
TYPE Original Research

PUBLISHED 12 August 2022

DOI 10.3389/fneur.2022.983448

OPEN ACCESS

EDITED BY

Steven Frucht,

New York University, United States

REVIEWED BY

Elisabetta Coppi,

University of Florence, Italy

Gina Ferrazzano,

Sapienza University of Rome, Italy

*CORRESPONDENCE

Ken Takiyama

t.j.ken.takiyama@gmail.com

SPECIALTY SECTION

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

RECEIVED 01 July 2022

ACCEPTED 25 July 2022

PUBLISHED 12 August 2022

CITATION

Takiyama K, Mugikura S and Furuya S

(2022) Impaired feedforward control of

movements in pianists with focal

dystonia. Front. Neurol. 13:983448.

doi: 10.3389/fneur.2022.983448

COPYRIGHT

© 2022 Takiyama, Mugikura and

Furuya. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Impaired feedforward control of
movements in pianists with focal
dystonia

Ken Takiyama1*, Shuta Mugikura1 and Shinichi Furuya2,3,4,5

1Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and

Technology, Koganei, Japan, 2Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan,
3Sophia University, Tokyo, Japan, 4Institute for Music Physiology and Musicians’ Medicine, Hannover

University of Music, Drama, and Media, Hannover, Germany, 5NeuroPiano Institute, Kyoto, Japan

Learning accurate and fast movements typically accompanies the modulation

of feedforward control. Nevertheless, it remains unclear how motor skill

learning modulates feedforward control, such as through maladaptation of

the sensorimotor system by extensive training (e.g., task-specific dystonia).

Here, we examined the modulation of feedforward control through motor

skill learning while focusing on the motion of piano playing at either a natural

tempo or the fastest tempo. The current study compared the kinematics and

keypress data among individuals in three groups: healthy and well-trained

pianists (i.e., subjects with skill learning), non-musicians (i.e., subjects without

skill learning), and patients with focal-hand dystonia (FHD) (i.e., subjects

with maladaptation by skill learning). Compared to healthy pianists, patients

with FHD showed impairment in some feedforward motion components that

are relevant to classifying the two playing tempi. However, while focusing

on motion components that are irrelevant to the tempo classification,

patients with FHD showed movements comparable to those of healthy

pianists. Furthermore, patients with FHD demonstrated significantly slower

movement times than healthy pianists. Our results suggest that maladaptation

by skill learning a�ects parts of feedforward control rather than its entirety.

Nevertheless, the a�ected feedforward components are relevant to performing

movements as fast as possible, which may underlie the speed dependence of

dystonic symptoms.

KEYWORDS

focal hand dystonia (FHD), maladaptation, feedforward control, skill learning, data-

driven method, task-relevant dimension

Introduction

Sophisticated and skilled performances in music and sports have long attracted and

excited people. Professional soccer players demonstrate either better accuracy or speed

in passing, shooting, and dribbling than amateurs (1). Top-level musicians play musical

instruments at a surprisingly fast speed with great accuracy (2, 3). Expert programmers

can judge the correctness of program codes faster and more accurately than novices

(novice/expert differences in programming skills). As illustrated by these examples,
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accuracy and speed are key components of skilled motion,

indicating that motor skill is defined as the ability to perform

accurate and fast movements (4, 5).

We acquire motor skills through practice, a learning process

that is referred to as skill learning. Previous studies have

examined the properties of skill learning through laboratory

settings. In a task to perform arm-reaching movements within

restricted curved areas, skill learning induced faster movement

times and higher success rates by reducing trial-to-trial

variability of the hand trajectory (6). In a virtual throwing task,

not only did the variability decrease but also the mean kinematic

parameters approached the optimal parameters (7). In finger-

tapping tasks, training facilitated improvements in accuracy and

speed, and associated neural plasticity has also been reported

(8, 9). Skill learning thus facilitates the improvement of (at least)

accuracy and speed in motor control.

Although it is widely known that skill learning improves

speed and accuracy in motor control, the details about

such learning remain under investigation; specifically, how

skill learning modifies feedforward and feedback control

remains unclear (4). Motor control has been classified into

at least two categories: feedforward and feedback control.

Feedforward control relies heavily on predictive information

about visual, proprioceptive, or external environmental domains

(10) but not on sensory information. These features of

feedforward control enable us to generate fast movements

by overcoming fatal sensory delays. Feedforward control is

evident in actions such as playing musical instruments with

the fastest tempo (2, 3), swinging a baseball bat, or rapid

arm-reaching movements under environmental changes (11–

14). In contrast to feedforward control, feedback control

depends on sensory information with a time delay, such as

a motor response of 160 msec after detecting changes in

visual information (15). Feedback control plays important roles

in correcting online movement errors. In sum, especially at

the beginning of movements, feedforward control is more

prominent than feedback control because sensory information

is not yet available for movement correction. Subsequently,

feedforward and feedback control play essential roles. A previous

study reported that skill learning affects feedback control

in arm-reaching movements after 3 days of training (6). A

contrasting viewpoint is that skill learning facilitates reliance

on feedforward control, especially in young people (16, 17). It

thus remains unclear how skill learning affects feedforward and

feedback control.

Here, we clarified the influence of skill learning on

feedforward and feedback control while focusing on the motions

to play the piano at the natural or fastest tempo. In particular,

we focused on how skill learning affects feedforward control

because the difference in motions between the natural and

fastest tempi appears around the beginning of motions (18)

[cf. (19)]. Additionally, we compared the motions performed

to play the piano between professionals and non-musicians

to address the influence of skill learning. Because a larger

amount of training enables us to achieve highly skilled motions

(20), professionals who practice longer than amateurs can be

an ideal model to address this issue. In contrast to simple

movements, such as arm-reaching movements, the comparison

between the professional pianists and non-musicians allows us

to investigate clearly the influence that skill learning exerts

on motor control not just over a few days but across several

years. Playing the piano at the fastest tempo requires skill to

achieve fast and accurate movements. Because piano playing at

a submaximal tempo does not require particular skills to achieve

fast movements, it can work as a baseline of motor skill in each

participant. Based on a previous finding (18), the difference

between the natural and fastest tempi should appear primarily

around the initiation of playing. We thus evaluated the motion

components relevant to the classification of tempo into its fastest

and natural components while expecting to quantify the effects

of skill learning on feedforward control. To extract the non-

trivial classification-relevant motion components, we utilized a

data-driven technique (21–23).

