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Cannabidiol’s neuroprotective
properties and potential treatment
of traumatic brain injuries

Mackenzie M. Aychman, David L. Goldman and Joshua S. Kaplan*

Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham,
WA, United States

Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-
inflammatory, antioxidative, and antiepileptic properties. These neuroprotective
benefits have generated interest in CBD’s therapeutic potential against the secondary
injury cascade from traumatic brain injury (TBI). There are currently no e�ective
broad treatment strategies for combating the damaging mechanisms that follow the
primary injury and lead to lasting neurological consequences or death. However,
CBD’s e�ects on di�erent neurotransmitter systems, the blood brain barrier, oxidative
stress mechanisms, and the inflammatory response provides mechanistic support for
CBD’s clinical utility in TBI. This review describes the cascades of damage caused
by TBI and CBD’s neuroprotective mechanisms to counter them. We also present
challenges in the clinical treatment of TBI and discuss important future clinical
research directions for integrating CBD in treatment protocols. The mechanistic
evidence provided by pre-clinical research shows great potential for CBD as a
much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials
sponsored by major professional sport leagues are the first attempts to test the
e�cacy of CBD in head injury treatment protocols and highlight the need for further
clinical research.
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Introduction

Traumatic Brain Injury (TBI) is a global public health epidemic that causes death or
hospitalization in an estimated 27–69 million people annually (1, 2). Yet, TBI has been called the
“silent epidemic” because of its range in acute symptoms and severity that lead to underdiagnosis
and underreporting by patients or treatment facilities (3–6). In addition to acute symptomology
that includes amnesia, disorientation, and changes to mental processing speed, even mild TBIs
can have long-term mental health impacts including depression and changes in impulsivity,
judgement, and memory. The severity of the impact (i.e., the direct trauma to the brain) often
determines the severity of the TBI symptoms (7) and involve brain changes that underlie
persistent neurological deficits and seizures. These post-concussion symptoms contribute to high
hospitalization rates among TBI sufferers in which 43% require additional hospitalization during
the first year post-injury (5). Patients with TBIs have financial hardships caused by their cognitive
and physical disabilities that can require expensive medical treatments and limit work activities.
There is also the societal economic burden that in the United States, alone, was $76.5 billion in
2010 dollars (5). Because of inconsistent diagnoses and subsequent underreporting of TBIs, the
true cost and financial impact is expected to be much higher than this estimate.
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The complexity of cellular, molecular, physiological, and
neurometabolic mechanisms associated with different stages post-
TBI makes it particularly difficult to treat. There is currently no
single pharmacological approach that has been effective in treating
TBIs (8). Yet, shared mechanisms of damage exist across TBI
severity levels suggesting that a single strategy may be generally
efficacious (9). Research into Cannabidiol (CBD), a non-intoxicating
phytocannabinoid abundantly produced by some chemovars of
Cannabis sativa L or synthetically produced from several biological
systems (10), has revealed promising protective properties to
counter the damaging effects of TBI that warrant concentrated
investigation (11–13). CBD’s unique pharmacodynamic profile (14)
and high tolerability in adults (15–17) affords unique capabilities
not shared by currently available treatment strategies. Here, we
discuss CBD’s proposed protective mechanisms against TBI-induced
neuroinflammation and degeneration, which may be a plausible
intervention for treating and reducing physiological damage and the
associated symptoms that arise from TBI.

Mechanisms of injury

The clinical presentation of TBI symptoms results from a
sequence of physiological, molecular, and chemical changes that
occur immediately following the initial impact or following a delay.
These two waves of disturbances are described as the primary and
secondary injury, respectively.

Primary injury

The primary injury of TBI is the direct structural damage to
neural tissues and blood vessels that derive from the impact event
itself (18). During impact, there is a shockwave of brain compression
and expansion that creates substantial mechanical forces within the
skull. This shockwave causes immediate contusions to the area of
impact, damages glial cells, induces localized hemorrhaging, shears
axons and blood vessels, and disrupts cytoskeletal elements (19–
23). Currently, helmets and mouthguards are the only known
protective strategies against primary TBI injury resulting from non-
vehicular sport or combat activities. These protective devices are
effective at reducing the severity of TBIs but cannot prevent TBI
when there is sufficiently forceful impact. Thus, a variety of TBIs
occur both with (e.g., military combat) and without this protection
(e.g., motor vehicle crashes). Due to the nature of the immediate
physiological damage, pharmacological approaches are intended to
reduce secondary injury rather than prevent the occurrence of
primary injury.

Secondary injury

The secondary injury is the additional systems damage that
results from mechanisms induced by the original structural injury
(i.e., the primary injury). It is characterized by a widespread cascade
of cellular, molecular, and biochemical changes that include, but
is not limited to, unregulated ion and neurotransmitter release,
dysregulation of glial cells, neuronal hyperexcitability, excitotoxicity,
increased blood brain barrier (BBB) permeability, and widespread

neuroinflammation (24–27). Diffuse mechanoporation results in
ion leakage and ultimately the unregulated release of glutamate
that triggers apoptotic events (24, 28, 29), increases the presence
of reactive oxygen species (ROS), and induces oxidative stress
(30). Together, these outcomes further trigger a proinflammatory
response involving microglial and macrophage activation and pro-
inflammatory cytokine release that boost and sustains posttraumatic
inflammation for an indeterminant amount of time (31). This
protracted inflammatory response contributes to additional tissue
damage and neurodegeneration (32, 33). Activated microglia in
their M1 state are especially neurotoxic because of their ability to
enhance pro-inflammatory and neurotoxic mediators [e.g., IL-1β,
tumor necrosis factor (TNF)-α, superoxide radicals, nitric oxide] and
decrease phagocytic activity (34). The resulting immune response and
concurrent neuroinflammation create a toxic cellular environment
that inhibits neuronal healing and perpetuates neuron loss (35)
and atrophy (36), and is associated with white matter degradation
(37). Therefore, this inflammatory cascade is a main target for
pharmaceutical intervention (26).

