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Background: Identification of vulnerable carotid plaque is important for the treatment

and prevention of stroke. In previous studies, plaque vulnerability was assessed

qualitatively. We aimed to develop a 3D carotid plaque radiomics model based

on high-resolution magnetic resonance imaging (HRMRI) to quantitatively identify

vulnerable plaques.

Methods: Ninety patients with carotid atherosclerosis who underwent HRMRI were

randomized into training and test cohorts. Using the radiological characteristics of

carotid plaques, a traditional model was constructed. A 3D carotid plaque radiomics

model was constructed using the radiomics features of 3D T1-SPACE and its contrast-

enhanced sequences. A combined model was constructed using radiological and

radiomics characteristics. Nomogramwas generated based on the combinedmodels,

and ROC curves were utilized to assess the performance of each model.

Results: 48 patients (53.33%) were symptomatic and 42 (46.67%) were asymptomatic.

The traditional model was constructed using intraplaque hemorrhage, plaque

enhancement, wall remodeling pattern, and lumen stenosis, and it provided an area

under the curve (AUC) of 0.816 vs. 0.778 in the training and testing sets. In the

two cohorts, the 3D carotid plaque radiomics model and the combined model had

an AUC of 0.915 vs. 0.835 and 0.957 vs. 0.864, respectively. In the training set,

both the radiomics model and the combination model outperformed the traditional

model, but there was no significant di�erence between the radiomics model and the

combined model.

Conclusions: HRMRI-based 3D carotid radiomics models can improve the precision

of detecting vulnerable carotid plaques, consequently improving risk classification and

clinical decision-making in patients with carotid stenosis.

KEYWORDS

carotid atherosclerosis (AS), radiomics, 3D reconstruction, vulnerable plaque, high-resolution

magnetic resonance imaging, stroke

Introduction

The most common type of cerebrovascular disease is ischemic stroke and 15–20% of these

are caused by carotid artery stenosis (1, 2). By 2020, the global prevalence of carotid plaque

among people between the ages of 30 and 79 years was about 20%, and 816 million patients

were reported with carotid stenosis (3). The current guidelines account for the patient’s clinical

presentation and the degree of carotid stenosis to determine a need for surgical intervention (4).

However, as radiographic methods have limited accuracy in identifying the degree of histological

stenosis in carotid arteries, imaging screening is not recommended in the general population

(5). Numerous studies have demonstrated that it is essential to identify vulnerable plaques
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by analyzing their composition, as it has implications for a

patient’s clinical presentation and future cerebral ischemic events

(6). Recently, magnetic resonance imaging (MRI) has been effective

for identifying intraplaque hemorrhage (IPH) and lipid-rich necrotic

cores (LRNC), but an atherosclerotic plaque is complex in structure

and necessitates specialized knowledge of MRI for assessing plaque

composition (7). Even the most advanced high-resolution magnetic

resonance imaging (HRMRI) can only demonstrate the qualitative

and subjective identification of lesions’ structural characteristics. In

themajority of previous studies, plaque composition was qualitatively

quantified (8).

Radiomics is a computational technique for extracting and

statistically assessing vast quantities of image texture information

from medical images (9). It has been proven to be effective in

oncology owing to its numerous applications in the diagnosis,

grading, and staging of cancer, evaluating therapeutic efficacy, and

predicting clinical outcomes (10). Computed tomography (CT)

or ultrasound-based radiomics models reportedly have a potential

clinical application for diagnosing carotid plaque vulnerability,

whereas HRMRI-based radiomics models have received less attention

and have extracted radiomics features of the carotid plaque only

at the most stenotic level (11–13). In addition, it has been shown

that radiomics models based on 3D HRMRI can accurately identify

high-risk intracranial plaques (14). HRMRI has clear advantages

in assessing vessel wall composition, and its three-dimensional T1

weighted sampling perfection with application-optimized contrasts

by using different flip angle evolutions (3D T1-SPACE) sequence

can provide three-dimensional, large-area, high-spatial-resolution

imaging of the arterial wall (15). This study aims to develop a 3D

HRMRI-based carotid radiomics model to investigate the importance

of radiomics in analyzing carotid atherosclerotic plaques, improving

the accuracy of vulnerable plaque identification and furthering data

on the management of asymptomatic carotid stenosis.