The current study also addressed another aspect of skill

learning: maladaptation. Skill learning has pros and cons. A

positive aspect is its facilitation of motions with accuracy and

speed of movements, whereas a negative aspect is maladaptation

through overtraining. Maladaptation causes painless loss of

skill in repetitively trained tasks. For musicians, focal hand

dystonia (FHD) is one representative form of maladaptive skill

learning (24). FHD entails involuntarymuscle convulsions while

performing trained movements (25). Although the causes of

FHD are still being investigated, a possible triggering factor is

the repetitive training of precise motions (5). Individuals with

FHD demonstrate various symptoms, such as loss of fine motor

control (26), atypical joint coordination (27), and impaired

non-motor functions (28).

It is still unclear what pathological mechanisms underlie

FHD symptoms. Specifically, one unsolved question is how

the maladaptive effects of skill learning affect feedforward

and feedback control. Some previous findings have identified

the impairment of sensory-motor integration in patients with

FHD (29–31). For example, the patients showed overreacting

grip force when lifting an object (32), indicating an incorrect

estimation of sensory information. These findings supported

the impairment of feedback control in patients with FHD. The

same studymentioned an intact predictive response in grip force

while lifting objects (32). Because predictive motor responses

primarily reflect feedforward control, we can expect intact

feedforward control in patients with FHD. In contrast, patients

with FHD show deficits in motor imagery (33, 34) that possibly

indicate a deficit of predictive function and feedforward control.

Overall, although feedback control is likely to be impaired

in patients with FHD, the effects of FHD on feedforward

control are still unclear. The current study focuses on how

maladaptation affects feedforward components by comparing
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skillful finger movements at the fastest tempo to the same

movements at a natural tempo.

We aimed to clarify the influence of skill learning, especially

on feedforward control, based on the comparison among non-

musicians (i.e., subjects without skill learning in piano playing),

professionals (i.e., subjects with long-lasting skill learning in

piano playing), and patients with FHD (i.e., subjects with

maladaptive influence via skill learning in piano playing). The

comparison of the motions performed to play the piano at the

fastest and natural tempi permits us to probe the influence of

skill level on feedforward control. By focusing especially on the

motion features relevant to classifying tempo into the natural

and fastest categories, particularly when beginning to play

(18), we discuss the influence of skill learning on feedforward

control. The current study focuses on behavioral aspects because

these are essential not only for providing insights into neural

mechanisms of skill learning and maladaptation but also for

clinical application, such as for the rehabilitation and diagnosis

of FHD.

First, the current study focuses on the difference in joint

angular kinematics among non-musicians, professionals, and

FHD patients while playing one of the simplest piano pieces.

Data-driven techniques allowed us to assess non-trivial motion

components that are relevant to classifying tempo into natural

and fastest components (21–23). Although intact predictive

control in patients with FHD (32) indicated few differences in

feedforward control among the groups, impaired functions in

motor imagery (33) suggested the opposite results. To verify

these predictions, we examined the difference in kinematics

among participants in the three groups.

Second, we compared speed and accuracy among non-

musicians, professionals, and patients with FHD based on the

keypress data derived from the musical instrumental digital

interface (MIDI). For a fair comparison of joint angle data

between tempi, we normalized movement time to be the same

across the two tempi. The normalized joint angle data thus do

not provide information about movement time. In addition,

joint angle data do not directly reflect whether each keypress

is correct. We thus analyzed keypress data to discuss how

skill learning affects speed and accuracy in playing the piano.

Keypress data include the timing of the individual keypresses,

which yields the interstroke interval (i.e., movement time).

The data incorporate an overview of motion data rather than

detailed kinematic information. A feasible result is impairment

of temporal accuracy in patients with FHD. Additionally, we

can expect groupwise differences in the interstroke interval. In

patients with a different form of dystonia (i.e., idiopathic torsion

dystonia), movement time tends to be slower than that for

intact individuals (35). Although we should care about whether

different types of dystonia belong to the same class of disease

(36), a plausible result is slower movement time in patients

with FHD compared to that of individuals in the other groups.

To confirm these speculations, the current study compared

keypress data among the three groups, which to the best of our

knowledge, has never been investigated. We also expected the

difference in the keypress data to be a clinical marker of FHD.

Finally, the current study compared healthy pianists and

patients with FHDwhen playing slightly difficult pieces of music

to examine the influence of the difficulty of the pieces. Because

the pieces were too difficult for non-musicians to play at the

fastest tempo, the current study compared pianists with and

without FHD.

Results

We analyzed the joint angle data of 13 healthy pianists, 23

patients with FHD, and 28 non-musicians (see STAR Methods

for details). All the subjects played a short, simple piece of

music [Figure 1 (piece #1)] at both the natural and fastest tempi.

Both healthy pianists and patients with FHD played eight extra-

short pieces of music at both a natural tempo and the fastest

tempo, as shown in the Supplementary material (pieces #2–#9).

For the simplest piece of music, all subjects were required to

strike the five adjacent keys with the thumb, index finger, middle

finger, ring finger, and little finger in order or in reverse order.

FIGURE 1

Piece #1. The numbers below musical notes indicate the fingers to use to play each note: 1 indicates the thumb, 2 indicates the index finger, 3

indicates the middle finger, 4 indicates the ring finger, and 5 indicates the little finger.
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TABLE 1 Measured joint angles.