Current clinical treatment practices and
the role for CBD

Physicians managing patients with TBI are seeking safe and
effective treatment options that would ameliorate the symptoms
of TBI, reduce recovery time, and prevent or decrease chronic
neurologic dysfunction from residual brain injuries (Figure 1).
Similar underlying mechanisms of secondary injury are observed
across TBI severities, but differences in their magnitude impact
clinical treatment strategies and patient outcomes (38). To clinically
verify that pharmacotherapy such as CBD would improve outcomes
for patients with mild, moderate, and severe TBI, there must be a
reliable way to determine the severity categories.

There is ongoing debate in the medical community about the
reliability of current clinical tools, such as the Glasgow Coma Scale
(GCS), to assess and categorize TBI severity (39). The GCS measures
the level of consciousness and has been commonly used to classify
TBI severity as mild (GCS 13–15), moderate (GCS 9–12), and severe
(GCS 3–8). Numerous influential medical organizations, including
the World Health Organization, classify TBI using this GCS scale
(40–42). However, one-third of trauma patients with GCS score of
13 were found to have intracranial lesions (43) raising concerns
that these patients should not be categorized as mild TBI and
instead categorized as experiencing moderate severity. Subsequently,
recommendations were made to redefine mild TBI (GCS 14–15) and
moderate TBI (GCS 9–13) (44). There are also ongoing discussions of
ways to improve current TBI assessment and develop new tools that
facilitate both clinical research and treatment (39).

One approach to improve the assessment of TBI severity is
to incorporate more clinical information, exemplified by the work
of the American Congress of Rehabilitation Medicine (ACRM). In
1993, ACRM defined mild TBI as an event causing one or more of
the following conditions: (1) loss of consciousness (LOC), (2) post
traumatic amnesia (PTA), (3) mental status changes, and (4) focal
neurologic deficits. The severity of this TBI was assessed by how
long the patient was unconscious, how long the PTA lasted, and
the GCS score [see Brasure et al. (45) for specific criteria]. Notably,
the ACRM’s original definition only pertained to mild TBI but the
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FIGURE 1

CBD’s proposed role in immediate and continued treatment of TBI symptoms. TBI severity determines the scope of immediate clinical interventions.
Preclinical evidence supports CBD’s potential utility in some of these immediate treatment procedures (indicated by a cannabis leaf). However, CBD has
broader potential to support TBI recovery by dampening the secondary injury cascade. If CBD is e�ective at improving some of these symptoms, there
would be long-term predicted benefits across survival, neurocognitive, neurodegenerative, and neuropsychiatric measures.

same measures of severity have been widely used to categorize mild,
moderate, and severe TBI (41). In 2021, the ACRM announced plans
to update their work on measures of TBI severity to more reliably
distinguish a mild TBI, from moderate and severe injuries (46). Being
able to match CBD’s outcomes to reliably assessed TBI severities
will lead to better predictive validity and more effective long-term
care plans.

Clinical management of di�erent TBI
severities

It is estimated that mild TBI represents 70–90 percent of all
traumatic brain injuries (47, 48). Even mild TBI can have symptoms
that are severe and debilitating such as posttraumatic headaches,
nausea/emesis, dizziness or impaired balance, light or noise
sensitivity, blurry or double vision, fatigue, memory impairment,
poor concentration, increased anxiety, irritability, emotional lability,
worsened mood, and sleep disturbance (49). Patients suspected of
having a mild TBI should be medically evaluated by a licensed
health professional to provide clinical management, head injury
instructions, and determine whether they will need referral to an
emergency department for a head CT to evaluate for more dangerous
brain injuries that require hospitalization (50).

Current management for mild TBI recommends observation for
24 h at a hospital or home to watch for neurologic deterioration
(50). These patients are also instructed to refrain from strenuous
activities and contact sports until the symptoms resolve which usually
occurs around 4 weeks (51) with notable variability (52). Clinical
research is needed to determine whether CBD can stop or reduce
the severity of any of the symptoms caused by mild TBI and whether
treatment with CBD reduces the recovery time. Another clinical issue
is whether treatment with CBD lowers the risk of permanent injuries
from one or multiple episodes of mild TBI and lowers the risk of CTE
associated with multiple head injuries.

Patients with moderate and severe TBI can have primary injuries
that require surgical intervention including: depressed skull fracture,
subdural or epidural hematoma, intracerebral hemorrhage, and
penetrating injury (44, 53). Hospitalized patients with moderate and
severe TBI also require medical management, usually in the intensive
care unit, with the goal of controlling secondary injuries (44, 53).

Current treatment of intermediate and severe TBI in a critical
care unit (ICU) includes medical and surgical management known to
mitigate the effects of secondary brain injury: (1) maintaining blood
pressure to provide adequate cerebral blood flow, (2) maintaining
adequate oxygenation and normal pCO2, (3) controlling intracranial
pressure (ICP), (4) preventing and treating seizures, (5) preventing
elevated body temperature, (6) maintaining normal glucose levels, (7)
management of IV fluids to maintain normal serum osmolarity, (8)
elevating and positioning the head to promote venous drainage, and
(9) provide nutritional support (44, 53). The patient is at considerable
risk of deteriorating to brain death if there is a progression of
cerebral edema and elevated ICP that cannot be controlled. Bifrontal
craniectomies with dural incisions to decompress the brain is a
surgical option for patients not responding to medical management
of elevated ICP. This is a lifesaving procedure that effectively reduces
ICP but usually leaves survivors with severe disabilities (54). Despite
the slow recovery, and prolonged rehabilitation, some of these
patients regain enough activities of daily living to provide a degree
of functional independence (53).

A clinical role for CBD

The clinical issue is whether CBD, a treatment that can decrease
BBB permeability and reduce neuroinflammation (55), can be an
effective tool to reduce cerebral edema and lower ICP, and reduce
the number of patients who develop this life-threatening intracranial
hypertension. CBD differs from current clinical management options
because it directly repairs the underlying cause of vasogenic
edema which include increased permeability of the BBB (56) and
neuroinflammation (57). As presented later in this review, pre-
clinical research has demonstrated CBD’s efficacy against these
TBI consequences as well as improve cerebral blood flow (58)
and treatment of genetic and pharmacologically-induced seizures
(59). However, clinical research is needed to verify that CBD can
be an effective pharmaceutical agent for reducing cerebral edema
in patients with moderate and severe TBI. This clinical research
also needs to evaluate whether CBD can reduce the incidence
of post traumatic epilepsy (PTE), and if improved management
of CBF contributes to a better clinical outcome. There is also
preclinical evidence that CBD promotes neurogenesis (60), and the
clinical issue is whether the neurogenesis that normally occurs in
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TBI patients can be enhanced with CBD and if this will reduce
head injury symptoms, speed the recovery, and provide a better
restoration of neurological function. Following in-patient treatment
and stabilization period, patients may be released with substantial
impairments in brain function that results from their TBI. This
damage to neurotransmitter signaling results in long-lasting changes
in personality traits, mood, and neurological function. Below, we
describe these changes and the relevant mechanisms through which
CBD may target them.