Materials and methods

Study population

In this retrospective study, patients with carotid artery stenosis

who underwent HRMRI at the First Affiliated Hospital of Zhengzhou

University between June 2021 and June 2022 were enrolled. All

patients (N = 90) had 50% carotid stenosis. Patients (n = 42)

who were noted with carotid stenosis upon physical examination

but had never experienced a transient ischemic attack (TIA) or

stroke in the past 6 months and any radiological finding of

cerebral infarction were grouped into the asymptomatic group. In

symptomatic atherosclerosis, plaque enhancement subsides over time

after an ischemic stroke (16). In addition, to approximate the state

of carotid plaque at the time of rupture, we included patients

in the symptomatic plaque group whose MRI demonstrated the

presence of an acute phase (<4 weeks) of cerebral infarction in

the ipsilateral blood supply area of carotid stenosis. All patients

with symptomatic carotid stenosis met the Trial of Org 101072

in Acute Stroke Treatment (TOAST) criteria for “atherosclerotic

TIA/ischemic stroke” before their inclusion in the study (17).

Patients were excluded if they had subacute or old infarct foci

on MRI, combined intracranial vascular lesions such as severe

stenosis or occlusion of the anterior or middle cerebral artery,

TABLE 1 Clinical and radiological characteristics of patients.

Parameters Asymptomatic
(n = 42)

Symptomatic

(n = 48)

p

Age (year) 58.43± 10.62 59.27± 11.16 0.716

Sex (female) 19 (45.23) 13 (27.08) 0.082

BMI (kg/m2) 24.72± 2.83 24.78± 2.66 0.649

Clinical features

CAD 4 (9.52) 9 (18.75) 0.245

Hypertension 22 (52.38) 31 (64.58) 0.286

Diabetes 9 (21.43) 19 (39.58) 0.072

Current smoking 10 (23.81) 18 (37.50) 0.290

Current medications

Aspirin 9 (21.43) 6 (12.50) 0.274

Clopidogrel 5 (11.90) 3 (6.25) 0.465

Statin 9 (21.43) 4 (8.33) 0.131

Serum lipid (mmol/L)

Total cholesterol 3.77± 0.93 3.63± 1.07 0.521

Triglycerides 1.64± 1.05 1.58± 0.92 0.783

HDL-C 1.08± 0.36 1.03± 0.31 0.508

LDL-C 2.14± 0.78 2.01± 0.86 0.453

Plaque characteristics

IPH 4 (9.52) 14 (29.17) 0.026

RMP (Positive) 6 (14.29) 15 (31.25) 0.063

PE (Apparent) 3 (7.14) 6 (12.50) 0.404

Degree of luminal stenosis 67.49± 9.71 76.09± 5.21 0.001

Data were expressed as means ± SD for continuous variables and number (percentage)

for dichotomous variables. CAD, coronary artery disease; HDL-C, high-density lipoprotein-

cholesterol; LDL-C, low-density lipoprotein-cholesterol; IPH, Intraplaque hemorrhage; RMP,

Remodeling pattern; PE, Plaque enhancement.

Moyamoya disease, poor HRMRI imaging, or absence of 3D T1-

SPACE sequences.

The clinical characteristics of the patients were gathered for both

groups (Table 1), and they were then randomly split into a training set

(n= 63) and a testing set (n= 27) in a 7:3 ratio. The training set was

used to build the radiomics model whereas the testing set was utilized

to validate the model’s diagnostic performance. This study protocol

was reviewed and approved by our institution’s ethics committee, and

all patients provided informed permission.

MRI acquisition

All patients were scanned with a 3T MRI (Magnetom Verio,

Siemens Healthineers) with a 64-channel coil. Subjects were

reminded to avoid swallowing and neck movements before the

examination. The 3D T1- SPACE and its contrast-enhanced sequence

(3D T1-SPACE-CE) scan were performed in the oblique coronal

position. The following parameters were applied to these image

sequences for diffusion-weighted imaging: 4,000ms Repetition Time

(TR), 60ms echo time (TE), the field of view (FOV) 200×200mm,
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matrix size 150 ×150, and slice thickness 2mm; and for 3D T1-

SPACE: TR 900ms, TE 15ms, FOV 200 × 224mm, and slice

thickness 0.63mm. Before the acquisition of the 3D T1-SPACE-

CE sequence, 0.1 mL/kg of a Gadopentetate Dimeglumine was

administered to the patient.

