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Motor impairments are only one aspect of Parkinson’s disease (PD), which

also include cognitive and linguistic impairments. Speech-derived interpretable

biomarkers may help clinicians diagnose PD at earlier stages and monitor the

disorder’s evolution over time. This study focuses on the multilingual evaluation

of a composite array of biomarkers that facilitate PD evaluation from speech.

Hypokinetic dysarthria, a motor speech disorder associated with PD, has been

extensively analyzed in previously published studies on automatic PD evaluation,

with a relative lack of inquiry into language and task variability. In this study,

we explore certain acoustic, linguistic, and cognitive information encoded

within the speech of several cohorts with PD. A total of 24 biomarkers were

analyzed from American English, Italian, Castilian Spanish, Colombian Spanish,

German, and Czech by conducting a statistical analysis to evaluate which

biomarkers best di�erentiate people with PD from healthy participants. The study

leverages conceptual robustness as a criterion in which a biomarker behaves

the same, independent of the language. Hence, we propose a set of speech-

based biomarkers that can e�ectively help evaluate PD while being language-

independent. In short, the best acoustic and cognitive biomarkers permitting

discrimination between experimental groups across languages were fundamental

frequency standard deviation, pause time, pause percentage, silence duration,

and speech rhythm standard deviation. Linguistic biomarkers representing the

length of the narratives and the number of nouns and auxiliaries also provided

discrimination between groups. Altogether, in addition to being significant, these

biomarkers satisfied the robustness requirements.
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1. Introduction

Parkinson’s disease (PD) is a chronic progressive

neurodegenerative disorder resulting from the gradual

neuronal death in the substantia nigra, a region of dopamine

neurotransmitter production. A hallmark of the condition is

motor impairment, characterized by symptoms such as akinesia,

bradykinesia, rigidity, resting tremor, and postural instability

(1, 2). Approximately 1% of the population aged over 60 years

in industrialized countries are affected by PD. As life expectancy

increases, more than 9 million people are expected to be affected

by 2030 (3). A definite PD diagnosis is established via autopsy

(4) though clinical criteria based on patient history and physical

examination are the practical norm (5). The average time needed

to diagnose PD in a clinical setting can reach 2.9 years, with a

diagnostic accuracy of ∼80.6% (95% credible interval [CrI] 75.2–

85.3%) (6, 7). In addition, tracking PD progression includes the

adoption of subjective rating scales [e.g., (8)] that are considered

to have low sensitivity and inter-rater reliability at the mild end of

the symptom severity spectrum (9, 10). This is due, in part, to the

variable and subtle nature of the early symptomatic presentation.

Hence, new objective and non-invasive methodologies are required

to speed up and support the current diagnostic techniques. In this

respect, the early detection of PD, especially in its preclinical state,

helps to slow the disorder’s progression, diminishes its impact

on patient’s daily activities, and helps to identify therapeutic

targets (11, 12). In addition, timely diagnosis can help alleviate the

economic burden caused by PD to individuals, families, and the

government, which is estimated to be ∼$ 51.9 billion annually in

the U.S. (13).

The loss of dopamine neurons in the substantia nigra and

the abnormal accumulation and aggregation of alpha-synuclein

(α−Syn) in the form of Lewy bodies (LBs) is prototypical for PD

(14). However, erstwhile Alzheimer’s-specific pathological findings

of neurofibrillary tangles and amyloid-β plaques are common

(15, 16). The widespread neurodegeneration affects dopaminergic,

cholinergic, noradrenergic, and (in late stages) serotonergic

neurotransmission (17). Furthermore, the loss of ascending

dopaminergic transmission has proximate effects on motor control

via the basal ganglia and wider downstream effects on mood and

cognition (18–20). Most immediately, the loss of dopaminergic

input into the striatum and the consequent dysregulation of

the basal ganglia result in the cardinal motor deficits that

affect the anatomic subsystems of respiration, phonation, and

articulation. However, the upstream, cortically-based control

circuits underpinning language, articulation, phonation, and

prosody are distributed (21, 22). These three subsystems govern

speech–motor control. Up to 90% of subjects with PD, at some

point, demonstrate the deterioration of phonation, articulation,

prosody, and respiration, collectively reported as hypokinetic

dysarthria (23). As speech production specifically requires the

coordinated and precise activation of articulatory and laryngeal

muscles, it is an excellent candidate for PD diagnosis. However,

although PD is most often characterized by its motor symptoms,

cognitive and linguistic manifestations are also prevalent. Cognitive

changes in PD involve executive problems and are partially

explained by a dopaminergic deficit, which causes a dysfunction

of the cognitive pathways connecting the frontal lobes and basal

ganglia (20). This impacts the executive function notably, including

lexical retrieval and processing speed (24, 25). As other non-motor

symptoms, recent studies found the incidence of major depressive

disorder to be seen in ∼17% of patients with PD, that of minor

depression to be 22%, and that of dysthymia to be 13% (26).

Speech analysis can help identify patterns that cannot be

distinguished from a clinical standpoint and thus help perform

earlier diagnosis and monitor disease progression. To our

knowledge, there are only a few reports analyzing speech-based

biomarkers from a multilingual cohort of participants with

PD. This gap in the literature can be explained by the inter-

language variability that imposes considerable practical challenges

for developing a unified speech assessment framework. In the

past, Whitehill (27) found that the most deteriorated speech

dimensions common in Cantonese-speaking and English-speaking

persons affected by dysarthria (associated with PD) are related

to voice quality, reduced pitch, loudness variation, and imprecise

consonants. Kim and Choi (28) performed a descriptive study in

which they analyzed the differences in acoustic vowel space (AVS)

of Korean- and American-English-speaking subjects with PD. No

differences in the articulation rate were observed. Rusz et al. (29)

performed a speech analysis of Czech, English, German, French,

and Italian speakers in the early phase of PD, recording a cohort

of 448 participants. Monopitch, length of pauses, and imprecise

consonants significantly differentiated subjects based on speech

into control (CN) and PD groups. Kovac et al. (30) focused on

the multilingual analysis of a set of acoustic speech biomarkers

intended to support PD diagnosis. They used speech recordings

from 214 Czech-speaking subjects, 29 American English-speaking

subjects, 115 Israeli-speaking subjects, 100 Colombian Spanish-

speaking subjects, and 48 Italian-speaking subjects. The biomarkers

quantifying the prominence of the second formant, monopitch, and

the number of pauses detected during text reading showed the best

results in discriminating participants with PD fromCNparticipants

in the statistical analysis.

Most of the previous studies have different limitations. Some

only analyzed acoustic descriptors, which limit the characterization

of PD to a unique domain, discarding cognitive and linguistic

information that can help phenotype the disorder. Others only

considered a single language task (e.g., sustained vowel phonation

and diadochokinetic task) or a few languages simultaneously. It

follows that the multilingual analysis of PD requires expanding

the analysis to a broader set of languages, focusing on a more

comprehensive set of descriptors belonging to different domains

and collecting speech samples from different tasks to deliver an

exhaustive characterization of the disorder. This study performs

a multilingual analysis of speech-based interpretable biomarkers

encoding acoustic, linguistic, and cognitive-related information

aimed at advancing the understanding of the specificity and

commonalities of PD-pathology in acoustic, linguistic, and

cognitive patterns, which are universal. The biomarkers presented

in this study can be obtained automatically, without human

supervision and, presumably, without human bias. Moreover, they

have the advantage of encoding meaningful information that can

be easily understood by clinicians. Another important contribution

of the current study is the data collection. As detailed in Section
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TABLE 1 Typologies of tasks analyzed with the corresponding number (#)

of samples available in each data set.

Data set

Task
SS RP TDU

NLS 1 2 0

Neurovoz 1 0 6

GermanPD 1 1 5

CzechPD 1 1 0

GITA 1 1 6

ItalianPVS 0 2 10

SS, spontaneous speech; RP, read passage; TDU, text dependent utterance.

2.1.1, in this study, the authors collected speech recordings from

American English native speakers with and without neurological

disorders (NDs) at Johns Hopkins Medicine (JHM).