Damage to neurotransmitter systems

Both primary and secondary injury cascades impact
neurotransmitter systems that result in sustained imbalance of
cortical excitation and inhibition (24). Rodent models of TBI have
implicated shifts in glutamate, GABA, serotonin, and catecholamine
signaling in the persistent disruptions and damage to neural
circuits (25).

Compression of tissue during TBI causes morphological damage
and leads to a rapid increase in intracellular Ca2+ (61–63). This
elevation in intracellular calcium contributes to the excessive
glutamate release and region-specific changes in excitatory amino
acid transporter (EAAT) expression that’s observed following
TBI (64–66). The outcome is a reduction in glutamate uptake
resulting in excitotoxicity and apoptosis (67, 68). In response
to elevated synaptic glutamate concentrations, AMPA receptors
undergo shifts in subunit expression and become calcium permeable
(69) which may enhance plasticity following injury, but an
ultimate reduction in NMDA signaling—following a robust increase
post-injury—reduces excitatory output of affected neurons (70,
71). Together, the initial wave of acute posttraumatic glutamate
release results in excitotoxicity, apoptosis, and dysfunction of
surviving neurons, while the following depression of signaling is
responsible for some motor and cognitive deficits associated with
TBI (24).

In parallel, the loss of GABAergic neurons elevates the disparity
in the excitation/inhibition ratio and augments apoptotic processes
and cellular injury. Apoptotic events resulting from the primary
injury and an increase in extracellular glutamate promote the loss
of GABAergic neurons. Furthermore, TBI induced dysfunction to
GABAA receptor subunits (decreased α1, α4, γ2, and δ) leads to
abnormal patterns of phasic and tonic inhibition, with a higher
reduction in phasic inhibition (72). Additionally, activation of
the JaK/STAT and Egr3 pathways results in decreased GABAA
receptor signaling and hyperexcitability (72–75). This GABAergic
neuron loss and reduced inhibitory tone is associated with both
cognitive and motor deficits in addition to TBI-induced seizures
(74). The remaining GABA neurons show elevated levels of
GABAB receptor signaling (76), which serve as autoreceptors
and further decrease GABAA receptor-mediated transmission.
Changes to the expression of genes regulating glutamate and
GABA result in long-lasting changes in homeostatic control and
hinder endogenous mechanisms to restore the excitatory/inhibitory
balance (25).

TBI negatively impacts attention, memory, and mood through
impairments to cholinergic (77) and serotonergic systems
(78). Biphasic changes in acetylcholine signaling begin with
initial unregulated acetylcholine release and are followed by

chronic cholinergic hypofunction (77, 79). This is eventually
reflected in decreased receptor binding (80) and reduced choline
acetyltransferase activity (81). Ultimately, this results in impaired
attention and disrupted memory consolidation (82). Mood changes
following TBI are thought to stem from sustained decreases in both
serotonin receptors and transporters, contributing to increased rates
of anxiety and depression in TBI sufferers (83).

TBI also triggers an increase in tyrosine hydroxylase and
enhances the synthesis of dopamine and norepinephrine (84–
86). However, persistent neuroinflammation contributes to a
downregulation of receptors and decreased transmitter release (87,
88). Further, direct axonal damage from the primary injury negatively
impacts signaling (89, 90). Sustained dopamine impairment can have
feed-forward effects that further increase inflammation (91), disrupt
metabolism (92), and reduce levels of brain-derived neurotropic
factor (BDNF) (93), which normally has a role in stimulating
neurogenesis, promoting neuronal survival, facilitating regeneration,
and protecting tissue from oxidative stress and apoptosis following
TBI (94). Lower baseline levels of BDNF among older adults hinders
recovery and is one factor that may lead to lower rates of survival
from TBI (95).

The consequence of TBI on several neurotransmitters systems
causes many of the clinical and pathological hallmark symptoms
of injury and underlie changes to cognitive and motor processes.
Furthermore, structural damage to the lesioned areas contributes
to mood and cognitive disturbances, such as damage to the
forebrain cholinergic (96, 97) and catecholaminergic afferents (86,
98). An effective pharmacological approach will protect against any
perturbation to these systems to prevent further neurological damage
from the secondary injury response.

The impact of ECS signaling on
neuroinflammation during secondary
injury

The endocannabinoid system (ECS) influences TBI outcomes
as increasing ECS tone protects against synaptic hyperexcitability,
reduces neuroinflammation, and improves blood brain barrier
integrity (99–101). The ECS is comprised of cannabinoid
type I and II receptors (CB1 and CB2) and lipid signaling
messengers, anandamide, and 2-AG. Among its numerous
functional roles, its powerful influence over the immune
response and neuroinflammatory signaling confers neuroprotective
qualities that are relevant in the TBI secondary injury cascade.
Endocannabinoids are involved in regulating inflammation
by acting on cannabinoid receptors as well as targets beyond
the canonical endocannabinoid system including TRPV1 and
PPARγ (102). Yet, their neuroprotective potential has been
most thoroughly studied at the endocannabinoid receptors. CB1
receptors are expressed in a variety of cell types and tissues
but are expressed in highest abundance in the central nervous
system (CNS) (103). CB1 receptors are involved in regulating
inflammation in both the CNS and PNS and play an important role
in dampening proinflammatory chemokine secretion (104). CB1
activation inhibits adenylate cyclase activity and decreases levels
of cAMP, in addition to activating inwardly rectifying K+ channel
conductance, decreasing N-type and P/Q-type voltage-operated
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Ca2+ channel conductance, ultimately reducing intracellular Ca2+

influx (105). The consequence of CB1 activation is therefore a
reduction in neurotransmitter release, however its net impact on
glutamate vs. GABA release is regionally determined and based on
endocannabinoid concentrations (106–108).

