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Introduction: Computed tomography perfusion (CTP) imaging is widely used in

cases of suspected acute ischemic stroke to positively identify ischemia and assess

suitability for treatment through identification of reversible and irreversible tissue

injury. Traditionally, this has been done via setting single perfusion thresholds

on two or four CTP parameter maps. We present an alternative model for the

estimation of tissue fate using multiple perfusion measures simultaneously.

Methods: We used machine learning (ML) models based on four di�erent

algorithms, combining four CTP measures (cerebral blood flow, cerebral blood

volume, mean transit time and delay time) plus 3D-neighborhood (patch) analysis

to predict the acute ischemic core and perfusion lesion volumes. The model was

developed using 86 patient images, and then tested further on 22 images.

Results: XGBoost was the highest-performing algorithm. With standard

threshold-based core and penumbra measures as the reference, the model

demonstrated moderate agreement in segmenting core and penumbra on test

images. Dice similarity coe�cients for core and penumbra were 0.38 ± 0.26 and

0.50± 0.21, respectively, demonstratingmoderate agreement. Skull-related image

artefacts contributed to lower accuracy.

Discussion: Further development may enable us to move beyond the current

overly simplistic core and penumbra definitions using single thresholds where a

single error or artefact may lead to substantial error.

KEYWORDS

acute ischemic stroke, CT perfusion imaging, machine learning, ischemic core, penumbra

1. Introduction

Rapid diagnosis of acute ischemic stroke is of vital importance and is confirmed by

computed tomography (CT) or magnetic resonance (MR) imaging. Historically improved

patient outcomes were obtained by early reperfusion treatment, with significant effort

and resources being provided to improve both stroke detection and clinical workflows to

facilitate faster treatment (1–3). Recently, clinical trials have demonstrated that patients

with a favorable perfusion imaging profile benefit from treatment up to 9 h from symptom

onset/mid-point of wake-up with thrombolysis and up to 24 h with thrombectomy (4–7).

Perfusion imaging allows estimation of salvageable brain tissue (penumbra) and tissue
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already infarcted or destined for infarction irrespective of

reperfusion (ischemic core) (4, 7–11). Patient outcomes have been

shown to be strongly related to the estimated volume of ischemic

core at baseline (12, 13). As a result, CT perfusion (CTP) is

increasingly being used in clinical practice around the world,

with several software providing automated estimates of salvageable

and ischemic core derived through various mathematical models

(hemodynamic maps) (14, 15).

The hemodynamic maps generated by CTP are obtained by

tracking a contrast medium as it flows into and out of the brain.

The data is then processed using one of several different algorithms

(14, 15). The estimation of salvageable tissue and ischemic core

is then performed by applying a single threshold to one or two

maps (9, 16, 17). However, there is significant variation between

algorithms used when estimating tissue perfusion, and single-value

thresholds have been shown to both under and overestimate the size

of the infarct core and penumbra (18, 19). This may be partly due

to the misclassification of image voxels as core or penumbra that

results from single-value thresholding of core and penumbra. More

sophisticated methods of processing CTP maps are required that

can, for example, delineate artifactual signals from those caused by

perfusion deficit.

The currently used perfusion thresholds have been validated

to some degree and have shown success in selecting patients for

treatment through clinical trials (6). However, a predictive model

that uses all available perfusion data and spatial context of voxels

may provide amore nuanced representation of the pathophysiology

of evolving ischemic stroke, improving the accuracy of the images

and the robustness of the output. Furthermore, shifting from a rigid

single threshold model to a trained Machine Learning (ML) model

is highly advantageous as the ML model may continue to improve

performance with the addition of data.

There are many studies that develop and test ML and Deep

Learning (DL) models for lesion segmentation and there have

been great advances in developing applications of ML and DL to

healthcare in general [e.g., (20, 21)]. However, there are challenges

in widespread deployment such as lack of standardized methods

to evaluate performance. Furthermore, the inner mathematical

processes of ML and DL are often difficult to understand, and

their outputs difficult to interpret. These issues of “explainability”

and “interpretability” lead to ML being approached as a “black

box” problem, without understanding of internal mechanisms.