2. Materials and methods

2.1. Data sets

We assessed the effectiveness of different biomarkers by

performing a statistical analysis to evaluate the power of the

biomarkers in differentiating between the speech of participants

with PD and CN participants across earlier published data sets

against a novel corpus (i.e., NeuroLogical Signals). We also

conducted a correlation analysis between the same biomarkers

and clinical scores (see Section 2.4). A total of six different data

sets were included: NeuroLogical Signals (NLS) (31), Neurovoz

(32), Italian Parkinson’s Voice and Speech (ItalianPVS) (33),

GITA (34), GermanPD (35), and CzechPD (36). Only these

six data sets were considered because they were the only

ones to which we had or received access. These six data sets

vary in demographics, collection procedures, and sizes and are

described in the following subsections. From each data set, we

analyzed three types of tasks (when available): a spontaneous

speech (SS) sample (e.g., monologue and picture description), a

reading passage (RP), and text-dependent utterances (TDUs) (short

sentences). Table 1 summarizes the types of tasks employed in

this study and the data sets in which these tasks are available.

In the Supplementary material, a table containing information

(when available) about medication state, time since diagnosis,

time since medication, microphone typology, gender distribution,

age range, and mask presence during the recording session is

reported for each data set. Altogether, since these variables can

influence speech emission, they will be considered in detail

when assessing the robustness of the biomarkers (see Section

3).

2.1.1. NeuroLogical signals
NeuroLogical Signals (NLS) are a form of data set collected by

the authors of this study at JHM. It contains spoken responses to

several tasks of participants whose native language is American

English. All participants were either categorized as having a

ND or were categorized as CN. All of them were seen at the

Johns Hopkins Health System and gave informed consent. The

Johns Hopkins Medical Institutional Review Board approved data

collection. Expert neurologists at JHM diagnosed and treated

participants with NDs. As this study was performed during

the COVID-19 pandemic, all participants wore the same type

of surgical mask during recordings. The participants with PD

continued their usual (individualized) pharmacological treatment

and took dopaminergic medication (i.e., L-Dopa) between 1 and

5 h before the recording session. Speech signals were recorded

with the help of a computer and a microphone at 24 kHz with

a resolution of 16 bits in acoustically and visually controlled

and consistent conditions. Inclusion criteria for the participants

with NDs included being English native speakers and literate. A

trained research assistant gave participants specific instructions

on how to complete each task before the start of each recording

session. In this study, we considered 23 participants with clinically

established PD, and we created a CN group of 27 participants with

matching age of that of the PD group. None of the participants

in the CN group has a history of symptoms related to PD or

any other NDs. Table 2 contains the demographic and disease

severity statistics of the two experimental groups. The subset of

tasks analyzed from this corpus consists of a SS task and two

RP tasks. The SS task is represented by a Cookie Theft Picture

description task (37), in which participants are required to describe

the Cookie Theft Picture from the Boston Diagnostic Aphasia

Examination. The protocol set a limit of 60 s on the execution of

this task. The speech transcripts of the two RPs are reported in the

Supplementary material.

2.1.2. Neurovoz
Neurovoz is a data set that contains recordings from 47 CN and

44 participants with PD whose native language is Castilian Spanish.

Table 3 contains the demographic and disease severity statistics

of the two experimental groups. The samples were retrieved by

the Bioengineering and Optoelectronics Group at Universidad

Politecnica de Madrid and by the Otorhinolaryngology and

Neurology Departments of the Gregorio Marañón hospital

(Madrid, Spain). The ethics committee of Hospital General

Universitario Gregorio Marañón approved the experimental

protocols and methods according to the Helsinki Declaration (38).

All participants involved in the study signed informed consent.

The neurological state of participants with PD was assessed by

a neurologist before the recording session. Differently, a survey

was administered to evaluate the neurological condition of CN

participants. In addition, a speech therapist assessed PD and CN

participants’ voices perceptually and through a survey. Participants

who reported either neurological or organic pathologies (other

than PD) were discarded. The participants with PD were under

pharmacological treatment and took dopaminergic medication

between 2 and 5 h before the recording session. Speech signals were

collected in a room with controlled acoustic characteristics using

an AKG C420 headset microphone coupled to a preamplifier with

phantom power. The signal from the preamplifier was directed to

a Soundblaster Live 24 bits sound card connected to a personal

computer supplied with the software Medivoz (39). Recordings
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TABLE 2 Demographic and disease severity statistics of NLS, GermanPD, and ItalianPVS data sets.

Dataset NLS German PD ItalianPVS

Gender Female Male Female Male Female Male

Group PD CN PD CN PD CN PD CN PD CN PD CN

Number of

subjects

9 16 14 11 41 44 47 44 9 12 19 10

Age, average 68.00 63.31 66.62 66.09
67.23

(9.7)

62.6

(15.2)

66.7

(8.7)

63.8

(12.7)

64.3

(12.2)

65.3

(4.1)

68.6

(6.4)

69.3

(5.6)

Age

range

50–75 26–83 55–79 41–79 27–84 28–85 44–82 26–83 40–80 60–72 50–77 60–77

UPDRS-III*,

average

(SD)

25.33

(9.72)

–
27.71

(13.63)

–
23.3

(12.0)

–
22.1

(9.9)

– – – – –

UPDRS-III.I

average

(SD)

0.88

(0.56)

–
0.83

(0.68)

– – – – –
1.10

(1.3)

–
1.00

(1.00)

–

Hoehn and Yahr*

scale average

(SD)

2.37

(0.41)

–
2.23

(0.37)

–
2.61

(0.83)

–
2.59

(0.60)

– – – – –

Years since

diagnosis

(SD)

– – – –
6.47

(5.83)

–
6.59

(4.93)

– – – – –

Ages are expressed in years. *NLS contains the global values of Movement Disorder Society UPDRS part III (i.e., movement examination); GermanPD contains the global values of UPDRS part

III (i.e., movement examination). The ItalianPVS corpus only contains UPDRS-III.I (i.e., speech examination). The Hoehn and Yahr* scale is available only for NLS and GermanPD, but not for

ItalianPVS.

TABLE 3 Demographic and disease severity statistics of Neurovoz, GITA, and CzechPD data sets.

Data set Neurovoz GITA CzechPD

Gender Female Male Female Male Male

Group PD CN PD CN PD CN PD CN PD CN

Number of

subjects

18 18 29 14 25 25 25 25 20 16

Age, average

(SD)

70.9

(8.4)

68.4

(6.0)

71.9

(12.3)

66.6

(6.4)

60.7

(7.3)

61.4

(7.0)

61.5

(11.6)

60.5

(11.6)

61

(11.7)

61.8

(12.9)

Age range 59–86 58–83 41–88 55–77 49–75 49–76 33–81 31–86 34–83 36–80

UPDRS-III*,

average

(SD)

16.9

(11.5)

–
19.6

(11.8)

–
37.5

(14.0)

–
37.7

(22.0)

–
17.9

(7.1)

–

Hoehn and Yahr

scale average

(SD)

2.30

(0.68)

–
2.30

(0.80)

–
2.28

(0.53)

–
2.34

(0.53)

–
2.17

(0.45)

–

Years since

diagnosis

(SD)

6.4

(6.4)

–
7.6

(4.7)

–
12.6

(11.5)

–
8.9

(5.9)

–
2.4

(1.6)

–

Ages are expressed in years. *The Neurovoz corpus only contains UPDRS-III, i.e., motor examination; GITA contains the global values of Movement Disorder Society UPDRS; CzechPD

contains the global values of UPDRS.

were sampled at 44.1 kHz with a resolution of 16 bits. The subset

of tasks employed in this study contains recordings from six TDUs

and running speech from the description of a picture (SS task).

The protocol did not impose a time limit on the execution of the

SS task. With respect to the TDUs, subjects were not required

to read these sentences from a text document, but they listened

to them from a recording of a standard speaker and repeated

them out loud. This procedure was applied to reduce the noise

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1142642
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Favaro et al. 10.3389/fneur.2023.1142642

of paper during recording, reading mistakes caused by visual

impairments, and the cognitive load of the reading process. All

tasks were performed at a comfortable speech sound pressure level

(SPL). The speech transcripts of the TDUs are reported in the

Supplementary material.

2.1.3. GITA
GITA is a data set collected by Universidad de Antioquia in

Medellín (Colombia). It contains a variety of speech tasks from

50 subjects with PD and 50 age- and sex-matched subjects in CN

whose native language is Colombian Spanish. Table 3 contains the

demographic and disease severity statistics of the two experimental

groups. The data collection was performed in compliance with the

Helsinki Declaration and was approved by the ethics committee

of the Clínica Noel in Medellín. All participants signed informed

consent. Patients were diagnosed with PD by neurologist experts.

Speech samples were recorded with the patients in ON-state with

dopaminergic medication (i.e., not more than 3 h after medication).

None of the CN participants reported symptoms associated with

PD or other NDs. Speech signals were collected in a quiet room

using a dynamic omnidirectional microphone (Shure, SM63L).