Image analysis and segmentation

A radiologist with 4 years of experience in vascular wall

imaging performed conventional measures and segmentation while

blinded to the clinical information. On 3D T1-SPACE and

its enhanced sequence, the HRMRI characteristics, including

intraplaque hemorrhage (IPH), plaque enhancement (PE), wall

remodeling pattern, and lumen stenosis, were manually measured.

The related methods to measure were as follows: (1) IPH: On

T1WI, the signal intensity of plaque exceeded 150% of normal

brain parenchyma.; (2) PE was classified as mild and apparent

enhancement based on a comparison of plaque enhancement with the

pituitary funnel stalk; (3) The wall remodeling pattern was divided

into positive and negative patterns according to the ratio of the vessel

area at the site of maximum luminal stenosis to the reference vessel

area; (4) Diameter stenosis rate = [1 – narrow lumen area/reference

lumen area]× 100% (18).

Utilizing the free program 3D Slicer (version 4.13.0,

www.slicer.org), plaque segmentation was carried out for radiomics

investigation. After identifying all slices containing plaques, the same

radiologist manually drew regions of interest (ROIs) around the

plaque margins until the ROI contained the full 3D carotid plaque

(Figure 1A).

Feature extraction, selection, and model
development

To prevent data heterogeneity and bias, all MRI images were

normalized and resampled (2 × 2 × 2mm) before the radiomics

features extraction. Following the guidelines of the Image Biomarker

Normalization Initiative (19), this study used Python (version 3.7.0)

to import the PyRadiomics (github.com/Radiomics/pyradiomics)

toolkit to extract radiomics features, including shape features (2D and

3D), first-order features, gray level co-occurrence matrix (GLCM),

gray level size zone matrix (GLSZM), gray level run length matrix

(GLRLM), and gray level dependence matrix (GLDM) based original

images and Gaussian and wavelet images. After 2 weeks, the

same MRI physician randomly selected 20 carotid HRMRIs to re-

segment 3D carotid ROIs and extracted radiomics features, and

those featuring an interclass correlation coefficient (ICC) of ≥ 0.7

were included in the subsequent study, which was considered to be

excellent robustness (20).

The extracted radiomics features typically contained

redundancies, many of which were strongly correlated, so the

following criteria were used to screen the features in this study. (1) 70

and 30% of the data were randomly divided into training and test sets,

respectively. We utilized Z-Score ([value-mean]/standard deviation)

distribution to normalize all radiomics features. (2) Univariate

analysis was used to select radiomics features with p < 0.01. And

then, the LASSO (least absolute shrinkage and selection operator)

algorithm was used to further reduce the number of features. Using

the LASSO algorithm, the most significant features with the smallest

deviation were chosen as the final features (Figure 1B). Due to its

improved screening of high-dimensional data, the LASSO technique

is widely employed in radiomics. (3) In the training cohort, we

constructed a multivariate logistic regression radiomics model using

the final features, and in the test cohort, we assessed its performance.

(4) In this radiomics model, the probability of vulnerability for each

patient is determined using a regression-weighted algorithm.

According to previous studies, the traditional radiological models

were constructed based on IPH, PE, wall remodeling pattern, and

lumen stenosis rates (18, 21). Finally, a combined model was built

based on the conventional radiological and radiomics characteristics,

and the corresponding nomogram was established by the R software.

Statistical analysis

All statistical analyses were performed using R 4.2.1

(www.Rproject.org) and python (www.python.org). All continuous

variables were reported as mean ± standard deviations (SD),

and categorical variables were depicted as count (%). We used

the Shapiro-Wilk test to check for normal distribution. To

compare clinical characteristics and traditional features between

asymptomatic and symptomatic carotid stenosis patients, the

student’s t test/Mann–Whitney U-test was used for quantitative

variables, and the chi-square test/Fisher’s exact test was used for

categorical variables. Univariate logistic regression and the LASSO

algorithm were performed for the final screening of radiomics

characteristics. Receiver operating characteristic (ROC) calculations

were made for each model to evaluate the identification of vulnerable

plaques. The ROCs were compared using Delong testing. The

statistical significance was determined by the two-tailed p-value

of < 0.05.

Results

Patient characteristics

Ninety patients with carotid stenosis who underwent HRMRI

were included, 48 (53.33%) had MRI findings suggestive of acute

phase cerebral infarction ipsilateral to the carotid stenosis. There were

no significant differences between asymptomatic and symptomatic

carotid stenosis patients in terms of gender, age, BMI, history,

medication history, and lipids (Table 1). A median of 8.0 days

passed between an HRMRI and an ischemic cerebrovascular incident

(interquartile range: 4.0–13.75 days).