T-TMJ T-MP T-IP T-Abd I-MP

I-PIP M-MP M-PIP IM-Abd R-MP

R-PIP MR-Abd L-MP L-PIP RL-Abd

T-, I-, M-, R-, L-, indicate the joint angles of the thumb, index finger, middle finger, ring

finger, and little finger, respectively. IM-, MR-, and RL- indicate the abduction/adduction

between the two adjacent fingers. TMJ indicates the trapeziometacarpal joint, MP

indicates metacarpophalangeal, IP indicates interphalangeal, Abd indicates abduction,

and PIP indicates proximal-phalangeal.

Because non-musicians succeeded in playing only the simplest

piece of music, we compared the three groups based on that

piece. The extra pieces of music for healthy pianists and patients

with FHD included various types of finger movements, such

as the “thumb-under,” in which the thumb crosses index and

middle fingers under the palm while depressing the piano with

the middle finger.

We measured 15 joint angles, as listed in Table 1. All the

joint angles were standardized such that the mean and standard

deviation of each joint across timewere 0 and 1, respectively. The

number of time frames was also normalized to 200 across all the

conditions to apply the logistic regressionmentioned below. The

normalizations enabled us to fairly compare all the measured

kinematic parameters in playing musical pieces at the fastest

tempo to the data acquired when musical pieces were played at

a natural tempo. Of note, the standardizations did not affect the

original motion data because linear reformatting enabled us to

recover the original data (22).

The current study analyzed joint angle data at a natural

tempo xn,i ∈ R
1×3000 and the fastest tempo xm,j ∈ R

1×3000

(i = 1, . . . , Tn, j = 1, . . . , Tm, where Tn indicated the number

of trials at a natural tempo, and Tm meant the number of trials

at the fastest tempo). In addition, there were 3,000 rows of

xn,i and xm,j, which denoted 15 (the number of joint angles)

multiplied by 200 (the number of normalized time frames). In

other words, joint angle data were vectorized in each trial. For

convenience, let us defineX =

(

Xn

Xm

)

∈ R
(Tn+Tm)× 3000, where

Xn = (xTn,1, ..., x
T
n,Tn

)T ∈ R
Tn×3000, Xm = (xTm,1, ..., x

T
m,Tm

)T ∈

R
Tm×3000, and (·)T denotes the transpose of the vector.

Additionally, we defined target data d = (0, ..., 0, 1, ..., 1)T ∈

R
(Tn+Tm)×1 including Tn 0 s and Tm 1 s. dk = 0 and dk = 1

indicate that the kth trial occurred at a natural tempo or the

fastest tempo, respectively (k = 1, ...,Tn + Tm).

To extract the kinematic features to play pieces of music

at the fastest tempo, we utilized logistic regression with ridge

regularization (37). The primary purpose of logistic regression

is to find a sigmoidal function f (xk) ∈ [0, 1], where xk ∈

R
1×3000 indicates the motion data at the kth trial or kth row of

X (k = 1, ...,Tn + Tm). The sigmoidal function f (xk) represents

the probability that xk can be classified as the fastest tempo,

i.e., we estimated f (xk) to satisfy f (xk) = p(dk = 1) and

1 − f (xk) = p(dk = 0). Throughout the current study, f (xk) =
1

1+exp(−w0−xkw)
, where w0 is an intercept, and w ∈ R

3000×1

indicates weight coefficients to calculate the sigmoid function

f (xk). The current study utilized a hard decision boundary with

f (xk) = 0.5, indicating that xk was estimated to be associated

with the fastest tempo and a natural tempo, when f (xk) ≥ 0.5

or not, respectively. The weight coefficients w signify to what

extent each joint angle at each time frame contributed to the

classification of the tempo as a natural tempo or the fastest

one. We estimated w and w0 to minimize the prediction error

between the predicted and actual target data.

If motion data included information that would allow

perfect separation of the two tempi, the classification error

would be 0, or the logarithmic classification error would be

close to −∞. If motion data did not include any relevant

information for classification, the classification error would be

1, or the logarithmic classification error would be close to 0. The

classification error in piece #1 (i.e., the simplest piece) was 1.53

×10−4± 2.60 ×10−4, 8.20 ×10−3 ± 0.248, and 4.25 × 10−3

± 8.91 ×10−2 in healthy pianists, patients with FHD, and non-

musicians, respectively (Figure 2, Figure 2 shows logarithmic

classification error). There was a significant difference in the

logarithmic classification error between the healthy pianists

and non-musicians [p = 0.0052 (corrected)]. In pieces #2-

#9 (i.e., pieces too difficult for non-musicians to play at the

fastest tempo), the averaged classification errors in each piece

were 1.82×10−4- 0.105 in healthy pianists and 0.0616-0.128 in

patients with FHD. There was a significant main group effect

of the logarithmic classification error [F (1, 32) = 18.4, p =

1.55 ×10−4], no significant main effect of piece number [F

(7, 224) = 0.159, p = 0.993], and no significant interaction

between group and piece number [F (7, 224)= 0.760, p= 0.621]

(see the STAR Methods section for statistical analysis details).

In the comparison between healthy pianists and patients with

FHD in each piece, there was a significant difference in the

logarithmic classification error in piece #6 (p = 0.0280) and no

significant difference in other pieces (p > 0.0617). The logistic

regression enabled us to extract themotion components relevant

to classifying the two tempi compared to a random classifier with

a classification error of 0.5 or a logarithmic classification error

of−0.301.