Recordings were sampled at 44.1 kHz with a resolution of 16

bits. A total of three types of speech tasks were used in this

study: a SS task (i.e., monologue) where participants describe what

they commonly do on a normal day (i.e., when they wake up or

what kind of activities they do), six TDUs, and one phonetically

balanced RP. The protocol did not impose a time limit on the

execution of the SS task. SS samples last approximately for 44 s.

The speech transcripts of the RP and TDU tasks are reported in the

Supplementary material.

2.1.4. GermanPD
GermanPD is a data set collected in the hospital of Bochum

(Germany). It contains speech recordings from 88 PD and

88 CN participants whose native language is German. Table 2

contains the demographic and disease severity statistics of the

two experimental groups. The study was approved by the ethics

committee of the Ruhr-University Bochum. All participants signed

informed consent. All participants with PD were in stable ON-

state with dopaminergic medication unchanged since at least 4

weeks before the examination. Each participant with PD underwent

a neurological examination before performing the speech task.

To ensure the ON-state, speech and motor examinations were

performed 60–90 min after the morning dose of L-Dopa. Speech

samples were collected in a quiet room using commercial audio

software (Steinberg WaveLab; Steinberg, Hamburg, Germany) and

a headset microphone (Plantronics Audio 550 DSP; Plantronics

Inc., Santa Cruz, CA), located∼5 cm from the participant’s mouth.

Recordings were sampled at 16 kHz with a resolution of 16 bits.

The subset of tasks analyzed in this study contains recordings

from 10 TDUs, one RP composed of 81 words, and a SS task

(i.e., monologue). The protocol did not impose a time limit on

the execution of the SS task. SS samples last approximately for

33 s. The speech transcripts of the TDUs are reported in the

Supplementary material.

2.1.5. Italian Parkinson’s voice and speech
The ItalianPVS corpus1 contains recordings from 22 elderly

CNs, 28 young CNs, and 28 participants with PD. Table 2

contains the demographic and disease severity statistics of the

two experimental groups. The recordings employed in this

study are publicly available. The information relevant to the

participant’s informed consent is detailed in their reference

articles or dissemination platforms, with all cited in this article.

None of the participants with PD reported any speech or

language disorders unrelated to their PD symptoms before this

study. All participants with PD were receiving antiparkinsonian

treatment before the recording session. Each recording session

occurred under a controlled environment, considering factors

including room temperature, microphone distance, time of day,

and conversing with the subject to warm up their vocal tract

muscles. Speech samples were collected in a quiet, echo-free room,

keeping a distance from the microphone of 15–25 cm. Recordings

were sampled at 16 kHz. The subset of tasks employed in this

study contains recordings from 10 phonetically balanced TDUs and

one phonetically balanced RP. Before starting the reading tasks, a

specialist introduced the participants to the task to be performed.

Both the short sentences and the RP were read from a printed sheet.

The speech transcripts of the RP and TDU tasks are reported in the

Supplementary material.

2.1.6. CzechPD
CzechPD is a data set collected in the General University

Hospital in Prague (Czech Republic). It contains speech recordings

from 20 newly diagnosed and untreated participants with PD

and 15 CN whose native language is Czech. All the participants

are men. Table 3 contains the demographic and disease severity

statistics of the two experimental groups. The data collection

was performed in compliance with the Helsinki Declaration and

was approved by the ethics committee of the General University

Hospital in Prague. All participants signed informed consent.

None of the participants with PD received antiparkinsonian

treatment before the recording session. A neurologist specializing

in movement disorders established a PD diagnosis and performed

the clinical evaluation. Speech samples were collected in a quiet

room with an external condenser microphone located ∼15 cm

from the participant’s mouth. Recordings were sampled at 48

kHz with a resolution of 16 bits. Every participant was recorded

in a unique session with the speech-language pathologist. No

time limits were imposed during the recording. Before starting

the session, participants were familiarized with the tasks and

procedure. In each recording, the participants performed various

speaking tasks as a part of the larger protocol. The subset of

tasks analyzed in this study contained recordings from a RP task

and a SS task (i.e., monologue), where participants were required

to speak about what they did that day or the previous week,

their interests, job, or family. SS samples last approximately for

90 s. The speech transcripts of the RP task are reported in the

Supplementary material.

1 https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-

speech (accessed February 4, 2023).
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2.2. Data pre-processing

All recordings were resampled at 16 kHz as required by

the algorithms employed for the biomarker extraction (see

Section 2.3). The resampling was performed using the sound

processing program SoX2. We also applied the EBU R128

loudness normalization procedure using the Python library ffmpeg-

normalize3. This type of normalization leads to a more uniform

loudness level compared to simple peak-based normalization.

Normalized audios were used to extract intensity-related

biomarkers (see Section 2.3.1). Moreover, to perform the analysis

of the TDUs, we concatenated the recordings speaker-wise into a

single recording. By doing this, we trimmed silences at the end and

beginning of each recording. All the recordings in the NLS data set

were supervised to ensure they had appropriate quality. Criteria

for acceptable quality included minimal background noise and

a task-related response. When the recordings contained speech

from the investigator at the beginning and end, we trimmed the

recordings. All recordings from the SS task were automatically

transcribed using OpenAI’s Whisper4 (40), that is an Automatic

Speech Recognition (ASR) system trained for 680,000 h of

multilingual and multitask supervised data collected from the web.

2.3. Biomarker extraction

To provide an exhaustive characterization of the speech

of participants with PD, we configured a set of interpretable

biomarkers, while some are already proposed in our earlier

works (31, 41), that encodes cognitive, acoustic, and linguistic

information. Table 4 reports the description, the dysfunction

connected to the occurrence, and the expected behavior for each

biomarker. The expected behavior of a given biomarker in the PD

population is grounded in the clinical literature documenting the

common language and speech dysfunctions occurring in PD and,

more generally, in NDs. In this regard, an ideal cross-lingual PD

biomarker is a biomarker that displays a homogeneous behavior

cross-lingually. The values of the extracted biomarkers were used

to perform a non-parametric statistical analysis to identify which of

the biomarkers significantly differed between the PD group and the

CN group and to analyze commonalities (if any) in the behavior of

the biomarkers across languages.

2.3.1. Acoustic biomarkers
Prosody is the systematic arrangement of various linguistic

units into a single utterance or group of utterances, which occurs

in speech production. Its realization encompasses both segmental

and suprasegmental features of speech and aims at conveying

linguistic and non-linguistic information (42). Prosody is one of

the most deteriorated speech dimensions in hypokinetic dysarthria.

To model the difficulties of subjects with PD in modulating

2 https://sox.sourceforge.net/ (accessed January 26, 2023).

3 https://pypi.org/project/�mpeg-normalize/ (accessed January 26,

2023).

4 https://openai.com/blog/whisper/ (accessed February 4, 2023).

pitch and loudness, we computed biomarkers encoding pitch

variation that is defined as the standard deviation of fundamental

frequency (F0) contours (F0STD), and loudness variation that is

defined as the standard deviation of intensity contours (INTSTD).

INSTD measures the ability of a person to keep the stability

of air pressure produced by the lung. Moreover, to represent

the rigidity of the tongue and jaw, we computed the standard

deviation of the first formant (F1STD). To compute F0STD and

F1STD, we used Disvoice5, that is a Python library designed to

extract phonological, prosodic, articulatory, and glottal biomarkers

from speech. To compute the fundamental frequency, this library

uses the PRAAT algorithm6. The intensity I (dB) of an input

signal was calculated using Parselmouth7, that is a Python library

for the Praat software8. During both the RP and SS tasks, we

hypothesized that participants affected by PD would display a

reduced ability to modulate pitch and loudness. Moreover, we used

DigiPsychProsody9, that is a Python library to compute biomarkers

related to pauses such as total speech time (SPTIME), total pause

time (SILTIME), percentage pause time (SILPERC), mean pause

duration (SILDUR), silence to speech ratio (SILSPRAT), and pause

variability (SILVAR). This library uses the WebRTC Voice Activity

Detector10. We expected that subjects with PD would exhibit

a higher SILDUR, SILTIME, SILPERC, SILSPRAT, and SILVAR

due to the difficulties introduced by the reading (43) and by the

construction of coherent narratives (44), respectively. Moreover, we

expected that participants with PD would deliver shorter narratives

than the CN group, as previously shown by Murray (45), resulting

in lower SPTIME in the SS task. On the contrary, in the RP task, we

expected that participants with PD would report a higher SPTIME

due to word repetitions and self-corrections (46).