Radiomics assessment of the carotid plaque

On both raw and filtered pictures, 4,170 features were initially

collected from each ROI. In terms of the intraclass correlation

coefficient, 1,563 characteristics (37.5%) showed outstanding

robustness. After univariate analysis and LASSO feature screening,

13 features, including 5 features on 3D T1-SPACE and 8 features

on 3D T1-SPACE-CE sequence, were ultimately chosen and used to
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FIGURE 1

A flowchart of radiomics model development. (A) 3D carotid plaque segmentation in 3D T1-SPACE and 3D T1-SPACE- CE sequences, respectively; (B)

PyRadiomics-based radiomics feature extraction, 13radiomics features were screened at the minimum mean square error of the LASSO regression and

used to build radiomics models (a, b); (C) The formulation of radiomics signature (a); The calibration curves (b, c) and decision curves analysis (d, e) for the

training and testing cohorts were employed to evaluate the traditional model, the radiomics model and the combined model, respectively.

create the multifactorial logistic radiomics model. The formulation

of the radiomics signature is as Figure 1C.

Five-fold cross-validation was used to simulate the

discriminatory power of the 3D carotid radiomics model, which had

AUC values of 0.915 (95% CI: 0.85–0.98) for the training set and

0.835 (95% CI: 0.68–0.99) for the testing set. And it had the desirable

discrimination ability with a specificity of 63.6% and a sensitivity of

93.8% in the testing set (Table 2, Figure 2).

Traditional and combined assessment
models

IPH and luminal stenosis rate were found to be linked with

symptomatic plaques according to the univariate analysis results (p

< 0.05, Table 2). Although there were no significant differences in PE

and wall remodeling patterns between the two groups, we created

models employing IPH, PE, wall remodeling pattern, and lumen

stenosis to improve the performance of the traditional model. With

a sensitivity of 90.6% and a specificity of 74.2%, the traditional model

produced an AUC of 0.816 (95% CI: 0.70–0.93) for the training set

and an AUC of 0.778 (95% CI: 0.57–0.99) for the testing set. The final

combined model has an AUC in the training set of 0.957 (95% CI:

0.92–1.00) and the testing set of 0.864 (95% CI: 0.72–1.00) (Table 2,

Figure 2). The related nomograms for estimating the risk of ischemic

cerebrovascular episodes are depicted in Figure 3.

The DeLong test revealed that the ROC curves of the combined

model performed better than those of the traditional model in

both the training and testing groups (p = 0.005 and p = 0.037,

respectively). However, in both cohorts, there was no significant

difference between the combined model and the radiomics model (p

> 0.05). The calibration curve reveals a sufficient correlation between

the diagnostic results of our radiomics and combined model and the

actual results in the two sets (Figure 1Cb, c). The decision curves

showed that, in the range of 0 to 1, decisions based on our radiomics

and combined model achieved a net benefit over “no treatment” or

“all treatment” (Figure 1Cd, e).

Discussion

In patients with carotid stenosis, high-risk plaque poses a

significant risk of developing cerebrovascular embolic events.

Numerous carotid plaque MRI investigations have been

carried out to explore plaque components or characteristics

linked to cerebral ischemic episodes. However, most of the

early studies have emphasized only conventional qualitative

assessments (8). In this study, we constructed a radiomics

model to identify vulnerable carotid plaques by extracting

3D carotid plaque radiomics features from HRMRI using a
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TABLE 2 Performance of the models in training and testing cohorts.

Assessment models Cohort AUC (95% CI) Sensitivity Specificity

Radiomics model Training 0.915 (0.846–0.984) 0.812 0.903

Testing 0.835 (0.677–0.993) 0.938 0.636

Traditional model Training 0.816 (0.697–0.934) 0.906 0.742

Testing 0.778 (0.567–0.990) 0.812 0.818

Combined model Training 0.957 (0.915–0.999) 0.875 0.903

Testing 0.864 (0.721–1.000) 0.875 0.727

FIGURE 2

Receiver operating characteristic (ROC) curves of all the models (traditional model, radiomics model and combined model) in the training and test

cohorts respectively.

radiomics technique. Excellent diagnostic performance was

demonstrated in identifying vulnerable carotid plaques, allowing

quantitative scoring of each plaque’s vulnerability to indicate the risk

of stroke.