We calculated the weight coefficients w to confirm whether

the motion components relevant to classifying playing tempi

were prominent around the beginning of playing motion [as

was done in a previous study (18)]. First, we reformatted

w in each subject as W ∈ R
15×200 to discuss how the

joint angles in each time frame contribute to classifying

the playing tempo. Second, the current study calculated the

absolute value of W because its amplitude rather than its sign

represents the relevance of each joint angle to classifying the

playing tempo. Third, we averaged the absolute values of W

across all the joint angles to focus on temporal information.
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FIGURE 2

Logarithmic classification errors in classifying finger joint data as that collected when individuals were playing at the fastest tempo or a natural

tempo. (A) The logarithmic classification error in piece #1. Each dot indicates the error in each subject, and the gray bar indicates the mean

classification error in each group. Double asterisks indicate significant di�erences with p < 0.01. (B) The logarithmic classification error in the

cases of pieces #2-#9. Each red and black dot indicates the error in each healthy pianist and patient with FHD, respectively. Red and black

asterisks indicate the mean logarithmic classification error in each piece. Double asterisks indicate significant di�erences with p < 0.01.

FIGURE 3

Absolute values of w in each time frame. (A) The absolute values for piece #1. Red, black, and gray solid lines indicate averaged absolute values

of w across healthy pianists, patients with FHD, and non-musicians, respectively. Shaded areas denote the standard error of the mean. (B) The

absolute values of w for pieces #2-#9.

In the analysis of pieces #2-#9, the current study averaged

W across all pieces. After these operations, the current

study calculated the mean and standard error of the mean.

Figure 3 validated our prediction: Motion components relevant

to classifying the playing tempo into a natural tempo and

the fastest one appeared especially around the beginning of

the performance. Notably, the amplitude of W was subtle,

indicating an evident difference between playing a musical

piece at the fastest and natural tempi, especially in feedforward

components, but this difference was embedded in a small

portion of feedforward components. Along with the small

amplitude of W, the norm of motion components that were
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FIGURE 4

Examples of classification-relevant distance drel and classification-irrelevant distance dirr based on simulated data. (A) Two-dimensional

simulated data when considering a desired classification boundary (the black dotted line). Green and orange dots indicate simulated data from a

single trial associated with the fastest and natural tempi, respectively. (B) Classification-relevant distance in the simulated data. The

classification-relevant distance is based on the distance along the orthogonal direction to the classification boundary. Green and orange dots

on the line orthogonal to the decision boundary indicate classification-relevant components. Asterisks within green and orange dots denote the

averages of classification-relevant components associated with fastest and natural tempo, respectively. For example, if the distance between

two groups of data along the direction is zero, classifying the data into fastest and natural tempi is impossible. (C) Classification-irrelevant

distance in the simulated data. In the case of two-dimensional data, classification-irrelevant distance is based on the distance along the

direction parallel to the classification boundary. If we observe two groups of data whose means are on the classification boundary but have

di�erent values, it is impossible to classify the data as reflecting either the fastest and natural tempi. Although the classification-relevant distance

is zero in this case, the task-irrelevant distance along the classification boundary is not zero.

relevant to classifying the playing tempo (the norm of xrel
k

to be defined below) was 0.0467 in healthy pianists (averaged

across all the subjects and pieces), and one irrelevant to

classifying the playing tempo (the norm of xirr
k

to be defined

below) was 19.0. Because these tendencies were consistent

among healthy pianists, patients with FHD, and non-musicians,

the difference between playing a musical piece at the fastest

tempo and a natural tempo was evident in a small portion of

feedforward components.

To further discuss the kinematic features of playing at

the fastest tempo, the current study extracted the motion

components relevant to classifying data as being associated

with either a natural tempo or the fastest tempo. Based on the

functional form of f (xk) = 1
1+exp(−w0−xkw)

, w affected f (xk)

via xkw. The classification-relevant motion components xrel
k

∈

R
1×3000 can be written as,

xrelk = xk
wwT

|w|2
. . . . (1)

xrel
k

is a portion of xk such that xkw = xrel
k
w (i.e., f (xk) = f (xrel

k
))

while avoiding the self-evident answer (i.e., xrel
k

6= xk) (22).

It is possible to confirm that xrel
k

has classification relevance

by multiplying xrel
k

by w from the right-hand side - xrel
k
w =

xk
wwT

|w|2
w = xkw, indicating that xrel

k
has information relevant

to classifying the two tempi. In Figure 4A, the simulated motion

data and decision boundary are shown as dots and a dotted line,

respectively. Figure 4B denotes xrel
k

as the motion data projected

onto w, an orthogonal line to the decision boundary. Notably,

xrel
k

in Figure 4B possessed all information relevant to classifying

the two categories.

Equation 1 indicates the orthogonal projection of xk onto

w, indicating that xrel
k

has one dimension along the direction

w (22). Due to the property of the orthogonal projection, xrel
k

reflects the information of w to classifying playing tempi as

either a natural tempo or the fastest tempo (Figure 4). xrel
k

can

thus be seen as a portion of feedforward components that are

relevant to classifying playing tempi that are apparent around

the beginning of playing motion. Hereafter, we refer to xrel
k

as

classification-relevant feedforward components.

Using xrel
k
, it is possible to define classification-irrelevant

motion components as,

xirrk = xk − xrelk . . . . (2)

We can also confirm the classification irrelevance of xirr
k

while multiplying xirr
k

by w from the right-hand side - xirr
k
w =

xkw − xrel
k
w = 0, i.e., xirr

k
does not affect playing tempo

classification. Because w takes small values (Figure 2), xrel
k

explains a portion of feedforward components. In other words,

xirr
k

includes both feedforward and feedback components that

are irrelevant to classifying playing tempi into a natural tempo

and the fastest tempo. Hereafter, we refer to xirr
k

as classification-

irrelevant components.

By utilizing the classification-relevant feedforward

components and classification-irrelevant components, we

constructed a measure of the kinematic difference between
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playing at the natural and fastest tempi. Let us define xrel
n,k

= xrel
k

and xirr
n,k

= xirr
k

when f (xk) < 0.5 (i.e., the motion data at the kth

were classified as the motions at the natural tempo), xrel
m,k

= xrel
k

and xirr
m,k

= xirr
k
when f (Xk) ≥ 0.5 (i.e., the motion data at the

kth were classified as the motions at the fastest tempo), T̃n

equaled the number of trials estimated to be associated with the

natural tempo, and T̃m equaled the number of trials estimated

to be associated with the fastest tempo (T̃n + T̃m = Tn + Tm).