This has hampered implementation into medical practice. It is

therefore essential to integrate ML in small, explainable steps

rather than large, black-box overhauls that will result in issues

of reliability (22). In this study we investigate if single-value

thresholds for measurement of ischemic core and penumbra can

be replaced with a ML-based method. We also outline challenges

that must be addressed for successful integration into acute stroke

assessment protocols.

2. Materials and methods

We developed an early ML model that is trained to delineate

both ischemic core and penumbra from surrounding tissue using

acute CTP data. We used retrospective data from an acute

ischemic stroke patient cohort to develop models based on four

ML algorithms (Logistic regression, Random Forest, XGBoost and

Support Vector Machine). We tested performance of the model on

an additional set of new, unseen patient data.

2.1. Data acquisition

We analyzed CTP images from the International Stroke

Perfusion Imaging Registry (INSPIRE), which is a database of

acute stroke perfusion imaging and associated clinical information.

For this study we used consecutive patients presenting with acute

ischemic stroke who had whole brain CTP and who were recruited

into INSPIRE between 2010 and 2017 at the John Hunter Hospital,

Newcastle, Australia. For standardization, only one site was used at

this stage. As is routine in INSPIRE, patients all underwent baseline

multimodal CT imaging with non-contrast CT, CTA, and CTP.

Written informed consent was obtained from all participants, and

the INSPIRE study was approved by the site’s ethics committee (23).

To obtain the perfusion images, a total of 19 acquisitions

occurred over 60 s. The CTP data were processed by commercial

software MIStar (Apollo Medical Imaging Technology, Melbourne,

VIC, Australia). CTP parameters were generated by applying the

mathematical algorithm of singular value decomposition with

delay and dispersion correction (24). The following four CTP

parameters were generated: cerebral blood flow (CBF), cerebral

blood volume (CBV), mean transit time (MTT), and delay time

(DT). The penumbra and core volumes were defined with dual

thresholds: DT at the threshold of 3 s for total ischemic lesion

volume and CBF at the threshold setting of 30% for acute core

volume (8, 16, 25). After single-value thresholding, core/penumbra

areas were limited to a single lesion and artifactual or erroneous

regions were removed. The resulting map was used as the ground

truth (GT). Core/penumbra were reviewed by experts to ensure

they were accurate.

To develop the model, we used 86 acute ischemic stroke

patients with a large vessel occlusion (LVO): M1 segment of the

middle cerebral artery (MCA) or internal carotid artery (ICA). To

provide additional testing and external validation, 25 patients were

used, with both LVO and non-LVO occlusions. This was done to

observe whether a model trained only on lesions resulting from

an occlusion of large vessel will perform as well when testing on

a variety of occlusion sites. Each patient in the test set underwent

follow-up MR diffusion-weighted imaging (DWI) between 24 and

72 h after onset. The volume (mL) of the infarct core, as estimated

by MR-DWI, was recorded and used for external validation. On

follow-up imaging, all patients had a thrombolysis in cerebral

infarction (TICI) score of at least 2b, indicating relatively complete

reperfusion of initially hypoperfused regions. In these cases, the

volume of the acute CTP core should more closely match that of

the follow-up infarct core and could therefore be used to validate

the predictions.

2.2. Creating labeled data

2.2.1. Class labels
The four hemodynamic maps (hereafter referred to as features)

and core-penumbra segmentation maps (hereafter referred to as

lesion map) were used in the development of the algorithm. The
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FIGURE 1

Feature maps and lesion map corresponding to the M1 test image. A single axial slice is shown with corresponding perfusion data for delay time (DT),

cerebral blood flow (CBF), mean transit time (MTT) and cerebral blood volume (CBV). The corresponding class labels which make up the lesion map,

used as ground truth (GT) in the algorithm, is shown on the far right.

FIGURE 2

Construction of training matrix through sampling and patch

extraction. For a given randomly selected sample (shown in dark

blue), its corresponding perfusion map value/s and the values

corresponding to its 26 immediate neighbors are collapsed into a

1-dimensional array, with the corresponding class label (yellow)

added at the furthermost right position. If multiple perfusion maps

are used, the 27 values from each map are recursively added to

extend the 1-D array to the left of the class label. The 1-D array for

each label are stacked to form a 2-D training matrix.

lesion map, together with the spatial coordinates of the mean

baseline image from the CTP acquisition, was used to create a 3-D

array of tissue class labels, where each voxel was one of four values:

0—background; 1—non-ischemic brain tissue; 2—penumbra; 3—

core). Figure 1 shows the features alongside their class label array

for a single patient.