To the authors’ knowledge and literature review, this study

is the first study to develop a 3D carotid plaque radiomics

diagnostic model for identifying vulnerable carotid plaques based

on 3D T1-SPACE. Previous research has only extracted radiomics

features at the MRI level, where the plaque area is the biggest.

However, the generalizability of the previous model is diminished

due to the model’s extensive radiomics content. In addition,

although the previous combined model outperforms our model,

its AUCs per sequence were 0.846, 0.826, 0.857, and 0.816,

which were inferior to our radiomics model (AUC of 0.915)

(13). Compared to single-layer carotid plaques, 3D plaques can

more accurately indicate plaque vulnerability and rupture risk.

Arna et al. used ultrasonography to create a model of 3D

plaque ultrasound texture paired with plaque volume, which was

considerably more accurate at predicting future cerebrovascular

events than the conventional risk classification techniques (22). Saba

et al. discovered that with an increase in plaque volume, lipid

levels and proportion of calcification also increase, in addition to

a correlation between the volume of lipid component and plaque

surface ulceration, and is a significant risk factor for cerebrovascular

events (23). Cai et al. studied 63 patients for up to 55.1

months and discovered that advancement in carotid plaque volume

was independently linked to recurrent ischemic cerebrovascular

episodes (24). Therefore, feature extraction and evaluation of

3D carotid plaques may enhance the diagnostic performance of

vulnerable plaques.

The latest guidelines published by the European Society

of Vascular Surgery currently recommend optimal medication

treatment for asymptomatic patients with 60% stenosis, favor

revascularization for patients at average surgical risk with

60–99% stenosis, and affirm the importance of radiological

evaluation in decision-making (25). However, a meta-analysis

by Joseph et al. revealed that about 26.5% of patients with

asymptomatic carotid stenosis had coupled vulnerable plaques,

and this correlated with a greater incidence of ipsilateral

ischemic cerebrovascular episodes. However, the prevalence of

high-risk plaques was unrelated to the degree of stenosis (26).

Therefore, regardless of the level of stenosis, it is essential to

identify plaques at risk of causing cerebrovascular events using

radiological techniques. Previous studies have shown that the
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FIGURE 3

A nomogram integrating the radiomics scores and traditional features of the training sets.

HRMRI features of symptomatic plaque mainly include IPH,

PE, wall remodeling pattern, and lumen stenosis. However, it

only allows for qualitative judgments and requires a specialist

with radiological expertise and substantial work experience.

Similar to previous findings in coronary and cerebral plaque

studies, we discovered that the radiomics model outperformed

the conventional model in diagnosing plaque state (AUC =

0.915 vs. 0.816) (14, 27). What’s more, optimal diagnostic

performance can be achieved when conventional radiological

and radiomics features are combined. The decision curves depicted

demonstrate that the combined model caused a net benefit for

patients in both the training and testing sets. Therefore, the

nomogram developed in this study is a useful tool in clinical practice
(Figure 3).

However, there are some limitations to this study. Our
study had a limited sample size. Although cross-validation was

performed to enhance our model’s performance, it may still be
susceptible to over- or under-fitting. In addition, using single-
center data analysis, the same scanning instrument, and set

MRI parameters might have limited the generalizability of the
model. Also, the ROI could be manually segmented before

the extraction of radiomics features. Although the hand-drawn
method is regarded as the “gold standard” for image segmentation

now, the process is tedious and time-consuming. Despite rapid

advancements in deep learning semantic segmentation algorithms

for automatic segmentation of ROIs in recent years, its clinical

use requires the development of accurate and interpretable

algorithmic codes. Thus, future studies might integrate multi-

omics techniques that would include clinical data, radiomics,

gene proteomics, and hemodynamics to further enhance the

prediction of cerebrovascular ischemia risk in patients with

carotid stenosis.

Conclusion

HRMRI-based 3D carotid radiology models can improve the

performance of traditional radiology in identifying vulnerable carotid

plaques. One major advantage of radiomics analysis is its ability to

extract quantitative data from images which enhances the diagnostic

performance beyond traditional evaluation. Future prospective

studies could further enhance radiomics in predicting ischemic

cerebrovascular episodes in individuals with carotid artery stenosis.
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