Of note, T̃n 6= Tn and T̃m 6= Tm in most of the cases with

misclassification(s). T̃n = Tn and T̃m = Tm only when all the

motions were classified into the correct playing tempo. We then

calculated the mean of the classification-relevant components

associated with natural and fastest tempo asµn = 1

T̃n

∑T̃n
k=1

xrel
n,k

and µm = 1
T̃m

∑T̃m
k=1

xrel
m,k

, respectively. We also calculated

the variance averaged across the two conditions as σ
2 =

1
2

(

1
T̃n

∑T̃n
k=1

(xrel
n,k

− µn)(x
rel
n,k

− µn)
2 + 1

T̃m

∑T̃m
k=1

(xrel
m,k

− µm)

(xrel
m,k

− µm)
T
)

. Finally, the current study calculated

d
′
as a measure of the skill needed to play at the fastest

tempo while focusing on classification-relevant feedforward

motion components:

drel = d
′
=

√

(µn − µm)(µn − µm)T

σ 2
. . . . (3)

d
′
is a measure based on the squared distance between µn and

µm while considering the associated uncertainty (Figure 4B). A

larger drel indicated a larger difference of classification-relevant

feedforward components between the natural and fastest tempi,

which probably indicated a faster motion at the fastest tempo

compared to that at the natural tempo. Because xrel was one

dimensional (due to the property of orthogonal projection of

x onto w), drel was a good measure of kinematic difference

between two categories.

The current study also calculated a measure to quantify

classification-irrelevant components. In contrast to xrel, whose

dimension is one, xirr has multiple dimensions. Because some

eigenvalues of xirr are close to 0 due to the low dimensionality

inherent in motion data (22, 23, 27), the Mahalanobis distance

or d
′
is not an option for quantifying classification-irrelevant

components. To quantify the difference in classification-

irrelevant components between the two types of tempi, we

calculated the following distance:

dirr =

√

√

√

√

√

1

T̃nT̃m

T̃n
∑

k=1

T̃m
∑

l=1

(xirr
n,k

− xirr
m,l

)(xirr
n,k

− xirr
m,l

)T . . . . (4)

Equation 4 describes the group average method to calculate

the distance between two clusters, utilized in hierarchical

clustering methods. dirr was thus an effective measure of the

distance between the classification-irrelevant components at the

natural and fastest tempi. Figure 4C demonstrates an example

of dirr in simulated motion data. dirr is the distance between

all pairs of classification-irrelevant components that belonged

to different categories. A larger dirr thus indicates a larger

difference of classification-irrelevant components between the

natural and fastest tempi. In the case of the two-dimensional

data shown in Figure 4C, dirr represents the distance along

the decision boundary (i.e., black dotted lines in Figure 4).

If there were the same tendency between drel and dirr

in the comparison among healthy pianists, patients with

FHD, and non-musicians, skill learning would modulate not

only classification-relevant feedforward components but also

classification-irrelevant components. If there were different

tendencies between drel and dirr in the comparison among

healthy pianists, patients with FHD, and non-musicians,

skill learning would primarily affect classification-relevant

feedforward components but would slightly affect classification-

irrelevant components.

In sum, we calculated two measures to quantitatively assess

the influence of skill learning on playing at two different tempi:

one to quantify classification-relevant feedforward components

based on Equation 3 and the other to quantify classification-

irrelevant components based on Equation 4. For the joint angle

analysis, we excluded 2 healthy pianists, 1 FHD patient, and

1 non-musician because multiple joint angles had not been

measured in more than 10 trials. In total, we analyzed joint angle

data from 11 healthy pianists, 23 patients with FHD, and 27

non-musicians (see STAR Methods for details).

Figure 5 shows the results when subjects played piece

#1 at the fastest and natural tempi. Figure 5A denotes drel
(Equation 3), a measure of the difference in classification-

relevant feedforward components between the natural and

fastest tempi. Because playing a piece of music at a natural

tempo can be regarded as a baseline skill in each subject, a

larger drel indicates more sophisticated skill in playing music

at the fastest tempo (i.e., a larger drel is likely associated with

faster performance at the fastest tempo). Combined with the

results shown in Figure 3, a larger drel denotes higher skill,

especially around the beginning of playing motions. There was

a significant main group effect on drel [F (2, 57) = 6.56, p =

0.00272]. We also found a significant difference in drel in healthy

pianists compared to patients with FHD [p= 0.0065 (corrected)]

and non-musicians [p = 0.0034 (corrected)]. However, there

was no significant difference between patients with FHD and

non-musicians [p= 1.00 (corrected)].

If both classification-relevant and classification-irrelevant

motion components displayed the same tendency, there

would be no difference in the trend between drel and

dirr : A larger dirr would be noted in healthy pianists

compared to that observed in participants in the other groups.

In contrast to this speculation, there was no significant

difference in dirr between healthy pianists and patients with

FHD (Figure 5B, p = 0.180 [corrected]). Additionally, there
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FIGURE 5

Comparisons of classification-relevant distance, classification-irrelevant distance, pitch inaccuracy, and interkeystroke interval among healthy

pianists, patients with FHD, and non-musicians based on the simplest piece (piece #1). (A) Classification-relevant distance among the three

groups. Red, black, and green dots denote the distances in each subject. Asterisks indicate mean classification-relevant distances in each group.