2.3.2. Linguistic biomarkers
Individuals with early stages of PD report selective impairments

in syntax and semantics, especially in action-verbs and action

semantics, with relative preservation of noun processing (47).

To analyze the syntactic constructions of subjects with PD,

we calculated the frequency of occurrence of different parts of

speech (POS), such as nouns (NOUNCNT), verbs (VERBCNT),

adjectives (ADJCNT), adverbs (ADVCNT), numerals (NUMCNT),

and auxiliaries (AUXCNT) during spontaneous production. We

also measured the syntactic complexity in terms of the number

of words (WORDCNT), average word length in characters

(WORDLEN), number of sentences (SENTCNT), average sentence

length in words (SENTLEN), number of noun phrases (NPCNT),

5 https://github.com/jcvasquezc/DisVoice (accessed January 26, 2023).

6 https://www.fon.hum.uva.nl/praat/ (accessed January 26, 2023).

7 https://parselmouth.readthedocs.io/en/stable/ (accessed February 2,

2023).

8 https://www.google.com/search?q=praat+software&oq=praat+

software&aqs=chrome.0.0i512l2j0i22i30l8.4071j0j15&sourceid=

chrome&ie=UTF-8 (accessed January 26, 2023).

9 https://github.com/NeuroLexDiagnostics/DigiPsych_Prosody (accessed

January 26, 2023).

10 https://github.com/wiseman/py-webrtcvad (accessed January 26,

2023).
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TABLE 4 Extracted acoustic, linguistic, and cognitive biomarkers.

Task Name Biomarker description Dysfunction EB

Acoustic

All F0STD [Hz] Pitch variability defined as Monopitch ↓

the standard deviation of F0 contours

All F1STD [Hz] Standard deviation of the first formant Rigidity of tongue and jaw ↓

All INTSTD [dB] Speech loudness variability defined as the Monoloudness ↓

standard deviation of the intensity countour

SS SPTIME [s] Net speech time relative to total speech time Lower amount of speech time ↓

in spontaneous production

RP SPTIME [s] Net speech time relative to total speech time Higher amount of speech time ↑

due reading difficulties

All SILTIME [s] Total amount of silent time in a recording Higher amount of silent time ↑

All SILPERC [%] Total silent time divided by the total speech time Higher amount of silent time ↑

expressed in percentage

All SILSPPRAT [%] Pause-speech ratio derived as the total amount of Higher pause-speech ratio ↑

silent time over the total amount of speech time

All SILDUR [s] Mean length duration of speech pauses Longer duration of silences ↑

All SILVAR [s] Median absolute deviation of speech pauses duration Higher variability of silence time ↑

Linguistic

SS WORDCNT Total word count after function words removal Shorter narratives ↓

SS WORDLEN Mean word length computed in terms of Difficulties in word completion/ ↓

the # of word characters after function words removal adoption of less complex vocabulary

SS SENTCNT Count of the # of sentences used in elicited narratives Shorter/poorer linguistic production ↓

SS SENTLEN Sentence length defined in terms of the total number Shorter and simpler narratives ↓

of words

SS NOUNCNT # of nouns Selective impairment in object naming ↓

SS VERBCNT # of verbs Selective impairment in action verbs ↓

SS ADJCNT # of adjectives Reduced use of adjectives ↓

SS ADVCNT # of adverbs Reduced use of adverbs ↓

SS NUMCNT # of numerals Reduced use of numerals ↓

SS AUXCNT # of auxiliaries Reduced use of auxiliaries ↓

SS NPCNT # of noun phrases Reduced number of noun phrases ↓

SS VPCNT # of verb phrases Reduced number of verb phrases ↓

SS PPCNT # of prepositional phrases Reduced number of prepositional phrases ↓

Cognitive

SS IU # informational units defined as Selective impairment in action naming ↓

as # of salient events occurring in a picture

SS RHYSTD Speech rhythm defined as standard deviation of Static speech rhythm ↓

of word starting timestamps

RP RHYSTD Speech rhythm defined as standard deviation of Irregular speech rhythm ↑

of word starting timestamps

For each biomarker, we report the task from which the biomarker has been extracted, the biomarker name, the biomarker description, the specific dysfunction behind the biomarker, and the

expected behavior (EB) occurring in PD subjects. #, number.

↑means increasing, ↓means decreasing.
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number of verb phrases (VPCNT), and number of prepositional

phrases (PPCNT). The WORDCNT biomarker was extracted

after removing the function words (e.g., articles, pronouns, and

prepositions) from the transcripts. We used the pre-trained

language model pipeline for English, German, and Spanish

available on Spacy to extract these biomarkers11. Since there is no

available pipeline for Czech to perform POS tagging and syntactic

analysis, we did not conduct the linguistic analysis on the CzechPD.

The experimental hypothesis behind this analysis is grounded in the

clinical literature: subjects with PD may deliver narratives with a

lower level of syntactic complexity and elaboration, namely, their

linguistic production may exhibit a lower number of syntactic

phrases and categories (e.g., NOUNCNT and VPCNT) than CN

participants (48–50).

2.3.3. Cognitive biomarkers
Real-time adjustments of speech are crucial for effective

communication. Therefore, speech deficits may contribute to the

common observation that the speech of individuals with PD is

more static, less empathetic, and semantically clear (51). In our

analysis, we modeled the regularity of speech rhythm (RHYSTD)

in terms of the occurrence of the individual words in time, namely,

we measured the time between the starting points of consequent

words and computed the standard deviation of thesemeasurements

for each recording. To derive the starting point of each word,

we computed word alignment using WhisperX (52), that is a

Python repository that improved the accuracy of the timestamps

of the Whisper model via forced alignment with phoneme-based

ASR models [e.g., wav2vec2.0; (53)]. The phoneme ASR alignment

model is language-specific and is automatically imported from

torchaudio pipelines12. Since there is no available tested phoneme

ASR model for Czech, we did not extract this biomarker from

CzechPD. We hypothesized that subjects with PD would show

a lower RHYSTD (i.e., more static rhythm) than CN in the SS

task, while they would show higher RHYSTD (i.e., more irregular

rhythm) than CN in the reading tasks, as studied by Skodda et al.

(54).

In addition, previous studies reported that subjects with PD

(with and without dementia) demonstrated reduced discourse

informativeness, which reflects disruptions to both conceptual and

lexical discourse processes (55). We examined the informativeness

of the spoken language samples in terms of the number of correct

informational units (IU). According to Nicholas and Brookshire

(56), IUs are words that are intelligible in context, accurate in

relation to the picture(s) or topic, and relevant to and informative

about the content of the picture(s) or the topic. In our analysis,

we used the speech transcripts of the recordings collected during

the Cookie Theft Picture (CTP) description task contained in NLS

and during the picture description task contained in Neurovoz.

We considered that as IUs, the salient events displayed in the

picture presented as a stimulus to elicit the narrative. To identify

the salient IUs for the CTP task, we used the published checklists

11 https://spacy.io/models (accessed January 26, 2023).

12 https://pytorch.org/audio/main/pipelines.html (accessed January 26,

2023).

for the CTP (57, 58). Thus, IUs were represented by the verbs

like washing, drying, stealing, overflowing, trying to help, falling,

wobbling, hanging, ignoring, reaching up, asking for cookie, laughing,

and standing. On the contrary, in the picture description in

Neurovoz, we used the verbs barrer, lavar, pesar, and ducharse.

We hypothesized that subjects with PD would report a significantly

lower number of IUs than CNs, as reported in the literature (45).

2.4. Statistical and correlation analysis

As we observed that not all the biomarkers were normally

distributed, we used the Kruskal–Wallis H-test to conduct

pair-wise statistical tests to determine if there were significant

differences between the distributions of PD and CN for each

biomarker. The analysis was performed in each language separately.

The Kruskal–Wallis test (59) is a non-parametric test whose

null hypothesis is that the median ranks of the groups are

the same. To control the False Discovery Rate (FDR), we

applied the Benjamini–Hochberg correction to each pair-wise

comparison for each family of biomarkers (60). As family-wise

error rate, we set α to 0.05. To perform the pair-wise Kruskal–

Wallis H-tests, we used scipy.stats.kruskal13 library in Python,

whereas to perform the Benjamini–Hochberg correction, we used

statsmodels.stats.multitest.fdrcorrection14 with a default method. As

the second level of analysis, the correlations of the biomarker values

with motor symptoms (i.e., UPDRS-III, UPDRS-III.I, and H&Y

scale) were measured15. Spearman’s rank-correlation coefficients

give us information about the negative or positive correlation of

the biomarker with the clinical scores. To perform the correlation

analysis, we used scipy.stats.spearmanr library in Python. As in

the statistical analysis, we applied Benjamini–Hochberg correction

to each pair-wise comparison for each family of biomarkers.