2.2.2. Under-sampling
For this early model, we avoided the issue of class imbalance by

sampling the same number of voxels from each class in each image.

We processed all lesion maps in the training data, counting the

number of voxels belonging to each class. The smallest core volume

contained 708 voxels and the smallest penumbra volume contained

8,436 voxels, and two images in the group had a penumbra but

no core. We then randomly sampled 300 voxels from each class

in each image. For the two images with no core, 300 extra healthy

tissue samples were randomly taken from the image, ensuring 1,200

voxels were sampled from each feature channel.

2.2.3. Patch analysis
To predict the tissue status of a single sample (i.e., voxel

of interest), we included the feature values associated with the

coordinates of that voxel as well as the values associated with

every direct neighboring voxel (26 in total), creating a patch-

wise analysis. This was done to include spatial context in the

determination of sample tissue status. Zero padding was used

for samples that lay around the edges of the image. Figure 2

demonstrates this process for a single voxel of interest, where a 1-D

array is created from the sample and its neighbors. Each sample

resides in a single row of the training matrix, alongside its class

label. All feature channels are concatenated along the same row.

2.3. Machine learning models

The sampled training data was further split into training (60%)

and validation (40%) cohorts. Optimization and training were

performed on the training data and evaluation was performed on

the validation data. All data was standardized to [−1, 1] using the

Standard Scalar function in Scikit-Learn in Python (v 0.0) (26).

We used Scikit-learn to optimize four models, based on

logistic regression (LR), random forest (RF), XGBoost (XGB) and

support vector machine (SVM), respectively. Except for SVM, a

randomized search was initially performed, to estimate the best

hyperparameters for each algorithm, after which a grid search

was performed to narrow down the best hyperparameters. The

chosen range for each hyperparameter was determined based on

recommendations in Scikit-learn documentation. For each unique

parameter combination, three-fold cross validation was performed.

2.4. Impact of added features

For this early model, we wished to determine whether

performance was enhanced by including all four CTPmaps vs. CBF

and Delay Time alone. In particular, we wish to learn whether using

four maps reduced the presence of artifactual perfusion lesions.

Therefore, each model was trained twice; first with data only from
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CBF andDelay Time and then on data fromCBF, Delay Time,MTT

and CBV.

2.5. Performance evaluation

All the data used to train and optimize the model comprised

random samples from images. However, the model will ultimately

be used to process whole patient images and provide a prediction

that can be displayed as an image. Therefore, we used an

additional 25 whole brain patient images to further test the model’s

performance as it would be applied in a clinical scenario, and

to provide a visualization of the model’s accuracy. The images

were processed as follows: from each voxel in the image, a 3D

neighborhood patch was extracted and added to a matrix as in

Figure 2. Each 3D patch from the image was forwarded through

the model, and the resulting predictions were accumulated in a

common space, preserving their spatial location and allowing the

image to be reconstructed.

2.5.1. Quantitative performance evaluation
The predictive model was trained using random samples,

evenly distributed among the classes. For the test images,

however, classes were severely imbalanced. Using receiver-

operating characteristics (ROC) or average accuracy would favor

the majority class and it is the minority classes that are of interest

in this case. Furthermore, the area under the ROC curve (AUC)

metric rewards positively predicted background pixels. Therefore,

it is not a fair representation of the accuracy of a brain lesion

segmentation, whereby background pixels constitute much of the

image. For this reason, it was more appropriate to choose a metric

more in line with perceptual quality, which reflects both size and

localization agreement.

The Dice similarity coefficient (DSC) is a measure of spatial

overlap for two regions (A, B), and is given by DSC (A, B) =

2 (A ∩ B) /(A+ B), where ∩ is the intersection. It can be seen as

the percentage overlap between A and B. A perfect intersection

between A and B will give a DSC of 1, and if there is no intersection

between the two regions, the score is 0. DSC is sensitive to both

size and location differences and is a highly intuitive manner of

expressing similarity between two regions. We calculated the DSC

between the ground truth and predicted images for the core and

penumbra regions separately. After (27), DSC can be separated

in a similar manner to the Kappa coefficient for agreement, into

the following six categories (28, 29): 0, “No Agreement”, 0–0.2,

“Slight agreement”; 0.2–0.4, “Fair agreement”; 0.4–0.6, “Moderate

agreement”; 0.6–0.8; “Substantial agreement”; “0.8–1”; “Almost

perfect agreement”.