CB2 receptors are present in higher concentrations in the
immune system and on microglia than on neurons (55, 103, 109, 110).
They have notable immunomodulatory and neuroprotective roles
via the MAPK pathway and regulation of ERK-1/2 phosphorylation,
which aids in reducing inflammation (109). Additionally, activation
of CB2Rs is important for decreasing M1 state macrophages and
increasing bias toward anti-inflammatory M2 polarization (111). CB1
and CB2 are highly involved in TBI and a potential reduction in
inflammation and Ca2+ influx, which can prevent excitotoxicity,
inhibit inflammatory cytokine production, and may therefore be
neuroprotective (105).

Previous studies in a mouse model of TBI have demonstrated
that CB1 and CB2 antagonists prevent activation of neuroprotective
mechanisms in response to brain edema, diffuse axonal injury,
and microglial activation (101, 102, 112). Therefore, endogenous
ECS signaling can be neuroprotective, but it can also be a target
of therapeutic intervention. For instance, boosting 2-AG levels
protects against neurodegeneration, normalizes ionotropic glutamate
and GABAA receptor expression levels, prevents additional tau
pathologies, and improves behavioral outcomes in a mouse model
of repeated TBI (113, 114). Since CB1 and CB2 antagonists
only partially blocked neuroprotective benefits of increasing 2-
AG levels, it suggests that ECS neurotransmitters may confer
neuroprotection against secondary injury through actions at both
ECS and non-ECS receptors. One potential non-ECS receptor
target could be δ-subunit containing GABAA receptors (115) that
are found extrasynaptically and mediate a tonic-inhibitory current
(116). Further mechanistic investigation is needed to determine
the ECS and non-ECS receptor contributions to neuroprotection
in TBI. Importantly, the neuroprotective potential of solely
targeting the ECS receptors is limited by the sensitivity to
desensitization following prolonged pharmacological activation (117,
118). Therefore, pharmacological interventions for TBIs may be more
effective if they target additional mechanisms beyond solely CB1 and
CB2 receptors.

CBD’s neuroprotective potential in TBI

Cannabidiol (CBD) is a non-intoxicating, non-psychedelic
phytocannabinoid that has over 65 known ECS and non-ECS targets
in the brain and body that are influenced dose-dependently [for
a detailed review of relevant molecular targets, see (14)]. Not
all of these targets are relevant in the context of TBI therapy,
but several of these targets directly mitigate inflammation which
has prompted interest in the potential utility of CBD to dampen
secondary injury in TBI. These relevant targets and therapeutic
mechanisms are discussed below. However, there are currently no
clear dosing guidelines for these neuroprotective benefits in TBI.
Effective CBD dosing has proven challenging for other therapeutic
purposes such as anxiety (119), deficits in prosocial behavior (120),
and cocaine-induced reinstatement (121) that demonstrate inverted-
U dose response curves. It’s unclear if a similar inverted-U response
will be observed for CBD’s neuroprotection against the multitude

of secondary injury cascade mechanisms or if treatment efficacy is
retained with escalating dosing such is observed with CBD’s anti-
epileptic effects (120, 122).

Achieving the optimal therapeutic dose for combating secondary
injury in TBI will likely depend on CBD’s bioavailability (123)
which varies as a function of consumption method [for a
detailed review of CBD’s pharmacokinetics in humans, see Millar
et al. (123)]. Pulmonary, sublingual, and intranasal absorption
of CBD promote the highest level of bioavailability, but these
administration routes have not been systematically assessed for
combating the secondary injury cascade. Nonetheless, as we
discuss below, CBD’s neuroprotective efficacy during secondary
injury has been demonstrated in several preclinical models
accompanying restoration of TBI-impaired molecular, chemical, and
physiological mechanisms that would be theoretically predictive
of an effective TBI pharmacological strategy in humans. These
mechanisms include, but are not limited to, increasing ECS signaling
and reducing glutamate excitotoxicity, promoting neurogenesis,
dampening neuroinflammation, scavenging reactive oxygen species,
reducing TBI-induced BBB permeability, and regulating cerebral
blood flow, all discussed in further detail below (Figure 2). Alleviating
these consequences is beneficial for protecting against cognitive,
mood, and motor changes and helping to better restore function
following TBI.

One important consideration regarding CBD’s neuroprotective
efficacy is whether CBD needs to have reached the brain prior to
the primary injury or if it can be effective if administered during
the secondary injury response. Addressing the time course of CBD’s
efficacy will be a critical experimental consideration moving forward.
There is currently insufficient evidence to draw any definitive
conclusions because in many cases, CBD is administered prior to
the primary injury [e.g., (12)], after [e.g., (13)], or both before and
after [e.g., (56)], and often not compared across administration
period. Pretreatment may lead to lower mortality rates and improved
sensorimotor function (12), but targeting at least some of CBD’s
mechanisms, like the ECS, within a “window of opportunity”
of at least 15 min following the primary injury may also confer
substantial neuroprotective benefits (124). Given that the window
of opportunity for CBD administration is not clearly defined or
consistently tested, we discuss the following neuroprotective effects
across a range of administration methods and temporal relationships
to the primary injury.

CBD’s e�ects on neurotransmitter systems
after TBI

CBD’s neuroprotective effects likely stem from action at both
ECS and non-ECS targets. CBD indirectly activates CB1 and CB2
receptors by acting as a competitive substrate for the FAAH enzyme
that’s responsible for the primary hydrolysis of the endocannabinoid
anandamide (125). CBD may also increase 2-AG, but this is debated
and may only occur regionally such as in the periaqueductal gray
(126, 127). CBD may have some action directly on the ECS receptors,
themselves. In vitro assessments suggest that CBD has low binding
affinity for CB1 receptors and can act as a weak positive allosteric
modulator of CB2 receptors (128). Together, CBD can stimulate ECS
receptors by elevating anandamide levels and potentially by directly
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FIGURE 2

A summary of CBD’s actions in TBI. CBD has numerous actions that are proposed to protect against secondary injury and support recovery from TBI.
These actions include e�ects on numerous neurotransmitter systems that increase levels of brain derived neurotrophic factor and enhance neurogenesis,
dampen inflammatory signaling cascades, scavenge for reactive oxygen and nitrogen species (ROS and RNS, respectively), restore the integrity of the
blood brain barrier, improve control over cerebral blood flow, and attenuate inflammatory and neuropathic pain.

acting upon them to reduce neuroinflammation during secondary
injury processes (111, 129, 130).