As a normalization procedure before the correlation analysis,

standardization was applied to each biomarker separately.

2.5. Biomarker robustness

We determined the robustness of each given biomarker from

the statistical analysis results. We considered that a biomarker is

robust if:

• The difference between the medians of the PD and CN

distributions is significant in at least two data sets.

• It displays exactly the same expected behavior in the data sets

where it results to be significant.

13 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

kruskal.html (accessed January 15, 2023).

14 https://www.statsmodels.org/dev/generated/statsmodels.stats.

multitest.fdrcorrection.html (accessed January 26, 2023).

15 Note that UPDRS was available for CzechPD, GermanPD, and Neurovoz,

whereas MDS-UPDRS was available for NLS and GITA. Thus, both UPDRS

scores and MDS-UPDRS scores were used in this study. We added

specifications in Tables 2, 3 where disease severity statistics are reported.
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• The significant correlation of the biomarker with the clinical

scores follows the expected behavior of the biomarker.

The expected cross-lingual behavior of each biomarker is

reported in Table 4. Similar criteria for robustness were previously

identified by Kovac et al. (30). However, the authors in that study

considered robust even biomarkers that only differentiate the PD

group from the CN group in one data set. These criteria for

robustness have been applied also considering external factors (e.g.,

gender and disease severity) that could have influenced the trends

of the biomarkers in the different languages.

3. Results and discussion

Tables 5, 6 report the pairwise Kruskal–Wallis H-test results

for the acoustic, linguistic, and cognitive biomarkers that are

statistically significant (p < 0.05). For each of the significant

biomarkers, we report the H-statistics, the corresponding p-value,

the eta-squared effect size (η2) based on the H-statistics, and the

area under the ROC curve (AUROC). The AUROC of a biomarker

can be used as a criterion to measure biomarker’s discriminative

properties. Moreover, we report the observed behavior (OB) of

the biomarker that represents the direction in which the median

value of the PD biomarker behaved compared to that of the

CN group. Table 7 reports the significant correlations between

the biomarkers and the different clinical scores, namely, UPDRS-

III (motor assessment), UPDRS-III part I (speech assessment),

and the Hoen and Yahr (H&Y) scale. In both the statistical and

correlation analysis, Benjamini–Hochberg correction was applied

to control for FDR. According to the Kruskal–WallisH-test, among

the 24 types of biomarkers that have been analyzed, 15 were

significant on GermanPD, 13 on Neurovoz, nine on ItalianPVS,

nine on NLS, seven on CzechPD, and four on GITA. Although

21 biomarkers were significant in at least one data set, only

13 strictly satisfied the robustness conditions. In summary, the

language-robust biomarkers identified in our analysis had a lower

amount of speech time in spontaneous production (SPTIME), a

monotonic pitch (F0STD), and an increased amount of pauses

and hesitations (SILTIME, SILPERC, SILVAR, SILSPRAT, and

SILDUR) across tasks. From the linguistic analysis, it emerged

that participants with PD delivered shorter narratives (WORDCNT

and SENTCNT) and reduced the use of nouns, auxiliaries, and

noun phrases (NOUNCNT, AUXCNT, and NPs). In addition,

they reported a more static speech rhythm (RHYSTD) during

spontaneous production. In Sections 3.1 and 3.2, these findings are

presented in detail and compared to prior-related research better to

understand the novelty of the discovery of this study. Shortcomings

and limitations on the result interpretations and future direction of

the research are reported in Sections 4 and 5, respectively.

3.1. Acoustic biomarkers

As we have noted early, neurodegeneration in PD has

dopaminergic and non-dopaminergic contributions that most

immediately impacts the striatum but also have downstream

cortical effects. Consequently, it is uncertain whether a given

biomarker’s performance may be solely due to altered dopamine

transmission. One possible reductionistic mechanism may be the

loss of dopaminergic neurons in the substantia nigra results in

generalized muscle rigidity, which subsequently affects laryngeal

muscular tone (phonatory subsystem). This fact may increase the

laryngeal tension (physiological correlate), resulting in decreased

F0 speech variability (23, 61, 62). Previous studies have shown

that F0 variability tends to be significantly lower for subjects

with PD than CN subjects and can significantly increase after

patients receive dopaminergic medications (35, 63). In contrast,

Cavallieri et al. (64) found a greater impact of L-Dopa via levodopa-

induced dyskinesia on speech performance rather than during L-

Dopa untreated states at least in persons with advanced disease,

which is not well-represented in our data sets. Subjects with PD

also exhibit speech rate abnormalities characterized by excessive

and longer speech pauses (29, 65–67). The results reported on

monoloudness are controversial: some studies have reported a

reduced amplitude variability in patients with PD (68), while others

have not identified any significant difference between PD and

CN groups (67, 69). Phonatory and articulatory deficits have also

been extensively studied. Concerning phonation, jitter, shimmer,

and Harmonic to Noise Ratio (HNR) represent typical measures.

Previous studies have employed a sustained phonation of vowels

to extract these biomarkers and obtained significant differences

between PD and CN groups for the three measurements, where

jitter and shimmer were higher and HNR was lower in patients

with PD vs. CN participants (70–72). Concerning articulation,

formant centralization ratio (FCR), the duration of voiced segments

(DVS), voice onset time (VOT), and VSA have been analyzed,

among others. Results showed that FCR, DVS, and VOT tended

to be greater in participants with PD than in CN participants (73–

75), while reduced values of VSA in articulation were reported

for participants with PD vs. CN participants (28, 36). In some

cases, the inter-subject variability in phonation, articulation, and

prosody might act as a confounding variable, as shown by Rusz

et al. (76). In that study, combining these biomarkers allowed a

good discriminability of the newly diagnosed PD group (confirmed

by dopamine transporter imaging) from the CN group. Moreover,

a significant gender difference was reported, with female patients

having greater vocal control than men patients. The robustness

of F0, pause-related biomarkers, and jitter was confirmed in

earlier multilingual studies (29, 30). In our study, articulatory and

phonatory speech aspects were not considered.

As suggested by the results reported in Table 5, participants

with PD exhibited monopitch (i.e., significantly lower F0STD)

during the RP task on NLS, GermanPD, ItalianPVS, CzechPD,

and GITA. Similar results were observed in the analysis of the

spoken responses to the SS task on NLS and CzechPD and the TDU

task on GermanPD, ItalianPVS, and GITA (see Figure 1). Aligned

with these results, F0STD showed a negative correlation with the

UPDRS-III scores in Neurovoz. As such, this biomarker met the

requirements for robustness and confirmed results reported in

previous monolingual and multilingual studies, extending them to

other languages (i.e., German and Castilian Spanish). Even though

participants with PD and CN participants in NLS, GermanPD,

ItalianPVS, and CzechPD were not perfectly matched in terms of
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TABLE 5 Pairwise Kruskal–Wallis H-test results for the acoustic biomarkers that were statistically significant (p < 0.05) in the TDU, RP, and SS tasks,

respectively, within the six data sets analyzed.

Statistics acoustic biomarkers

Data set Task Biomarker
Sample (n)