The Jaccard Index (JI), also known as the Intersection of Union

(IoU), like the DSC, ranges from 0 (no agreement) to 1 (perfect

agreement). The JI is mathematically represented by IoU(A, B) =

A ∩ B / A ∪ B, where ∪ is the union. The relationship between JI

and DSC can therefore be described as JI = DSC /(2− DSC ). The

DSC tends to be higher as it counts the true positive classifications

twice in both the numerator and denominator of its equation, while

the JI gives a greater penalty for bad classifications. Therefore,

providing an average score over a set of classification will lead the

average DSC and average JI to diverge from one another. The two

metrics will always be positively correlated, however, we found it

worthwhile to analyse the distinction as both are used throughout

literature to evaluate segmentation tasks. The DSC and JI values for

each the core and penumbra were calculated for all 25 images, and

the differences between them were evaluated using paired t-tests.

Finally, lesion volume, one of the most important predictors

of outcome after ischemic stroke, was calculated for the additional

test images. The volumes of the core and penumbra were

calculated for each of the ground truth and the predicted lesion

by counting the number of voxels assigned to each area (30).

Using pixel information encoded in the image, the absolute volume

in milliliters could be calculated. As an external validation, the

predicted core volume was compared with the follow-up (24–72h)

infarct core derived from MR-DWI imaging and reviewed by the

expert stroke neurologist (MP).

2.5.2. Qualitative performance evaluation
We identified eleven images within the cohort affected by

artifacts relating to the skull. In brain CT imaging, beam hardening

from the dense skull region or, to a lesser degree, contrast-enhanced

arteries, may result in a characteristic “streaking” artifact (31).

When the skull, a highly attenuating region is adjacent to less

attenuating tissue, such as soft tissue, and there is limited CT

resolution, partial volume averaging may also occur. Here, the

image intensity of affected voxels is a mixture, or an average,

or the intensity of both these regions (32). Figure 3 shows an

example of the partial volume artifact in Subject 3. Upon CTP

processing, such voxels near the edge of the brain shows increased

Delay Time. However, these artifacts are common and, if the

image is otherwise of good quality, artifactual perfusion lesions

are easy to identify to the trained eye. Therefore, we did not

exclude these cases from the study and instead prefer to investigate

the impact of artifact on model performance. We qualitatively

compared the ability of the algorithms to make a correct prediction

around those areas, based on both the inclusion of all four CTP

maps and the additional spatial information provided by the

3D patches.

3. Results

For the training set, 55 patients had an occlusion of the

M1 segment of the middle cerebral artery (MCA), and 31 had

an occlusion of the internal carotid artery (ICA). Forty-three

patients were female (50%), and the median onset age was 74

(IQR 63–82). The median baseline NIHSS (National Institutes of

Health Stroke Scale) was 17 (IQR 14–20). Of these, 70 patients

had a known time of onset; the median time between onset

and CT imaging was 121min (IQR 95–157). One patient had

a wake-up stroke, and 15 patients had an unknown time of

onset. Seventy-six patients received intravenous (IV) thrombolysis,

one received intraarterial (IA) thrombectomy, two received both,

five received no treatment and two patients did not have any

treatment documented.
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FIGURE 3

Skull artifacts. For subject 3, skull artifacts can be seen in their (A) Delay time and (B) CBF maps near the top of the skull.

TABLE 1 Class representations across the training and validation cohorts.

Background Non-
ischemic
brain

Core Penumbra

Train 15,485 15,870 15,141 15,424

Validation 10,315 10,530 10,059 10,376

Total 25,800 26,400 25,200 25,800

Samples were split into these categories using Scikit-Learn (26).

This was done to ensure the model did not bias any class.