Pre-clinical models suggest that CBD may normalize the
glutamatergic and GABAergic signaling imbalance following TBI.
CBD administered prior to TBI reduced the increase in cortical
glutamate release (12). This benefit was maintained with continued
CBD administration for at least 30 days post-TBI. In this case,
CBD’s effects were observed at moderate (50 mg/kg) and high
(100 mg/kg, 200 mg/kg) oral doses, but the 100 mg/kg dose was
optimal suggesting that CBD’s ability to restore normal glutamate
levels may follow a similar inverted U dose-response curve to
other conditions [e.g., (110)], albeit one with a much higher dose
tolerance. Additionally, CBD blocks glutamate toxicity in cultured
cortical neurons independent of inhibiting AMPA, NMDA, or
kainite receptors (131). More direct dampening of glutamatergic
excitotoxicity may occur through CBD stimulation of adenosine A2a
signaling and resulting reduction in glutamate release (132–134).
CBD’s multi-target pharmacological mechanism may end up being
safer and more efficacious than glutamate receptor antagonists which
are insufficient for preventing neuronal dysfunction and resulting
clinical symptoms (135), and may have adverse consequences
such as increased risk for tumor growth (136). In addition to
dampening excessive glutamate signaling, CBD increases GABAergic
signaling via positive allosteric modulation of non-benzodiazepine
binding sites on α-containing GABAARs, with preference for
the α2-containing receptor subtype and the β2 or β3 subunit
(137). Together, CBD effects restoration of the excitatory/inhibitory

balance through direct and indirect actions on GABAergic and
glutamatergic signaling, which may promote improved cognitive and
pain symptoms that result from TBI.

Many of the alterations in mood following TBI may stem from
impaired dopaminergic and serotonergic signaling (90, 138–140).
The primary TBI injury can cause mechanical damage and shearing
to dopaminergic axonal projections, which can additionally cause
oxidative stress (90). Sustained damage to this neurotransmitter
system can impair dopamine synthesis and metabolism (86). CBD
aids in the neuroprotection of dopaminergic pathways, as it is
a partial agonist at D2 and D3 receptors (141, 142) in rat
striatal tissue, and reduces dopamine uptake (14, 143), which aids
in attenuating the loss of dopaminergic neurons and microglial
activation (134). The neuroprotective properties of CBD further
aid in protecting the remaining neurons, dendrites, and cellular
structures in dopaminergic pathways (144, 145).

Furthermore, CBD is a direct agonist of 5HT1A receptors and
a partial agonist on 5HT2A receptors (14, 146–148), decreasing
anxiety, pain and headaches associated with TBIs via interaction
with the orthosteric binding site (141, 149–151). In vitro studies
demonstrate that CBD 5HT1AR binding increases GTP binding to
the 5HT1AR coupled G protein, Gi, confirming its role as an agonist.
However, it should be noted that 5HT2AR agonism is only applicable
in the presence of high concentrations of CBD (147). Via this
action, CBD increases serotonergic and glutamate cortical signaling,
as well as inhibits adenosine uptake (152). Rebalancing these
neurotransmitter systems is important for TBI recovery, as reducing
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serotonin and adenosine reuptake results in decreased oxidative
stress, excitotoxicity, and inflammation, which are hallmarks of TBI
secondary injury and the main focus of pharmacological intervention
(153, 154). SSRIs have been shown to improve common depressive
symptoms post-TBI, which arise partly due to decreased serotonergic
signaling (153). Increasing extracellular serotonin after damage
has been shown as beneficial for improving mood disturbances,
however it is ineffective in improving cognition (155). Therefore, it
is important to use a pharmacological approach that addresses both
mood and cognitive symptoms that arise from TBI.

CBD also antagonizes the G protein-coupled receptor GPR55
(156), which results in enhanced GABAergic neurotransmission
in the mouse hippocampus due to increases in inhibitory neuron
excitability, and ultimately decreases the excitation/inhibition ratio
(120). Inhibiting GPR55 reduces Ca2+ release, and therefore aids in
further reduction of glutamate release and excitotoxicity (14).

Together, CBD has widespread effects attributed to interactions
with non-ECS targets, such as PPARγ (157), 5-hydroxytryptamine
(5-HT1A) receptors (158), adenosine receptors (159, 160), vanilloid
receptor 1 (TRPV1) (161, 162), G-protein coupled receptors (i.e.,
GPR18 and GPR55) (120, 141, 156, 163), GABAA receptors
(137), and glutamate receptors (131, 164). CBD’s effects on these
various neurotransmitter mechanisms and the restoration of the
excitatory/inhibitory balance are proposed to improve mood and
pain-related symptoms of TBI, and limit long-term damage caused
by excitotoxicity and inflammation. Notably, the net consequence
of CBD’s actions on these different pharmacological targets will
need to be evaluated in humans with TBI since research into CBD’s
effect on the brain of adults with autism spectrum disorder show
differential effects as a function of disease state and pathological
etiology (165, 166).

CBD’s e�ect on neurogenesis

As part of the natural healing process following TBI, neurogenesis
is increased in the hippocampus, cerebral cortex, and white matter
in rodents (167, 168). Additionally, neural stem/progenitor cell
protein markers naturally increase in humans post-TBI, indicating
that neurogenesis may be induced in humans in the same way as
in an animal TBI model (167). This generation of new cells aids in
cognitive and spatial TBI recovery (169). CBD can further promote
neurogenesis through multiple mechanisms such as increasing CB1
(170) or PPARγ receptor signaling (171) to regulate stem cell
proliferation and differentiation (172) in the granule cell layer
of the hippocampus. Therefore, CBD’s actions on ECS and non-
ECS mechanisms may regulate neurogenesis (173), but they may
do so in a dose-dependent and condition-dependent manner. In
unstressed animals, CBD’s pro-neurogenic effects appear to be
dose-dependent, with lower doses promoting neurogenesis and
higher doses suppressing it (174). The impairment to neurogenesis
at high doses was postulated to result from desensitization of
CB1 receptors. However, in chronically-stressed animals, higher
doses retained pro-neurogenic effects (60). Therefore, the dose-
dependency of CBD’s effects on neurogenesis may depend on
symptom etiology where different CBD targets mediate its effects.
At this time, it is unknown how CBD’s targets and dose-dependent
mechanisms are affected by TBI across the range of severities.
Further work is needed to clarify the dose-dependency of CBD

on neurogenesis in TBI and identify whether these benefits also
exist from CBD treatment in humans. Even though plasma CBD
concentration was positively associated with hippocampal volume in
heavy cannabis users (175), its direct impact on human neurogenesis
remains undetermined.

