algorithm. The resulting lesion maps were visually

inspected for gross deviations by an expert (MG), and no further

correction was needed. The final maps were subsequently used

as exclusion masks for later extraction of FA and to calculate

a possible overlap for a quantification of lesion load of certain

white matter tracts.

Image processing

The diffusion-weighted data were corrected for eddy

current andmotion-related artifacts [FSL eddy_correct (v6.0.1)],

followed by appropriate correction of the diffusion gradient

vector table. Afterwards, the diffusion tensor was calculated by

least-square fitting (FSL dtifit) and the usual DWI metrics, such

as FA. A spatial transformation was calculated from the diffusion

image space into the MNI template space by generating a group

template (antsMultivariateTemplateConstruction2, Advanced

Normalization Tools v3.0.0.0.dev21-g1d890) based on the FA

images of all patients and healthy subjects. This group template

was then registered to the MNI 152 ICBM 6th gen. template

brain using ANTs SyN (30).

The inverse of the merged registration (MNI template :

group template : single subject) was used to transform regions-

of-interest (ROIs) of the Juelich histological atlas (SPL, BA7A,

left and right hemisphere) (31), the Brainnetome Atlas (primary

motor cortex, M1, left and right hemisphere) (32), and the

human XTRACT atlas (SLF parts 1 and 2, left and right

hemisphere) (33) from the MNI template space into individual

subject space.

Next, separately for each ROI and hemisphere,

unconstrained structural connectivity was generated using

probabilistic tractography FSL’s probtrackx (34). For that

purpose, FSL’s bedpost (35) was applied to calculate the fiber

orientation density function (FODf) from the diffusion MRI for

each voxel. The FODf can then be randomly sampled to extract

principal diffusion directions in each voxel. Starting at a seed

voxel of a ROI these directions can be followed and put together

to a streamline. As the FODf can contain multiple principal

diffusion directions, a seed voxel will “spawn” many thousand

different streamlines depending on the selected direction in each

voxel. This process results in a frequency map in which each

voxel encodes the number of valid streamlines running through

that voxel. In addition, as the XTRACT atlas already contains

these frequency maps, therefore tractography was not needed

and the extracted ROIs were used as a generic tractogram.

Finally, the intensity values of each resulting tractogram

were numerically normalized to 1 by dividing each voxel value

by the highest voxel value of the respective tractogram and then

used to calculate a weighted mean FA value for each tractogram

in a way that each voxel’s FA value was scaled (weighted) by the

corresponding tractogram’s normalized frequency.

For visualization purposes (see Figures 1B–D), each

calculated tractogram was transformed into the MNI space

and all tractograms belonging to the same ROI were averaged.

This procedure was also applied to the individual lesion maps,

resulting in an average lesion map in the MNI space.

In order to quantify the gray and white matter volumes,

the CAT12 Toolbox (Christian Gaser, https://neuro-jena.github.

io/cat/) for SPM (SPM12; Wellcome Department of Cognitive

Neurosciences, London, UK) was used. As the CAT12 Toolbox is

capable of identifying white matter hyperintensities, the lesions

were removed from the calculation of white matter volume.

Statistical analysis processing

All statistical testing was performed using SPSS version

25. Descriptive statistics were performed according to the data

using means with standard deviations or medians with ranges.

Basic assumptions of normal distribution were assessed as

recommended both visually and by the Shapiro-Wilk test. The

raw score for the SDMT was corrected for age and education

level based on the German validation study, resulting in SDMT

z-scores (zSDMT) (36). Group differences between patients

and HCs were assessed using the Student’s t-test or Mann–

Whitney U-test. Differences between each tract (SLF, BA7A

tract, CST) with or without lesion masking were determined

using paired t-tests.

To investigate the associations between zSDMT and

imaging data, Pearson or Spearman correlations were computed

depending on their normal distribution. A stepwise multiple

linear regressionmodel was finally calculated with zSDMT as the

dependent variable and clinical (disease duration, EDSS, FSMC,

BDI) and imaging (gray matter volume, white matter volume,

lesion volume, FA SLF, FA BA7A-tract, FA CST) variables as

independent variables.