Three patients were discarded from the test set due to

considerable infarct growth. For the remaining patients in the test

set, 16 patients had an M2-MCA occlusion, four had an M3-MCA

occlusion, and one each with an occlusion of the anterior cerebral

artery (ACA) and ICA. Thirteen patients (59%) were female, and

the median onset age was 79 (IQR 74–83). The median baseline

NIHSS was 11 (IQR 6–16). In total, 20 patients had a known

time of onset; the median time between onset and CT imaging for

these patients was 110min (IQR 96–168). The remaining patients

had an unknown time of onset. Of all the patients in the test

set, 20 received IV treatment, one received IA treatment and

one received no treatment. Sixteen were given a TICI 3 score,

and 6 were given a TICI 2b score. The median day of DWI

image after stroke onset was 1 (IQR 1–2, min-max 0–12). The

median size of the follow-up DWI core was as 10mL (IQR 6–

33). A Pearson correlation test shown a strong correlation (p <

0.005, two tailed) between the data used for the ground truth core

measurement and the expert assessed MR-DWI measurements for

core volume.

For model development, a total of 103,200 patch samples was

used. Table 1 shows the class instances for the train and validation

groups used to develop the model.

Table 2 shows details of optimizing each model. Each model

was trained using six computer processing units (CPU) in parallel.

For SVM, only a random search for the two-map model was

carried due to the excessive training times (>22 h), and only

polynomial and linear kernels were tested, with the polynomial

kernel outperforming the linear kernel. Table 3 shows results

for each model on the under-sampled data. XGBoost was the

highest performing algorithm, and there was an improvement in

performance when all four CTP maps were included.

The performance of the best performing model (shown in bold

in Table 3) was tested on the remaining 22 images in the test

set. The results are shown in Supplementary Table A1. Figure 4

shows axial slices of lesion predictions (overlayed on non-contrast

CT image slices) using the model based on all four CTP maps

for a selection of datasets (subjects 7, 8, and 1 with reference to

Supplementary Table A1).

For all 22 patients, the meanDSC values for core and penumbra

were 0.39 (SD 0.26) and 0.50 (SD 0.22), respectively, and the mean

JI values for core and penumbra were 0.28 (SD 0.23) and 0.36 (SD

0.20), respectively. For both core and penumbra, JI and DSC were

significantly different across the dataset (core: paired t-test, p <

0.0001; penumbra: paired t-test, p < 0.0001).

To explore the difference between performance on core and

penumbra, a volume analysis was performed. Each similarity

measured varied significantly with volume: A Pearson’s correlation

for DSC variation with volume showed (r = 0.56, p = 0.0065) for

penumbra and (r = 0.71, p = 0.0002) for core. For JI a Pearson’s

correlation calculation showed (r= 0.61, p= 0.0028) for penumbra

and (r= 0.72, p < 0.0002) for core.

Out of the 22 testing images, 16 lesions were due to an occlusion

of the M2 segment of the MCA. The DSC scores for core and

penumbra averaged to 0.34 (SD 0.23) and 0.50± 0.20, respectively.

The mean volume of core and penumbra for M2 lesions was

9.89mL (SD 8.17) and 38.34mL (SD 22.5), respectively, lower as

compared with the entire testing set.

There was no significant correlation between the XGB-

predicted core and the 24 h DWI infarct core (Pearson’s r; r =

0.18, p= 0.41). However, visual inspection confirmed that artifacts

due to the skull were present in half the cases (n = 11) and

led to overestimation of perfusion regions. When considering the

test cases with no obvious skull artifacts, there was a significant

correlation between the predicted core and the follow-up DWI
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TABLE 2 Details of model training.

Algorithm #Parameters
optimized

#Candidates in
random search

Time taken (2 map,
4 map)

#Candidates in
grid search

Time taken (2
map, 4 map)

LR 6 28 5min, 33min 3 20min, 53 min

RF 7 80 1 h 53min, 3 h 1min 81 4 h 26min, 6 58 min

XGB 5 10 30min, 57min 27 1 h 38min, 2 h 53 min

SVM 3 30 22 h 33min, N/A N/A N/A

Four different algorithms were used to train models: Logistic Regression (LR), Random Forest (RF), XGBoost (XGB) and Support Vector Machine (SVM). Each algorithm has different

hyperparameters, and the number of different hyperparameters that were optimized here is shown (“#Parameters optimized”). Except for SVM, the parameters were optimized by first running a

random search, training and testing models with a number of different random hyperparameter models (“#Candidates in random search”). The best performing combination was used to create

the range for a more refined grid search. The number of candidates tested in the grid search was determined by the number of parameters that were optimized and the possible values for each

parameter (e.g., whether values were discrete or continuous). The time that was taken to run all the different combinations is included. Six CPUs were used in parallel.