Together, CBD’s actions on formal ECS and related targets
counteract the pro-inflammatory cascade and may enhance the
neurogenic response to TBI. Although CBD is often considered in
light of its effects on ECS signaling, its numerous non-ECS targets
likely contributes to the range of effects it can have on secondary
injury in TBI.

CBD and inflammation

Microglia play an important neuroprotective role in the healthy
brain by serving as the first responders to injury or disease (176).
They are responsible for clearing cellular waste and plaques and aid
in neutralizing infectious agents. However, their chronic activation
can damage healthy cells and is thought to contribute to numerous
neuropathologies including the damage that occurs during the
secondary injury cascade of TBI. Dampening microglia activation
following TBI may be a targetable mechanism for limiting the extent
of secondary injury damage.

Primary TBI damage ruptures axons and their myelin sheaths
releasing ATP that binds to damage-associated molecular pattern
(DAMP) receptors on microglia and activates their M1 pro-
inflammatory state (28, 177). This proportion of polarized microglia
in their M1 state is positively correlated with the severity of
white matter injury (177). Microglia in their M1 state release toxic
substances such as inflammatory cytokines that are important for
neuroprotection from minor injury or infection (34, 178–180).
Microglia that persist in this M1 state can trigger excessive and
pathological synapse degradation and can induce neurotoxicity due
to the release of neurotoxic mediators and pro-inflammatory factors,
which creates cycles of microglial-mediated neurodegeneration (34,
180–182).

One of CBD’s proposed protective mechanisms involves biasing
the polarization of these microglia from its damage-causing pro-
inflammatory (M1) to the anti-inflammatory (M2) activation state
(111, 183). This action is mediated through indirect action at A2A
adenosine receptors or by enhancing AEA-mediated CB2 receptor
signaling (133, 184, 185). CBD’s ability to shift the active state of
microglia is an important protective mechanism against the ongoing
damage to synaptic integrity that occurs during the secondary
injury cascade.

CBD and oxidative/nitrative stress

TBI increases free radical synthesis at a rate higher than can
be suppressed by the endogenous scavenger system resulting in
oxidative stress (186, 187). The accumulation of these free radicals
during secondary injury damages nearby cells and contributes to
cellular damage as they attempt to supplement their missing electron
through oxidation or harmful scavenging of electrons from nearby
proteins, membrane, and DNA. Activated microglia in their M1
state are a primary source of these free radicals as they increase
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reactive oxygen species and reactive nitrogen species as part of the
proinflammatory response to neural injury (188).

One facet of CBD’s neuroprotective mechanisms may stem
from its potent antioxidant and antinitrative effects in addition to
its indirect ability to dampen ROS generation (189, 190). CBD’s
molecular structure confers strong antioxidant properties; it has
electrophilic-hydroxyl groups in its aromatic phenol ring which
allows it to be readily oxidized (131, 189, 191). It can also
prevent the formation of superoxide radicals and ROS through
numerous mechanisms including blocking oxidase activity, chelating
transition metal ions (192), and affecting the levels and activity
of antioxidants (189). CBD can further affect the redox balance
by elevating AEA levels and reducing oxidative stress through a
CB2-dependent mechanism (193, 194). Together, CBD’s antioxidant
properties serve as an additional neuroprotective mechanism that
protects cellular function, stability, and prevents the initiation of
apoptotic cascades (192).

CBD and BDNF

BDNF is an important neurotrophin involved in the recovery
process from TBI. Serum BDNF levels on the day-of-injury
for adults with non-severe forms of TBIs can be used as a
prognostic indicator, as high levels predict better recovery (195,
196). BDNF is a secreted autocrine factor that promotes the
regeneration, synaptogenesis, axonal sprouting, and survival of
neurons (195, 197, 198), which are critical factors in effective
neurogenesis. It is involved in reducing the secondary cascade of
injury in TBI by restoring functional connectivity and providing
further neuroprotection (199, 200). BDNF is found in higher
concentrations in the cortex and hippocampus immediately post-
TBI but decreases in concentration within the first 24 h due to a
molecular cascade involving phosphorylation of PERK (a protein-
kinase in the endoplasmic reticulum activated by stress) and
increased activation of CREB, which downregulates BDNF (201).
Impairments in dopamine signaling are partly responsible for the
sustained reduction in BDNF levels that follow and contributes to
memory, cognitive, and depressive symptoms (55, 94).

Boosting BDNF levels may have utility in combating secondary
injury. In animal models, a positive correlation has been shown
between increased BDNF expression and improved functional
outcomes in terms of motor, memory, behavior, and cognitive
responses after TBI. A decrease in BDNF levels during secondary
injury is associated with worse outcomes (195). In human studies,
acute serum BDNF levels are associated with chronic memory
impairments, functional cognitive limitations, and depressive
symptom severity, with an inverse correlation between BDNF levels
and cognitive impairment (95, 202, 203). These beneficial effects
of BDNF are likely mediated through TrkB receptors, resulting
in intracellular signaling cascades that enhance relevant protein
synthesis (202).

CBD’s ability to increase BDNF levels proposes an additional
neuroprotective mechanism against secondary injury. CBD has been
shown to increase synthesis of BDNF in the prefrontal cortex and
hippocampus in mice (202), two regions implicated in the cognitive,
memory, and mood-related impairments following TBI (204–206).
However, it’s unclear if CBD can rescue cognitive deficits and

mood changes following TBI if these changes are associated with
tissue damage and not merely altered neurotransmitter signaling
(204, 205). CBD may be more effective in rescuing mood and
memory deficits caused by shifts in hippocampal signaling from
TBI-induced volume reduction (206) or increased amygdala activity
(207). For instance, the increase in BDNF levels by CBD protected
against neurotransmitter alterations and coinciding depression-like
symptoms in a mouse model of brain ischemia (208). However,
this neuroprotective mechanism remains speculative since there
are currently no known studies to have directly assessed the role
of CBD-induced upregulation of BDNF in TBI and whether this
neuroprotection extends to TBI with severe tissue damage from the
primary injury.