A significance level of 0.05 was used and p-values adjusted

by Benjamini–Hochberg’s procedure in order to correct for

multiple comparisons.
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Results

Clinical characteristics

In the MS patient group, the mean disease duration was

7.1 years, median EDSS 2.0, mean zSDMT −0.47, mean FSMC

54.8, and mean BDI 9.7. In this group, 11.8% of patients were

not treated, 62.3% were treated with first-line disease-modifying

drugs (DMDs), and 25.7% were treated with second-line DMDs.

The patient group performed worse than the control group on

the SDMT (t = 2.04; p = 0.04). Group comparisons for MS

patients and healthy controls are summarized in Table 1.

Imaging characteristics

Structural data revealed reduced white matter volume and

higher lesion volume for MS patients compared to HCs (see

Table 1, Figure 2). Comparison of the tracts without lesion

exclusion revealed that FA for the SLF did not differ between

patients and controls (t = 0.4, pFDR = 0.7), whereas BA7A tract

and CST showed lower FA in patients than in controls (BA7A

tract: t = 2.2, pFDR = 0.045; CST: t = 2.3, pFDR = 0.036). Lesion

exclusion did not have an impact on the main findings (SLF: t =

0.4, pFDR = 0.7; BA7A t= 2.8, pFDR = 0.024, CST: t= 2.4, pFDR

= 0.036).

For MS patients, FA of the SLF and BA7A tract, but not

for the CST, differed significantly between the analysis with and

without lesion exclusion (SLF: t = 2.9, pFDR = 0.0225; BA7A

tract: t = 4.2, pFDR = 0.009; CST: t = 0.8, pFDR = 0.5).

Correlation between clinical and imaging
data

Visual inspection and the Shapiro-Wilk test revealed a

normal distribution for zSDMT and FA for each tract. For MS

patients, Pearson correlations between zSDMT and FA revealed

a significant association of the SLF (r = 0.246, pFDR = 0.042),

but not the BA7A tract (r = 0.113, pFDR = 0.4) or the CST (r =

0.033, pFDR = 0.75). Plots and tract visualization are provided

in Figure 3. The association of FA SLF and zSDMT remained

significant after lesion exclusion (r= 0.25, pFDR = 0.04). zSDMT

and FA of tracts from the HCs (each p > 0.2) showed no

relevant association.

Linear regression analysis

The stepwise linear regression model with zSDMT as a

dependent variable revealed EDSS (β = −0.365, p < 0.001)

and white matter volume (β = 0.223, p = 0.02) as significant

independent variables (R2 = 0.221, p < 0.001) for the

MS patients.

Discussion

With our hypothesis-driven approach, we demonstrated a

positive association between processing speed performance and

white matter tract integrity for the SLF, which emphasizes the

importance of intact frontoparietal structural connectivity for

information processing speed performance. The significance

remaining after lesion exclusion also indicates that the tract

integrity depends not only on white matter lesions, but also on

the NAWM.

For MS, several studies have investigated the relationship

between white matter integrity and cognition, especially for

processing speed (37–39). Cognitively impaired MS patients

have been shown to have decreased FA values compared to

unimpaired patients and controls at both the whole-brain level

(37) and within several anatomically defined white matter

regions, especially the corpus callosum, SLF, and internal capsule

(7, 8).

Here, we focused on white matter tracts based on existing

imaging studies on information processing speed performance

inMS patients (11, 17). Based on the literature, BA7A is a crucial

area for spatial attention and visuomotor control (15, 19) and

of high importance for performance on the SDMT (17). Using

probabilistic tractography in our cohort of 100MS patients, we

demonstrated that the integrity of this tract differs between

MS patients and HCs but in contrast to our assumptions, no

significant association was demonstrated between tract integrity

and SDMT performance in the MS patients. We defined the

tract bundle based on the anatomical maps of BA7A, resulting

in a structural network merging with the posterior corona

radiate, splenium and body of the corpus callosum, SLF, and the

posterior and retrolenticular part of the internal capsule. This

widespread structural network connecting frontal, temporal,

and cerebellar regions (15) may be only partially involved in

processing speed, resulting in low specificity of this predefined

tract for the SDMT.

The tract originating in BA7A largely merges into the SLF.