TABLE 3 Results of models on validation data.

ROC-AUC DSC (core) DSC (pen) JI (core) JI (pen)

LR 0.9757 0.8438 0.7874 0.7298 0.6494

0.9776 0.848 0.7907 0.736 0.6538

RF 0.9825 0.8553 0.8172 0.7471 0.6908

0.9841 0.8611 0.8269 0.7561 0.7048

XGB 0.983 0.8552 0.8185 0.7470 0.6927

0.9844 0.8610 0.8275 0.7559 0.7057

SVM 0.9799 0.8467 0.8081 0.7341 0.678

Eight models in total were optimized. Three algorithms (Logistic Regression/LR, Random Forest/RF, XGBoost/XGB) were trained twice, one on Cerebral Blood Flow (CBF) and Delay Time

(DT) data (top), and once on data from CBF, DT, Cerebral Blood Flow andMean Transit Time (bottom). Support Vector Machine (SVM) was only trained for twomaps due to excessive training

times. Results on the validation data are shown for each model. The highest performance across all categories was obtained for XBG, trained on all four CTP maps.

FIGURE 4

Test image results. A single axial slice, selected to clearly display the

lesion, is shown from each image. The results of processing test

images through the XGBoost model to make a prediction on the

class label is shown at top. Standard lesion maps are shown at

bottom. The predictions for core (red) and penumbra (green) are

shown on top of a single axial slice of the brain, obtain with

non-contrast CT. Dice similarity score are shown on the image, in

corresponding colors.

core (Pearson’s r; r = 0.82, p = 0.0018). Figure 5 shows a

comparison of results from each algorithm for the subject shown

in Figure 3. This subject had significant CTP artifacts due to

the skull. While LR could not distinguish actual from artifactual

perfusion lesions, in this case all the other algorithms were

able to.

4. Discussion

This study proposes a machine learning algorithm using the

entire perfusion map datasets as an alternative to measuring

the penumbra and ischemic core using binary thresholds with

CTP data, Models based on four different well-known ML

algorithms were tested. Accuracy was tested both quantitatively,

using similarity measurements, and qualitatively, by using visual

inspected to determine which algorithm was better at prediction on

artifactual CTP hyperintensities. Simple neighborhood analysis was

used to make a prediction on a single voxel; all surrounding voxels

were considered. Our model may easily be expanded to include

additional input channels, such as non-contrast CT, or relevant

clinical information such as time-from-onset, blood pressure,

clinical severity measurements and age.

Out of the four algorithms tested, XGBoost performed best in

the quantitatively analysis, achieving good accuracy in mimicking

the CTP perfusion lesions derived by the clinically used software

MIStar. There was an improvement in performance when all four

CTP maps were used compared to only CBF and DT for this early

model. Future versions of the model will continue to use all four

CTP maps to make a prediction.

Ideally, an automated CTP algorithm should differentiate

between genuine and artifactual hypoperfusion patterns, just as an
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FIGURE 5

Qualitative results on skull artifact. Predictions made on subject 3 (shown in Figure 3) for each algorithm. Linear regression performed the poorest in

terms of identifying artifact as areas of perfusion, as demonstration by subject 3 axial slices.

experienced stroke physician should be able to determine whether

the pattern is topographically consistent with stroke phenotype

(33, 34). For the qualitative study, SVM, XGB and RF improved on

the ability of the LR algorithm to distinguish real from artifactual

CTP hyperintensities. This is because LR is the only algorithm

based on linear first-order interactions between variables, whereas

the other three are more sophisticated, and able to model non-

linear and higher interactions. This is shown clearly in Figure 5,

although in other cases the ML model still derived artifact in

making a prediction, leading to an overall worse correlation with

the DWI infarct core for images with obvious artifact. As CT

artifacts are difficult to avoid altogether in a clinical setting, this is

a useful insight. Further development is required to ensure future

versions of this model to not derive artifactual perfusion lesions.