H p-value OB η2 AUROC
1 2

NLS

SS SPTIME CN (n = 33) PD (n = 23) 8.65 0.01 ↓ 0.14 0.72

SILDUR CN (n = 33) PD (n = 23) 7.87 0.02 ↑ 0.13 0.72

SILVAR CN (n = 33) PD (n = 23) 7.68 0.02 ↑ 0.12 0.72

F0STD CN (n = 33) PD (n = 23) 4.58 0.048 ↓ 0.07 0.67

INTSTD CN (n = 33) PD (n = 23) 13.36 < 0.001 ↑ 0.22 0.79

RP SILTIME CN (n = 32) PD (n = 22) 5.58 0.03 ↑ 0.09 0.69

SILPERC CN (n = 32) PD (n = 22) 6.72 0.03 ↑ 0.11 0.69

SILSPRAT CN (n = 32) PD (n = 22) 6.72 0.03 ↑ 0.11 0.71

SILDUR CN (n = 32) PD (n = 22) 6.12 0.03 ↑ 0.10 0.71

SILVAR CN (n = 32) PD (n = 22) 5.62 0.03 ↑ 0.09 0.70

F0STD CN (n = 32) PD (n = 22) 5.35 0.03 ↓ 0.08 0.69

INTSTD CN (n = 32) PD (n = 22) 5.17 0.03 ↑ 0.08 0.69

GermanPD

TDU SILTIME CN (n = 88) PD (n = 88) 22.32 < 0.001 ↑ 0.12 0.71

SILPERC CN (n = 88) PD (n = 88) 32.27 < 0.001 ↑ 0.17 0.75

SILSPRAT CN (n = 88) PD (n = 88) 32.27 < 0.001 ↑ 0.17 0.67

SILDUR CN (n = 88) PD (n = 88) 27.63 < 0.001 ↑ 0.14 0.73

F0STD CN (n = 88) PD (n = 88) 16.31 < 0.001 ↓ 0.09 0.68

F1STD CN (n = 88) PD (n = 88) 7.93 0.007 ↓ 0.04 0.62

RP F0STD CN (n = 88) PD (n = 88) 27.52 < 0.001 ↓ 0.14 0.73

INTSTD CN (n = 88) PD (n = 88) 18.15 < 0.001 ↓ 0.09 0.69

SS SPTIME CN (n = 88) PD (n = 88) 24.90 < 0.001 ↓ 0.14 0.72

SILDUR CN (n = 88) PD (n = 88) 7.69 0.01 ↑ 0.05 0.62

F0STD CN (n = 88) PD (n = 88) 21.61 < 0.001 ↓ 0.12 0.70

INTSTD CN (n = 88) PD (n = 88) 33.63 < 0.001 ↑ 0.20 0.75

Neurovoz

TDU SPTIME CN (n = 46) PD (n = 43) 15.17 < 0.001 ↓ 0.16 0.74

SILPERC CN (n = 46) PD (n = 43) 11.60 0.001 ↑ 0.12 0.71

SILSPRAT CN (n = 46) PD (n = 43) 11.60 0.001 ↑ 0.12 0.71

SILVAR CN (n = 46) PD (n = 43) 7.03 0.01 ↑ 0.07 0.62

ItalianPVS

TDU SPTIME CN (n = 35) PD (n = 28) 13.23 < 0.001 ↑ 0.20 0.77

SILTIME CN (n = 35) PD (n = 28) 14.15 < 0.001 ↑ 0.22 0.78

SILPERC CN (n = 35) PD (n = 28) 7.72 0.006 ↑ 0.11 0.71

SILSPRAT CN (n = 35) PD (n = 28) 7.72 0.006 ↑ 0.11 0.71

SILDUR CN (n = 35) PD (n = 28) 22.11 < 0.001 ↑ 0.34 0.85

SILVAR CN (n = 35) PD (n = 28) 14.47 < 0.001 ↑ 0.23 0.78

F0STD CN (n = 35) PD (n = 28) 10.56 < 0.001 ↓ 0.16 0.74

INTSTD CN (n = 35) PD (n = 28) 32.79 < 0.001 ↑ 0.52 0.92

RP SILTIME CN (n = 21) PD (n = 26) 7.79 0.02 ↑ 0.15 0.74

SILPERC CN (n = 21) PD (n = 26) 6.81 0.02 ↑ 0.12 0.72

SILSPRAT CN (n = 21) PD (n = 26) 6.81 0.02 ↑ 0.12 0.72

(Continued)
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TABLE 5 (Continued)

Statistics acoustic biomarkers

Data set Task Biomarker
Sample (n)

H p-value OB η2 AUROC
1 2

SILDUR CN (n = 21) PD (n = 26) 10.85 0.01 ↑ 0.22 0.78

SILVAR CN (n = 21) PD (n = 26) 5.54 0.03 ↑ 0.11 0.70

F0STD CN (n = 21) PD (n = 26) 6.37 0.01 ↑ 0.12 0.72

INTSTD CN (n = 21) PD (n = 26) 17.23 < 0.001 ↑ 0.36 0.86

CzechPD

RP SILTIME CN (n = 16) PD (n = 20) 9.92 0.005 ↑ 0.12 0.82

SILPERC CN (n = 16) PD (n = 20) 9.75 0.002 ↑ 0.25 0.85

SILSPRAT CN (n = 16) PD (n = 20) 12.25 0.002 ↑ 0.33 0.85

SILDUR CN (n = 16) PD (n = 20) 8.21 0.009 ↑ 0.21 0.79

F0STD CN (n = 16) PD (n = 20) 5.92 0.04 ↓ 0.14 0.74

INTSTD CN (n = 16) PD (n = 20) 4.69 0.04 ↓ 0.10 0.72

SILVAR CN (n = 16) PD (n = 20) 4.69 0.04 ↓ 0.10 0.72

SS SILTIME CN (n = 16) PD (n = 20) 14.44 0.001 ↑ 0.39 0.88

SILPERC CN (n = 16) PD (n = 20) 11.33 0.002 ↑ 0.30 0.84

SILSPRAT CN (n = 16) PD (n = 20) 11.33 0.002 ↑ 0.30 0.84

SILDUR CN (n = 16) PD (n = 20) 11.33 0.002 ↑ 0.30 0.84

F0STD CN (n = 16) PD (n = 20) 6.41 0.03 ↓ 0.16 0.75

GITA

RP F0STD CN (n = 50) PD (n = 50) 8.46 0.01 ↓ 0.08 0.67

TDU

F0STD CN (n = 50) PD (n = 50) 7.46 0.009 ↓ 0.06 0.57

INTSTD CN (n = 50) PD (n = 50) 7.90 0.009 ↓ 0.07 0.57

F1STD CN (n = 50) PD (n = 50) 5.18 0.02 ↓ 0.04 0.56

OB, observed behavior.

↑means increasing, ↓means decreasing.

gender, the gender variable should not have influenced this result as

we measured the standard deviation of F0 and not its mean, which

is sensitive to the gender distributions of the experimental groups.

During the RP tasks, speech loudness variability (INTSTD)

was significant on NLS, GermanPD, ItalianPVS, and CzechPD.

However, Italian and American participants with PD reported

higher INTSTD compared to their respective CN groups.

Consequently, INTSTD did not meet the robustness conditions

since its observed behavior differed from its expected cross-lingual

behavior. A similar observation applies to the standard deviation

of the first formant (F1STD). As expected, this biomarker was

significantly lower for the PD group than for the CN group on

GITA and GermanPD during the TDU task. However, F1STD

showed a significant positive correlation on Neurovoz in the

TDU task. As such, this biomarker did not meet the robustness

conditions. Even though we applied loudness normalization before

computing intensity-related biomarkers, the experimental results

might have been partially influenced by the adoption of different

recording conditions (e.g., headset microphone, where the mouth-

to-diaphragm distance is constant vs. microphone on a tripod

where this distance could be variable within a single recording).

Even in the multi-lingual analysis performed by Kovac et al. (30),

INTSTD and F1STD did not meet the robustness criteria.

During the RP and TDU tasks, speech time (SPTIME) was

significantly higher in almost all the data sets analyzed (as

expected), except in Neurovoz, where participants with PD showed

a significantly lower SPTIME than CN participants. In this respect,

we observed that while reading, subjects with PD do not just

insert (part of) words to repeat mispronounced items or to

correct themselves, but they also skip some words due to reading

difficulties. In Neurovoz, this phenomenon can be motivated by

the fact that participants were not required to read the short

sentences from a printed sheet. However, they listened to them

from a recording of a standard speaker and repeated them out

loud. In this process, they might have forgotten some words to

utter, which could have caused a significantly lower SPTIME.

Thus, this result does not confirm previous findings (46) that

showed that participants with PD, when reading, have a higher

SPTIME due to word repetitions and self-corrections. However,

two different acquisition protocols are probably the cause here;

thus, this biomarker does not exhibit task robustness rather than

language robustness.

Pause-related biomarkers such as the amount of silent time

(SILTIM), the silent time percentage (SILPERC), the silence-to-

speech ratio (SILSPRAT), and the silence time variability (SILVAR)

were significantly higher during the TDU and RP tasks on
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TABLE 6 Pairwise Kruskal–Wallis H-test results for the linguistic and cognitive biomarkers that were statistically significant (p < 0.05) in the TDU, RP,

and SS tasks, respectively, within the six data sets analyzed.