Double asterisks indicate significant di�erences based on p < 0.01. (B) Classification-irrelevant distance. (C) Pitch inaccuracy in playing at the

natural tempo subtracted from the inaccuracy in playing at the fastest tempo. (D) Interkeystroke interval in playing at the natural tempo

subtracted from the inaccuracy in playing at the fastest tempo.

were significant differences between patients with FHD and

nonmusicians [p = 0.00747 (corrected)] and between healthy

pianists and non-musicians [p = 0.00011 (corrected)]. In

addition, there was a main group effect [F (2, 57) = 11.3,

p= 7.32×10− 5].

In summary, the joint angle analysis revealed different

tendencies between classification-relevant feedforward

components and classification-irrelevant components. The

differences in these components between healthy pianists

and non-musicians were evident (Figures 5A,B). Of note,

skill learning enables healthy pianists to play at the fastest

tempo in a more sophisticated manner. In the comparison of

healthy pianists to patients with FHD, classification-relevant

feedforward components were altered due to maladaptation

(Figure 5A). Patients with FHD showed the same tendency

of classification-relevant feedforward components as non-

musicians (Figure 5A). In contrast, patients with FHD showed

classification-irrelevant components comparable to those of

healthy pianists (Figure 5B). Notably, small amplitudes of w

resulted in small classification-relevant distances. We thus

concluded that maladaptation affects classification-relevant

feedforward components.
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A potential problem inherent in the analysis of joint

angle data is the difficulty in discussing accuracy and playing

speed while comparing two different tempi. Normalization of

movement time should be required to compare the kinematics

between the two tempi, resulting in the elimination of the

detailed information about movement time or interkeystroke

interval. In addition to movement time, joint angle data do

not explicitly include accuracy information in playing musical

pieces. Although motor skill is defined by (at least) speed and

accuracy, joint angle analysis is insufficient to describe motor

skill. To quantitatively validate a difference in skill levels of

the participants across the groups, the current study utilized

keypress data representingmotions of the depression and release

of the keys. Through the validation of skill level via keypress data

analysis, the results of joint angle data analysis can be associated

with motor skill.

We focused on two variables: the probability of an incorrect

touch (pitch inaccuracy) and interkeystroke interval (movement

time) at natural and the fastest tempi. In the case of piece #1, the

probability of incorrect touch was zero without any variability

in healthy pianists. We thus calculated a simple difference in

the probability of incorrect touch between natural and fastest

tempi as a measure of motor skill to play at the fastest tempo.

To utilize the same measure in the keypress data analysis, we

calculated a simple difference in the averaged interkeystroke

intervals between the natural and fastest tempi. After calculating

the difference in each variable in each subject between the two

tempi, we compared the data among the three groups. For the

keypress data analysis, we excluded subjects whose data had also

been excluded from the analysis of finger joint angles.

Keypress data analysis enabled us to clarify the skill level

in each group based on the perspectives of the speed-accuracy

tradeoff. In pitch inaccuracy, there was no significant main

group effect [Figure 5C, F (2, 49) = 0.504, p = 0.607]. We did

not find any significant difference among the groups (p > 0.96, t

test with Bonferroni’s correction).

Under the same level of accuracy, there was a significant

main group effect for the interkeystroke interval [Figure 5D,

F (2, 57) = 63.2, p = 3.49 ×10−15]. We found a significant

difference in the interkeystroke interval among the groups

(Figure 5D, p= 6.1× 10−9 [corrected] between healthy pianists

and patients with FHD, p = 1.3 × 10−15 [corrected] between

healthy pianists and non-musicians, and p= 0.00044 [corrected]

between patients with FHD and non-musicians). Figure 5D

denotes the distance of the interkeystroke interval from the

natural tempo to the fastest tempo. A negative value indicated

a faster performance at the fastest tempo than at the natural

tempo (i.e., shorter interkeystroke intervals at the fastest tempo

than at the natural tempo). Healthy pianists showed the largest

difference in the interkeystroke intervals between the two

tempi, indicating that they performed the fastest piano-playing

motions among the three groups. Non-musicians showed the

smallest difference in the interkeystroke intervals between the

two tempi, indicating fewer rapid motions even at the fastest

tempo. Notably, patients with FHD showed a larger difference

in the interkeystroke intervals between the two tempi than

non-musicians; however, the tempowise difference was smaller

in patients with FHD than in healthy pianists. Patients with FHD

thus played the piano faster than non-musicians but slower than

healthy pianists at the fastest tempo. From the perspective of

the speed-accuracy tradeoff, patients with FHD showed more

sophisticated skill than non-musicians; nevertheless, patients

with FHD were not comparable to healthy practitioners.

The results mentioned above were based on one of the

simplest pieces of music. It remained unclear whether the

results were invariant for more difficult pieces of music. We

thus further examined the same measures in more difficult

pieces of music (the details of the pieces are provided in the

Supplementary material). Because these pieces were too difficult

for non-musicians to play at the fastest tempo, the following

analyses were performed for healthy pianists and patients

with FHD.

The kinematics results in more difficult pieces had varying

tendencies compared to those of the simplest piece (Figure 6). In

the classification-relevant difference drel (Figure 6A), there was a

significant main group effect [F (1, 32)= 33.6, p= 1.98×10−6],

no significant main effect of piece number [F (7, 224) = 0.764,

p = 0.618], and no significant interaction between group and

piece number [F (7, 224)= 0.961, p= 0.461]. The classification-

relevant difference in healthy pianists was larger than that in

patients with FHD in more than half the pieces (Figure 6A, p

< 0.0337 [corrected] in pieces 2, 5, 6, 7, and 9, and p > 0.388

[corrected] in other pieces). These results were similar to the

result in the simplest piece of music.

In classification-irrelevant distance dirr (Figure 6B), there

was a significant main group effect [F (1, 32) = 11.9, p = 1.62

×10−3], no significant main effect of piece number [F (7, 224)

= 1.68, p= 0.114], and no significant interaction between group

and piece number [F (7, 224) = 2.00, p = 0.0558]. In piecewise

comparisons between the two groups in each piece, there was

a significant difference between healthy pianists and patients

with FHD in piece 3 (Figure 6B, p = 0.00320 [corrected]), but

there was no significant difference in the other pieces (p > 0.104

[corrected]).