CBD and the blood brain barrier

The BBB is a specialization of the blood vessels that vascularize
the CNS. It regulates the movement of ions, molecules, and cells
between the blood and the brain to prevent the brain’s exposure to
neurotoxins and infectious agents. Tight junction networks that are
established by capillary endothelial cells in the CNS protect neural
tissue from bacteria, viruses, toxins, and pathogens (209). Disruption
increases toxin exposure, elevates immune and inflammation
responses, and disturbs the brain’s biochemical environment (56).

Both the primary TBI and secondary TBI cascade enhance the
BBB’s permeability. The shearing force of the primary injury can
cause injury to endothelial cells and a loss of blood flow resulting
in decreased BBB integrity that enables the passage of potential
toxins into the CNS (209). This breakdown triggers leukocyte
recruitment that promotes the release of proinflammatory cytokines
or ROS, activates M1 microglia, and increases neuroinflammation
and apoptosis (210–214). During the secondary injury cascade,
increases in oxidative stress, transforming growth factor beta 1 (TGF-
β1), and TNF-α promote a further reduction in the integrity of
the BBB through suppressing the tight-junction protein, claudin-5
(215, 216). This leads to protracted hyperpermeability of the BBB
and neuroinflammation.

Pre-clinical studies have exposed CBD’s potential to suppress
BBB permeability through several protective mechanisms (Figure 3).
CBD can protect against the suppression of tight-junction proteins,
claudin-5 and occludin (56). These actions may be mediated,
in part, through PPARγ and 5-HT1A receptors that have been
shown to maintain function (217). Further, CBD decreases TNF-
α which prevents further BBB damage and limits the inflammatory
response (152, 218). Additional CBD targets, such as TRPV1, GPR18,
and 5-HT1A are involved in regulating cerebral blood flow and
conferring further protection against cerebrovascular impairments
from TBI (58, 219–221). The combinatorial effects of CBD acting
on numerous targets may be a promising strategy of protecting the
BBB’s integrity and limiting feed-forward damage that occurs during
secondary injury.

CBD and cerebral blood flow

Adequate and controlled cerebral blood flow (CBF) is essential
to neurological function and is an important clinical consideration
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FIGURE 3

CBD protection against damage from BBB disruption. TBI disrupts cerebral blood flow and damages the integrity of the BBB. Hyperpermeability resulting
from damaged tight-junctions and endothelial cells leads to increased inflammation and oxidative stress. (1) CBD shifts the polarization of macrophages
from their pro-inflammatory M1 type to anti-inflammatory M2 type via activation of A2A adenosine receptors or by enhancing AEA-mediated CB2

receptor signaling. (2) CBD may improve BBB integrity and prevent hyperpermeability by suppressing TBI’s damaging e�ects on tight-junction proteins via
action on PPARγ and 5-HT1A receptors. (3) CBD is a potent antioxidant that reduces ROS and protects against oxidative damage to neurons and the BBB.
It also reduces levels of TNF-α and other inflammatory markers that reduce the integrity of the BBB. (4) CBD may regulate cerebral blood flow to enhance
reperfusion following injury via activation of GPR18, GPR55, and 5-HT1A receptors.

following TBI (222). Various clinical studies have demonstrated an
acute transient decrease in CBF following TBI, which returns to
baseline during the recovery process (223–225). Large reductions
in CBF are associated with worse neurological outcomes post-
injury (226, 227), while acutely increasing CBF following TBI aids
recovery (228).

A variety of local chemical mediators of CBF are altered after
TBI, including an increased release of K+ into the extracellular
space, excessive release of excitatory amino acids, increased
acidity of cerebral pH, and increased interstitial adenosine.
The resulting impairment in CBF autoregulation causes
endothelial dysfunction and vasospasm while boosting release
of free radicals (229–233). Disturbances to the autoregulatory
mechanisms may increase vulnerability to additional secondary
injury cascades and further dysregulate CBF and sensitivity to
hypotension (222).

CBD action on GPCR18 (an endothelial cannabinoid receptor)
and GPR55 may aid in recovering regulatory control over
CBF via vasomotor control (55, 234). CBD administration to
mice before and after an experimental middle cerebral artery
occlusion protected against CBF impairment via action on 5-
HT1A receptors, thereby illustrating CBD’s potential efficacy to
enhance reperfusion following injury (235, 236). Therefore, there’s
emerging and supporting pre-clinical evidence that CBD may act as
a cerebroprotectant by protecting against the dysregulated CBF from
occlusion or injury.

CBD and pain

Given the physical trauma of the primary TBI, inflammation-
induced nociception is usually a primary symptom of injury. CBD

acts both at the site of injury (see discussion above) and centrally
to achieve its pain-relieving effects in pre-clinical models. For
instance, microinjection of CBD directly into the nucleus accumbens
attenuated pain responses during both the early and late phases
of the formalin test but were strongest in the late phase (237).
Since plasticity in the dorsal horn generated from excessive C-
fiber input is believed to contribute to late phase nociception (238),
these findings suggest that CBD may dampen inflammatory and
neuropathic pain. Others have demonstrated the importance of brain
5-HT1A (239) and D1 and D2 dopamine receptors (240, 241), as
well as TRPV1 receptors in the spinal cord (162) in promoting
these centrally mediated pain-reducing effects. Nonetheless, CBD’s
efficacy as a pain treatment in humans may vary due to route of
consumption, dose, or pain etiology. At this time, there’s no empirical
evidence that CBD is effective at treating posttraumatic headache.
However, CBD’s ability to regulate inflammation may help prevent
the sensitization of the trigeminal pain circuit (242) that underlies
posttraumatic headache (243). Further research is warranted for
specifically investigating CBD’s potential as a pain treatment from
TBI etiology.