Statistics linguistic and cognitive biomarkers

Data set Task Biomarker
Sample (n)

H p-value OB η2 AUROC
1 2

NLS

SS RHYSTD CN (n = 33) PD (n = 23) 5.37 0.02 ↓ 0.08 0.67

RP RHYSTD CN (n = 32) PD (n = 22) 3.88 0.048 ↑ 0.06 0.65

GermanPD
SS

WORDCNT CN (n = 88) PD (n = 88) 16.22 < 0.001 ↓ 0.08 0.68

SENTCNT CN (n = 88) PD (n = 88) 7.86 0.005 ↓ 0.04 0.62

NOUNCNT CN (n = 88) PD (n = 88) 14.11 < 0.001 ↓ 0.07 0.66

AUXCNT CN (n = 88) PD (n = 88) 11.85 0.001 ↓ 0.06 0.65

NPCNT CN (n = 88) PD (n = 88) 9.96 0.003 ↓ 0.05 0.64

PPCNT CN (n = 88) PD (n = 88) 13.50 < 0.001 ↓ 0.07 0.64

RHYSTD CN (n = 88) PD (n = 88) 19.35 < 0.001 ↓ 0.10 0.69

Neurovoz

TDU RHYSTD CN (n = 46) PD (n = 43) 15.27 < 0.001 ↓ 0.16 0.74

SS WORDCNT CN (n = 46) PD (n = 43) 10.56 0.01 ↓ 0.11 0.74

SENTCNT CN (n = 46) PD (n = 43) 13.37 0.003 ↓ 0.14 0.83

NOUNCNT CN (n = 46) PD (n = 43) 7.06 0.01 ↓ 0.07 0.74

VERBCNT CN (n = 46) PD (n = 43) 11.22 0.006 ↓ 0.11 0.80

AUXCNT CN (n = 46) PD (n = 43) 7.11 0.01 ↓ 0.07 0.74

NPCNT CN (n = 46) PD (n = 43) 8.84 0.01 ↓ 0.09 0.77

VPCNT CN (n = 46) PD (n = 43) 6.91 0.01 ↓ 0.07 0.74

RHYSTD CN (n = 46) PD (n = 43) 6.01 0.01 ↓ 0.06 0.72

IU CN (n = 46) PD (n = 43) 5.21 0.02 ↓ 0.05 0.70

ItalianPVS

RP RHYSTD CN (n = 21) PD (n = 26) 16.99 < 0.001 ↑ 0.35 0.81

TDU RHYSTD CN (n = 21) PD (n = 26) 3.91 0.047 ↑ 0.06 0.67

GITA TDU RHYSTD CN (n = 50) PD (n = 50) 4.07 0.04 ↓ 0.03 0.62

OB, observed behavior.

↑means increasing, ↓means decreasing.

NLS, GermanPD, Neurovoz, ItalianPVS, and CzechPD due to the

difficulties imposed by the two reading tasks. Even though these

four biomarkers were not significant on GITA, their behaviors

were consistent with those observed in the other data sets and

aligned with the expected behavior. Similarly, the length of the

pauses (SILDUR) was significantly higher on NLS, GermanPD,

ItalianPVS, and CzechPD during the SS, TDU, and RP tasks,

respectively (see Figure 2). SILTIM, SILPERC, SILSPRAT, SILVAR,

and SILDUR also behaved as expected in the correlation analysis,

where they exhibited a positive correlation with both UPDRS-III,

UPDRS-III.I, and H&Y scores on NLS, Neurovoz, GermanPD, and

ItalianPVS, respectively. No significant difference between the CN

group and the PD group was observed on GITA with respect to

the silence-time and speech-time-related biomarkers. This result

can be motivated by the shorter length of the texts adopted in

the TDU and RP tasks within the GITA data set, which prevented

observing a significant number of hesitations and pauses as in the

other data sets. In general, the cognitive load in some tasks can be

greater than in others. For instance, asking a participant to describe

what she did during the morning could be easier than providing an

exhaustive and coherent picture description within a time limit of

60 s. Moreover, the total number of TDUs in GITA is six, while in

other data sets, such as ItalianPVS is ten. Therefore, if a data set has

relatively complex tasks, it might be more than linearly expected

to lead to greater values in the pause-related features. Overall,

these findings are aligned with previous studies that reported more

frequent and prolonged pauses in the spontaneous production and

read speech of PD individuals across different languages (29).

3.2. Linguistic and cognitive biomarkers

Studies focusing on language-related impairments reported

that persons with PD demonstrated impairments in syntax and

semantics, especially in producing and processing action words

compared with non-action words (47). While a relationship

between action-verb or semantic processing and bradykinesia

may be serendipitous, an underlying informatic dysfunction in

action conceptually (as qualia) would be intriguing. A relationship

between action words and physical movements may explain

Frontiers inNeurology 12 frontiersin.org

https://doi.org/10.3389/fneur.2023.1142642
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Favaro et al. 10.3389/fneur.2023.1142642

TABLE 7 Results of Spearman’s rank correlation (ρ) with corresponding p-values after the FDR correction.

Data set Task Biomarker
UPDRS-III UPDRS-III.I (speech) H&Y

p-value ρ p-value ρ p-value ρ

NLS RP

SILTIME 0.01 0.49 (↑) – – – –

SILPERC 0.01 0.51 (↑) – – – –

SILSPRAT 0.01 0.51 (↑) – – – –

GermanPD

RP

SPTIME – – – – 0.008 0.33 (↑)

SILTIME – – – – 0.007 0.35 (↑)

SILSPRAT – – – – 0.007 0.31 (↑)

SILDUR – – – – 0.007 0.32 (↑)

TDU RHYSTD – – – – < 0.001 0.38 (↑)

CzechPD RP INTSTD 0.02 −0.60 (↓) – – – –

Neurovoz TDU F0STD 0.04 −0.43 (↓) – – – –

F1STD 0.04 0.42 (↑) – – – –

SS SILDUR 0.02 0.67 (↑) – – – –

ItaliaPVS TDU SPTIME – – 0.02 −0.47 (↓) – –

SILTIME – – 0.003 0.63 (↑) – –

SILPERC – – 0.003 0.63 (↑) – –

SILSPRAT – – 0.003 0.63 (↑) – –

SILVAR – – 0.048 0.40 (↑) – –

RHYSTD – – 0.018 0.48 (↑) – –

RP RHYSTD – – < 0.001 0.67 (↑) – –

Results are reported only for those biomarkers whose p-values were significant. In performing the correlation analysis on ItalianPVS, we used only the UPDRS-III scores related to the speech

assessment (UPDRS-III.I) since the scores for the other test sections were unavailable.

↑means increasing, ↓means decreasing.

FIGURE 1

Boxplots with statistical annotations representing the standard deviation of F0 (F0STD) on Neurovoz, ItalianPVS, GermanPD, and GITA from the TDU

task. Horizontal lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically

significant di�erences between groups after Benjamini–Hochberg correction for F0STD are reported in Table 5 and highlighted below using asterisks.

F0STD, F0 standard deviation; CN, controls; PD, Parkinson’s disease; TDU, text dependent utterance; ns, not significant.

why individuals with PD have more difficulty producing and

processing action words than non-action words. In this respect,

the explanation proposed by the Embodied Cognition (EC) theory

(77, 78) is that the categories of content are represented in different

brain regions depending on the sensory and motor processes

involved in the acquisition of the content (79). Thus, the action
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FIGURE 2

Boxplots with statistical annotations representing the silence duration (SILDUR) on NLS, Neurovoz, CzechPD, GermanPD, and GITA from the RP task.

Horizontal lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically

significant di�erences between groups after Benjamini–Hochberg correction for SILDUR are reported in Table 5 and highlighted below using

asterisks. SILDUR, silence duration; CN, controls; PD, Parkinson’s disease; SILDUR, silence duration; SS, spontaneous speech; ns, not significant.

word deficit in PDmay be related to impaired input to the striatum

from themotor and associated cortex. Some studies have found that

individuals with PD exhibit difficulties in both actions and object

naming (80) and improved action namingmore than object naming

upon the stimulation of the subthalamic nucleus- a common

target of deep brain stimulation to improve the motor function

(81).

Moreover, previous studies suggest that subjects with PD and

related disorders exhibit reduced information content in their

descriptions when required to mention the main characters/events

displayed in a picture (31, 82–84). These results are consistent

with findings reporting that subjects with PD have selective

deficits in naming and processing action verbs and object nouns

since the lower level of informativeness can be originated, at

least partially, by the impairments in specific syntactic categories

(e.g., nouns and verbs). Individuals with PD also demonstrated

difficulty modulating speech rhythm or timing organization (51,

85), a phenomenon that contributes to a more static rhythm

in spontaneous production and that makes the semantics of the

discourse less clear. Altogether, these findings have never been

validated before within a multi-lingual study.