For the testing images, DSC and JI scores were shown to vary

significantly even though they are both commonly used similarity

metrics. In addition, both metrics varied significantly with volume.

Therefore, the DSC or JI score for a large lesion may not represent

the same accuracy as for a small lesion, even though (27) has

proposed otherwise (35, 36). For example, the large core in Figure 4

(ID = 12, M1) receives an almost perfect DSC value, while the

smaller cores received lower DSC scores; these differencesmay have

resulted merely from size differences. The same behavior was seen

with JI. An average DSC or JI score that is a result of the summing

over results from lesions of different sizes will not be an accurate

representation of the overall performance of a model. We propose

a weighted mean DSC/JI to account for size variation before these

scores can be fully interpretable. Further studies will explore the

application of a weighted mean. In lieu of a robust and subjective

model performance metric, benchmark data [ISLES 2018 (37)] will

be used in future studies to report performance.

The most significant limitation to this study is that, as a first

step, we have used the CTP core and penumbra estimations derived

byMIStar as the ground truth, even though these only approximate

the ground truth. The gold standard in the determination of

acute ischemic tissue is an expertly segmented MR-DWI lesion,

either with (core) or without reperfusion (penumbra) (9, 38).

Without a perfect ground truth, it remains difficult to interpret

model performance in an objective fashion. For example, as

MIStar maps are based on a simple thresholding method, a

meaningful comparison of this ML method to a thresholding

method against MIStar maps is challenging. Although MIStar

and other software (39) CTP core estimates have been shown

to be a fair approximation of DWI lesions previously, there are

certainly ongoing issues (18), one of which is that the reference

standard for core is imperfect (16). Nonetheless, future studies

will adopt manually segmented DWI images as ground truth a

therefore be able provide performance metrics that are more robust

and interpretable. In addition, this model uses derived perfusion

parameters rather than raw CTP time series images, risking a

loss of valuable information contained in the raw images which

may be lost in the derivation process. The model uses a simple

approach over more advanced approaches that have been tested

in the literature, such as those based on Deep Learning. With DL,

features may be automatically extracted from images, both locally

and globally, to make predictions with efficiency (40, 41). Future

models will adopt DL, however, the current analysis using more

explainable algorithms, was a necessary first step.
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With this study we have shown that a Machine Learning

method is capable of mimicking common use perfusion lesion

measurements to a high accuracy. With the increasing prevalence

of CTP assessments for treatment selection of ischemic stroke

patients, particularly in the extended time window, it is vital

that the measurements be accurate and representative of the

underlying pathophysiology. There is significant scope for the

current single threshold methods to overestimate the ischemic

perfusion lesion and either under- or over-call the ischemic

core depending on onset to reperfusion speed, and other

factors. The proposed model may prove more accurate with

further development than the currently used single threshold

maps and can consider physiologically relevant information

such as blood pressure, cardiac output and fluid status which

would influence contrast flow and hence perfusion measures on

the CTP. Imaging metadata such as time may also influence

accuracy, as “ghost cores” have been noted in the hyperacute

phase (42).

While the model is simple in its current form, we were able

to demonstrate salient points about CTP-based predictions of

stroke infarct. We have demonstrated that similarity indices such

as DSC and JI have some difficulty in interpretations and further

development of performance metrics is required. We have also

demonstrated that non-linear algorithms are more adept at making

predictions on common CT artifacts that linear model such as

logistic regression. Further studies will use manually segmented

DWI volumes as ground truth, as well as digest raw CTP data rather

than post-processed CTP maps for Deep Learning predictions.

Benchmark datasets will be used to measure performance. In

addition, the role of clinical data and imaging metadata will be

explored in making predictions.

5. Conclusion

We have described a Machine Learning model for the

delineation of ischemic tissue from CTP data which is based on

the XGBoost algorithm combined with 3D neighborhood analysis.

The model is trained on lesion segmentations derived by clinically

used software and can derive perfusion lesions to high accuracy.

The model improves on clinically available software in that is it

able to use multiple input channels but is currently limited by

the lack of validation against gold standard lesion segmentations.

Nonetheless, the model allowed us to demonstrate useful insight

into CTP-based prediction of stroke infarct which will be used to

make future developments.
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