The results of keypress data analysis for more difficult pieces

(pieces #2-#9) were similar to those of the simplest piece (pieces

#1). In pitch inaccuracy (Figure 6C), there was no significant

main group effect [F (1, 24) = 0.161, p = 0.692], a significant

main effect of piece number [F (7, 168)= 3.35, p= 2.26×10−3],

and no significant interaction [F (7, 168) = 1.11, p = 0.367].

The main effect of piece number indicated that the difference

in difficulty in each piece affected pitch inaccuracy. In piecewise

comparisons, there was no difference between healthy pianists

and patients with FHD (p > 0.853 [corrected]). These results

were the same as those for the simplest piece—no difference in

pitch accuracy between the groups.
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FIGURE 6

Comparisons of classification-relevant distance, classification-irrelevant distance, pitch inaccuracy, and interkeystroke interval between healthy

pianists and patients with FHD for pieces #2-#9. (A) Classification-relevant distance between participants in the two groups. Red and black dots

denote the distances in each subject. Asterisks indicate mean classification-relevant distances in each group. Single and double asterisks

indicate significant di�erences based on p < 0.05 and p < 0.01, respectively. (B) Classification-irrelevant distance. (C) Pitch inaccuracy in playing

at the natural tempo subtracted from the inaccuracy in playing at the fastest tempo. (D) Interkeystroke interval in playing at the natural tempo

subtracted from the inaccuracy in playing at the fastest tempo.

In the analysis of the interkeystroke interval (Figure 6D),

there were significant main effects of group [F (1, 30) =

52.3, p = 4.73 ×10−8] and piece number [F (7, 210) = 9.09,

p = 8.43 ×10−10], but there was no significant interaction

between these factors [F (7, 210) = 0.849, p = 0.548].

In piecewise comparisons, there were significant differences

between healthy pianists and patients with FHD in all pieces (p

< 5.99 ×10−4 [corrected]). The main effect of piece number

indicated the influence of difficulty of musical pieces (i.e.,

task difficulty) on the interkeystroke intervals. We found the

same results as those observed for the simplest piece—healthy

pianists showed faster interkeystroke intervals than patients

with FHD.

Discussion

We compared the finger joint angles and keypress data

among healthy pianists, patients with FHD, and non-musicians

when they played one of the simplest pieces of music at

the natural or fastest tempo. The current study detected the

joint angle features relevant to classifying the fastest and

natural tempi (Equations 3, 4). The classification-relevant

motion components were evident around the beginning of

playing motions (Figure 3). While considering the small

amplitudes of the classification-relevant motion components,

a small portion of feedforward components played roles in

classifying playing tempo into natural and fastest ones. In other
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FIGURE 7

Schema of our results based on two-dimensional simulated data while considering a desired classification boundary (the black dotted line).

Green and orange dots indicate simulated data from a single trial associated with the fastest and natural tempi, respectively. Gray dots denote

each data point projected onto a line orthogonal to the classification boundary. Black asterisks indicate the mean of the projected data

associated with the fastest or natural tempo. (A) Simulated data that indicate kinematic features in healthy pianists. (B) Simulated data that

indicate kinematic features in patients with FHD. (C) Simulated data that indicate kinematic features in non-musicians.

words, a large portion of feedforward and feedback motion

components were irrelevant to classifying playing tempo.

Healthy pianists showed differences from patients with FHD

and non-musicians in the classification-relevant feedforward

motion components (Figure 5A). The lack of significant

difference in classification-relevant feedforward components

between patients with FHD and non-musicians indicated that

classification-relevant feedforward motion components were

impaired specifically in patients with FHD, possibly due to

maladaptation of the sensorimotor system. In contrast, there

was no significant difference in classification-irrelevant motion

components between healthy pianists and patients with FHD

(Figure 5B). When playing at the fastest tempo, non-musicians

demonstrated different tendencies in classification-irrelevant

motion components compared to both healthy pianists and

patients with FHD. Additionally, the current study examined

how the technical difficulty inherent in playing piano pieces

affects these results (Figures 6A,B). Although the difficulty

affected the results to some degree, the trend in our results was

consistent independent of the difficulty.

Figure 7 summarizes the current results based on simulated

motion data. Playing the piano at various tempi from slow

(e.g., largo in musical notes) to fast tempo (e.g., prestissimo)

is an essential element of expression for pianists. Therefore,

pianists are well-trained to play the piano at the natural and

fastest tempi. The effect of extensive training is observable

via the comparison between healthy pianists (Figure 7A) and

non-musicians (Figure 7C). Our results suggest that extensive

training enables healthy pianists to achieve clear separation

of the two tempi in joint angle data, i.e., they demonstrate

sophisticated classification-relevant feedforward components

while considering the results shown in Figure 3. Despite

maladaptation, patients with FHD are also well trained to play

at different tempi. We confirmed the effects of maladaptation

through a comparison between healthy pianists and patients

with FHD (Figure 7B). Patients with FHD modulated their

finger movements depending on tempo at the same level

as healthy pianists, which can be confirmed based on dirr

(Figures 5B, 6B). However, the modulation did not correspond

with the dimension relevant to changing the tempo (Figure 7B).

The impaired tempo-dependent modulations of joint angle

motions were associated with impaired classification-relevant

feedforward motion components (Figure 3). In sum, our results

suggest that extensive training enables pianists to modulate

their finger movements to distinguish different tempi but that

maladaptation locks the tempo-dependent modulation away

from the classification-relevant dimension.