The SLF, and especially its subdivisions SLF I and SLF II, are

mainly interconnecting frontal and parietal regions (16). The

mean FA value of the SLF in our cohort did not differ between

the groups, but the association between the mean FA and the

individual SDMT score revealed a significant, albeit not strong

correlation. Interestingly, this significance remained even after

exclusion of the lesions within the tract. A few studies have

suggested a role of the SLF in cognition in MS (8, 40), but these

approaches did not test for specific tracts and did not control

for lesions within the tract. Our data in this way confirm the

importance of parietal white matter tract bundles for cognition

in MS, and highlight the contribution of the NAWM tract
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FIGURE 2

Heatmap of the individual multiple sclerosis lesion maps, which were transformed into MNI template space, averaged voxel-wise, thresholded to

25% and color-coded (white 100% overlap, red 25% overlap). Axial slice position is indicated below the MRI respectively.

FIGURE 3

3D-tractogram of all three tracts investigated (top) and the plotted correlation of behavioral data (SDMT) with the weighted mean FA of the

tracts after lesion exclusion (bottom). (A) superior longitudinal fasciculus (SLF); (B) BA7A tract; (C) corticospinal tract (CST).
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integrity on clinical impairment (41, 42). We are aware that

several other studies did not find any associations between

SDMT and frontoparietal tracts (43, 44), but especially as we

used a hypothesis driven approach, we highlight the importance

of these tract bundles for cognition in MS.

In MS patients, myelin content and axon count within

the NAWM correlate with FA (45, 46). Our data suggest that

these alterations may lead to clinical impairment even if FA

of the tract does not differ between the patients and controls,

and that the alterations within the SLF are important for the

clinical impairments.

Using a linear regression model, we demonstrated that

disability and total white matter volume, not the integrity

of presumed tracts, are the most important variables for

processing speed. These findings were unexpected, especially

as it is somewhat different from other studies (47). The

disability and white matter volume as significant predictors

for processing speed in our mildly disabled cohort highlight

the importance of an intact structural network that extends

beyond the tracts investigated in our study. Therefore, the

contribution of parietal white matter tracts like the SLF should

be considered in a larger structural network. Another possible

explanation is that the structural alteration of the parietal

tact was not so severe, especially for the SLF, as the FA

was not significant different between the patients and the

controls. The relationship with disease disability conceptualized

with the EDSS, though known in principle (1, 38), was also

somewhat surprising because our cohort was generally only

mildly impaired with a median EDSS of 2.0. Both clinical and

structural variables are contributing differentially on cognitive

impairments in MS depending on increasing disability (48,

49), and future research should also focus especially on the

NAWM pathology and their role in cognitive impairment in

MS. In addition, as we focused on white matter alterations

and their importance in processing speed, we only added

the total gray matter volume as an independent variable, but

we are aware of the importance of gray matter, especially

deep gray matter volume, on cognition (8, 38). Other clinical

variables in our cohort of moderately fatigued and minimally

depressed patients could not explain the additional variance in

our model.

Our study has several limitations. The main limitation is the

selection of only a limited number of tracts. Keeping in mind

that cognitive speed is dependent on a network of interacting

neural resources and not limited to one or two structures, our

hypothesis-driven approach showed the expected contribution

of the SLF, but not the BA7A tract, in task ability. In addition,

the level of disability in our cohort was rather low, which

might affect the generalizability of our results. Furthermore,

the used lesion segmentation algorithm only detects white

matter hyperintensities, that cannot definitely be declared as MS

related or of other origin like vascular. Future research has to

combine functional and structural connectivity measurements

to confirm our results in independent samples. Finally, the

acquired diffusion data lacks technical merits, as at the time of

acquisition only older protocols and sequences were available

with a rather long echo time, only one b0-image and no inverse

phase-encoded b0-image (or whole dataset) for distortion or

noise correction.

In conclusion, we demonstrated that the structural integrity

of the NAWM parts of the SLF is associated with processing

speed in mildly impaired MS patients. The structural alterations

also in NAWM should be kept in mind for future research into

the underlying processes of information processing speed in

MS as well as for therapeutic approaches such as noninvasive

brain stimulation.
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