Discussion

Current limitations

Identifying safe and effective dosing strategies remains a
challenge for both pre-clinical and clinical investigation of
cannabinoids. Given the multitude of synergistic and competing
mechanisms (14), proper and consistent dosing remains a major
challenge. Current studies of CBD’s effects on TBI suggest
that CBD dosing and achieved concentrations are critical for
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achieving therapeutic benefits [e.g., (56)]. Other characteristics
such as method of administration [e.g., (13)], duration of
exposure, and temporal proximity to the TBI [e.g., (12)] further
complicate efforts for achieving a clear understanding of optimal
therapeutic strategies.

Beyond dosing, sex-based differences in the ECS expression,
cannabinoid metabolism, and energy homeostasis regulation may
impact CBD’s effects, and thereby, highlight the need for further
investigation into biological sex and hormone-based differences
in the response to CBD (244–246). For instance, estrogen levels
may affect CBD action by altering ECS-related pharmacodynamics
(247) and should be considered when assessing efficacy of CBD in
treating TBI (56). Furthermore, pre-clinical studies have revealed
sex-dependent differences in CB1 receptor expression and efficacy
between male and female rats: males have more, but less efficient,
CB1 receptors than females (244, 248, 249). Since CB1 receptors are
involved in regulating inflammation, these differences may impact
the regulation of microglia in response to injury. These differences
can affect the severity of the neuroinflammatory response as well
as the effectiveness of CBD in treating neuroinflammation during
secondary injury.

One of CBD’s promising characteristics for its treatment potential
is that it’s generally well-tolerated (122, 250, 251). Adults can
consume an acute dose of several thousand milligrams without
substantial adverse effects, as demonstrated by a formal single
ascending and multiple dose pharmacokinetic trial of cannabidiol
oral solution. In adults, single doses of up to 6,000 mg CBD were well-
tolerated, as were multiple doses of up to 1,150 mg twice daily for 6
days (252).

Clinical trials of pediatric epilepsies provide insight into the
adverse effects that result from months of repeated exposure to
high doses (around 10–30 mg/kg/day) (122, 253, 254). Although
CBD is associated with increased risk for adverse effects such
as somnolence, sedation, and impaired liver function, it’s unclear
if these result from CBD’s interactions with other medications
and therefore, it’s unclear what adverse effects, if any, chronic
CBD use has as a monotherapy (255). Notably, CBD’s competitive
inhibition of numerous cytochrome P450 liver enzymes (256)
highlight the need for caution when combining CBD with
additional medications that rely on metabolic breakdown by
the P450 enzymes. Health-care providers, or patients concerned
about discussing their off-label cannabis use with a physician,
can access services such as the Cannabinoid Drug Interaction
Review (CANN-DIR) (257) to identify possible interactions between
CBD with concomitantly prescribed medications. Furthermore, the
inconsistencies in CBD administration methods and dosing have
precluded a consistent and predictable dose-response relationship
that may inform TBI intervention.

Future directions

There are currently no known blinded and randomized human
clinical trials for CBD’s neuroprotective effects in TBI, however, an
upcoming phase II clinical trial will investigate the effects of CBD
with or without 19-THC in patients with TBI (258). Additionally,
the amalgamation of pre-clinical reports has piqued the interest
among organizations with high-risk athletes. Two major sports

organizations in North America whose athletes are at high risk for
TBI, the National Hockey League (NHL) and the National Football
League (NFL), are investigating CBD’s protective and restorative
effects in their athletes (259, 260). At the time of this publication,
the NHL Alumni Association is moving toward a double-blind,
randomized study of over 100 retired NHL players to assess the
benefit of CBD on recovery from concussions (260). The NFL has
also awarded funding for two clinical studies involving cannabinoids,
one assessing the effects on pain and recovery from sports-related
injuries and the other assessing the role of cannabinoids in pain
management and neuroprotection from concussion in contact sports
(259). Additionally, a separate study is recruiting participants to
study CBD as a treatment for PTSD and PTSD comorbid with TBI
(261), which has great relevance for those who have experienced
military combat. Together, these emerging clinical trials will reveal
if the promising findings from pre-clinical studies extend to at-risk
human populations.

Repeated TBIs, whether from sport, combat, or other causes,
increases the risk for developing chronic traumatic encephalopathy
(CTE). The total number of TBIs and their severity are positively
correlated with CTE risk (262), which has been neuropathologically
diagnosed in 110 of the 111 NFL veterans who were tested (263). It
is characterized by extensive brain atrophy, astrogliosis, myelinated
axonopathy, microvascular injury, perivascular neuroinflammation,
and phosphorylated tau protein pathology. The exact mechanism
underlying CTE is unknown, however it emerges years after one or
more TBIs. Cis P-tau is positively correlated with axonal injury in
CTE (264) and, for example, may be a targetable substrate by CBD
for CTE treatment (265, 266). It is hypothesized that by mediating
the effects of TBI with CBD, it may be possible to prevent the
development of CTE, or at least decrease the severity of the disorder.
Although more research into CTE and its underlying mechanisms is
needed, the investment into clinical trials by these professional sport
organizations is warranted.

Conclusions

TBI is a public health epidemic with inconsistent clinical
diagnostic criteria. Due to its complex mechanism of injury (primary
and secondary) and varying severity, there is currently no single
effective pharmacological treatment for TBI. CBD targets many of
the cellular, molecular, and biochemical changes associated with
TBI by mediating the regulation of neurotransmitters, restoring the
E/I balance, preventing BBB permeability, increasing BDNF and
CBF, and decreasing both ROS/NOS and microglial inflammatory
responses. To accomplish this, CBD indirectly activates CB1R
and CB2R while also targeting PPARγ, 5HT1AR, TRPV1, GPR18,
and GPR55. It functions to regulate Ca2+ homeostasis, prevent
apoptotic signaling, reduce neuroinflammation, and serve as a
neuroprotectant/cerebroprotectant. Via a variety of targets, CBD
appears to reduce cognitive (changes in memory, attention, and
mood) and physiological symptoms associated with TBI, and lessen
TBI-induced nociception.

There is strong mechanistic support that CBD could be an
effective pharmacological intervention for TBIs, however the current
state of the research field is mostly derived from rodent studies. The
upcoming clinical trials will be especially informative for determining
CBD’s efficacy as a TBI treatment.
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