From the perspectives of keypress data analysis, patients

with FHD showed a prolonged interkeystroke interval compared

with that of healthy pianists (Figures 5D, 6D). Non-musicians

demonstrated a larger interkeystroke interval than patients with

FHD. Moreover, for pitch accuracy, there was no significant

difference among healthy pianists, patients with FHD, and

non-musicians (Figures 5C, 6C). Due to the same level of

accuracy and slowed movement tempo, patients with FHD

had worse motor skill levels than healthy pianists based on

the speed-accuracy tradeoff. Despite the impaired skill level,

patients with FHD still demonstrated better motor skill levels

than non-musicians.

Although our results support the impairment of some

feedforward control in patients with FHD, it remains unclear

why such impairment occurs in patients with FHD. In

patients with embouchure dystonia, one form of task-specific

dystonia, cerebellar malfunctions were related to dystonic

symptoms (38). In pianists with FHD, cerebellar activities

and the functional connections between the cerebellum and

premotor/somatosensory cortex differed from those of healthy

pianists (39). In addition to these studies based on functional
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magnetic resonance imaging (fMRI), several studies have

proposed the relation of the cerebellum to feedforward control

from behavioral and computational perspectives (10–14). We

thus speculate that cerebellar malfunctions are associated with

the impairment of feedforward control in patients with FHD.

Notably, our results indicated the impairment of classification-

relevant feedforward control, i.e., a fraction of feedforward

control, rather than whole feedforward control. The difference

in cerebellar activities between patients with FHD and healthy

pianists thus could be associated with the impairment of

classification-relevant feedforward control.

In sum, we clarified some aspects of the effects of skill

learning and maladaptation on motor skill. Through the

comparison between healthy pianists and non-musicians, skill

learning was shown to facilitate appropriate finger motions

for playing musical pieces at the fastest tempo [i.e., a larger

classification-relevant difference (Figure 5A) and with a faster

interkeystroke interval (Figure 5D) in healthy pianists than in

non-musicians]. Although skill learning also modulated finger

movements irrelevant to classifying playing tempo (Figure 5B),

the effects of skill learning on movement accuracy were not

evident in the playing of one of the simplest musical pieces

(Figure 5C). As illustrated by the comparison between healthy

pianists and patients with FHD, this disorder impaired the

dexterous finger motions needed to play musical pieces at the

fastest tempo [i.e., a smaller classification-relevant difference

(Figures 5A, 6A) and generates a larger interkeystroke interval

(Figures 5D, 6D) in patients with FHD than in healthy pianists].

Interestingly, FHD did not affect a large portion of motions

irrelevant to classifying playing tempi (Figures 5B, 6B) despite

impaired motion features relevant to classifying playing tempi.

Because classification-relevant feedforward motion components

consisted of a small portion of movements, it would be difficult

to diagnose patients with FHD based solely on finger kinematics.

In contrast, there was a clear difference in movement time (i.e.,

interkeystroke interval) between healthy pianists and patients

with FHD. Our results thus indicated that movement time is an

efficient and reliable measure to aid in diagnosing FHD.

STAR methods

Participants

Twenty-four pianists with unilateral musician’s dystonia

(MD) (age 39.5± 10.6 years; 10males, all right-handed pianists),

13 age-matched healthy pianists who had undergone formal

musical education and training at conservatories (age 35.5

±11.6 years; 2 males, all right-handed pianists), and 28 age-

matched healthy individuals with no history of piano training

(i.e., non-musicians, age 27.4 ± 8.3 years; 7 males) participated

in the study. We studied MD as a model of FHD for the

following two reasons. First, while musical performance requires

more dexterous movement control and carries a higher risk

for developing FHD than other tasks, such as handwriting

(40), little is known about the pathological mechanism of

MD. Second, methods have been established to quantitatively

assess motor dexterity during piano playing (27). All pianists

underwent a thorough neurological examination. The exclusion

criteria were bilateral FHD; generalized dystonia; epilepsy;

a history of any other neurological diseases; and a history

of pharmacological intervention, including neuroleptic drugs

and the injection of botulinum toxin, within at least the

past 6 months. The participants had no histories of other

neuropsychiatric disorders, neurosurgery, or metal or electronic

implants. The symptoms entailed exaggerated finger flexion or

thumb adduction in most cases and difficulty of finger extension

due to an involuntary flexor cramp pulling the finger(s) down

in some cases. None of the patients reported a family history

of FHD. In accordance with the Declaration of Helsinki, the

experimental procedures were explained to all participants.

Informed consent was obtained from all participants prior to

participation in the experiment, and the whole experimental

protocol was approved by the Ethics Committee of Sophia

University (18-F-0001).

Data processing

We measured the joint angle data (see Table 1 for the

measured joints) by using the CyberGlove III (CyberGlove

Systems) at 120Hz with angular resolution < 0.5 degrees. We

excluded joint angle data from 2 healthy pianists, 1 FHD patient,

and 1 non-musician because there was no within-trial variation

in some joint angles (due to measurement error). We also

excluded keypress data from the same subjects to maintain

analysis consistency.

First, each joint angle data point was normalized to have

10,000 time frames irrespective of playing tempo, which enabled

us to analyze the data measured under different movement

times. Second, the normalized joint angle data were low-pass

filtered at 15Hz using a 5th-order Butterworth filter. Finally, to

shorten the computational time in logistic regression, we further

formatted each joint angle data to have 200 time frames.

Statistical analysis

For the comparison among healthy pianists, patients with

FHD, and non-musicians in piece #1, we performed ANOVA

for each logarithmic classification error (Figure 2) or distance

(Figures 5, 6) with the error or distance as a dependent variable

and the group index as an independent variable. For the

comparison between healthy pianists and patients with FHD

based on eight pieces of music, we performed a mixed model

ANOVA analysis with the error or distance as a dependent
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variable and the group index as an independent variable; the

piece number was an independent variable measured repeatedly

within subjects. All of the post-hoc pairwise and multiple

comparisons were based on Tukey’s HSD to correct the effects

of multiple comparisons.
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