In our study, participants with PD tended to deliver shorter

narratives during the SS task. This phenomenon was reflected by

a significantly lower amount of speech time (SPTIME) observed

on NLS, GermanPD, and CzechPD. Aligned with this result, the

number of word tokens (WORDCNT; see Figure 3) and sentences

(SENTCNT) were significantly lower for participants with PD than

for CN participants on GermanPD and Neurovoz data sets. In

the other data sets, even though these two biomarkers were not

significant, their behaviors were those expected. Moreover, subjects

with PD tended to use a lower number of nouns (NOUNCNT),

auxiliaries (AUXCNT), and noun phrases (NPs) on GermanPD

and Neurovoz. On Neurovoz, the number of verbs (VERBCNT)

and verb phrases (VPCNT) were significantly lower for PD vs. CN

participants. Figures 4–7 report the distributions of NOUNCNT,

NPCNT, VERBCNT, and VPCNT, respectively, from the SS task.

Even though VERBCNT and VPCNT were significant and behaved

as expected, since they were significant only on Neurovoz, we

did not consider them robust. On the one hand, the picture

description task contained in Neurovoz requires participants to

describe what the four main characters in the picture are doing.

As such, this task is implicitly designed to assess any deficit in

object and action naming. On the other hand, in the other data

sets (except NLS), during the SS task, participants are required to

provide a general description of their daily routine or to deliver a

generic narrative. Thus, these tasks do not directly assess any deficit

in action naming. This finding suggests the possibility already

introduced in previous studies: subjects with PD may develop a

deficit in noun processing and object naming (80). In addition,

this finding extends results obtained in monolingual studies to a

multi-lingual cohort, showing their robustness. Not having found

similar results on CzechPD could have been caused by the fact that

the linguistic analysis could not be performed on CzechPD because

no pre-trained models were available for the Czech language. We

expect that biomarkers like SENTCNT and WORDCNT could

have been significant also in CzechPD since the acoustic analysis

confirmed that participants with PD delivered shorter narratives

than CNs.

Concerning the cognitive biomarkers, subjects with PD

tended to deliver less informative narratives. During the picture

description task, the number of correct informational units (IU)

was significantly lower for subjects with PD on Neurovoz but not

on NLS. Thus, we did not consider IU a robust biomarker. To

conclude, during the TDU and RP tasks, the standard deviation

of the speech rhythm (RHYTSTD) was significantly higher for

the PD group than for the CN group on ItalianPVS and NLS,
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FIGURE 3

Boxplots with statistical annotations representing the word count (WORDCNT) on NLS, Neurovoz, GermanPD, and GITA from the SS task. Horizontal

lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically significant

di�erences between groups after Benjamini–Hochberg correction for WORDCNT are reported in Table 6 and highlighted below using asterisks.

WORDCNT, word count; CN, controls; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

FIGURE 4

Boxplots with statistical annotations representing the noun count (NOUNCNT) on NLS, Neurovoz, GermanPD, and GITA from the SS task. Horizontal

lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically significant

di�erences between groups after Benjamini–Hochberg correction for NOUNCNT are reported in Table 6 and highlighted below using asterisks.

NOUNCNT, noun count; CN, controls; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

respectively (as predicted), but significantly lower for the PD group

than for the CN group on Neurovoz and GITA. As such, the

behavior of this biomarker differed from its expected cross-lingual

behavior. However, the analysis of two different types of tasks

(short sentences vs. read passages) is probably the cause here; thus,

this biomarker might not show the task robustness rather than

the language robustness. On the other hand, during the SS task,

RHYSTDwas significantly lower for the PD group vs. the CN group

on NLS, Neurovoz, and GermanPD (see Figure 8). Thus, RHYSTD

exhibited robustness on the SS task. In addition to being aligned

with our predictions, this result extends to a multi-lingual cohort

previous findings by showing that subjects with PD exhibit more

static rhythm in everyday conversations.

4. Other factors and possible
limitations

We have identified some limitations and factors that

can influence the results and conclusions of this and other

Frontiers inNeurology 15 frontiersin.org

https://doi.org/10.3389/fneur.2023.1142642
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Favaro et al. 10.3389/fneur.2023.1142642

FIGURE 5

Boxplots with statistical annotations representing the noun phrase count (NPCNT) on NLS, Neurovoz, GermanPD, and GITA from the SS task.

Horizontal lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically

significant di�erences between groups after Benjamini–Hochberg correction for NPCNT are reported in Table 6 and highlighted below using

asterisks. NPCNT, noun phrase count; CN, controls; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

FIGURE 6

Boxplots with statistical annotations representing the verb count (VERBCNT) on NLS, Neurovoz, GermanPD, and GITA from the SS task. Horizontal

lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically significant

di�erences between groups after Benjamini–Hochberg correction for VERBCNT are reported in Table 6 and highlighted below using asterisks.

VERBCNT, verb count; CN, control group; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

similar studies. These are listed in this section. First, the

data sets analyzed vary in size, gender distribution, and

case severity, so the classes are not optimally balanced. Self-

selection and survival biases are common in PD research,

whereas younger, healthier, and more motivated subjects are

easier to recruit and monitor longitudinally, while advanced,

non-ambulatory subjects inevitably drop out (86). This is a

recognized limitation, and we agree with Vaswani et al. (86)

that technological innovation may improve diversity in subject

recruitment.

In all the data sets (except in CzechPD), participants received

dopaminergic medication right before starting the recording

session (i.e., 1–5 h early), which could have improved their speech

and language performances. However, in the end, this factor did

not seem to have exerted a particular influence on the experimental

results since CzechPD did not turn out to be the data set with

the higher number of significant biomarkers. A higher number of

robust biomarkers were reported on GermanPD and Neurovoz.

This result could be explained by the fact that even though the

different cohorts of participants with PD were distributed in the

Frontiers inNeurology 16 frontiersin.org

https://doi.org/10.3389/fneur.2023.1142642
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Favaro et al. 10.3389/fneur.2023.1142642

FIGURE 7

Boxplots with statistical annotations representing the verb phrase count (VPCNT) on NLS, Neurovoz, GermanPD, and GITA from the SS task.

Horizontal lines represent the median, the top ends represent the upper quartile, and the bottom ends represent the lower quartile. Statistically

significant di�erences between groups after Benjamini–Hochberg correction for VPCNT are reported in Table 6 and highlighted below using

asterisks. VPCNT, verb phrase count; CN, control group; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

FIGURE 8

Boxplots representing the rhythm standard deviation (RHYSTD) on NLS, Neurovoz, GermanPD, and GITA from the SS task. Horizontal lines represent

the medians, the top ends represent the upper quartiles, and the bottom ends represent the lower quartiles. Statistically significant di�erences

between groups after Benjamini–Hochberg correction for RHYSTD are reported in Table 6 and highlighted below using asterisks. RHYSTD, rhythm

standard deviation; CN, control group; PD, Parkinson’s disease; SS, spontaneous speech; ns, not significant.

same range of disease stage (i.e., H&Y range 1–3), participants in

GermanPD and Neurovoz were diagnosed with PD earlier than

those recorded inNLS andCzechPD. As such, they could havemore

visible manifestations of the disorder in language and speech. The

fact that Czech participants with PD were at earlier stages of the

disorder is also reflected by the fact that they reported a significantly

lower average UPDRS score than all the PD groups in the other

data sets.

As speech-based interpretable biomarkers may help clinicians

diagnose PD and monitor the disorder’s evolution, it might have

been better to focus on different PD subpopulations (76), namely,

prodromal PD, early PD (e.g., H&Y scores 1–2), and moderate-

advanced PD (H&Y score equal or greater than 3). Identifying

speech disorder sub-types may improve the understanding of

mechanisms underlying dysarthria in PD and benefit decisions

regarding speech therapies to follow. In this study, grouping

participants with PD in different sub-types could have been difficult

because more UPDRS and diagnosis detailed information was

missing for most data sets. For instance, the H&Y scale was

missing for ItalianPVS. Second, with respect to the other five
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data sets in which the H&Y scale was available, we observed

that the different cohorts reported a similar H&Y range (1–

3) even though the time since diagnosis did vary considerably

from one data set to another. As such, a subdivision solely

based on H&Y would have probably not been representative

since most of the subjects should have been grouped in the

early-moderate subgroup.

Another limitation might be represented by the different

acquisition protocols and hardware systems adopted in the data

collection phase. For instance, while in NLS, Neurovoz, and

GermanPD, speech samples were recorded using a headset,

in GITA, CzechPD, and ItalianPVS, and speech samples were

recorded with a microphone separated from the participants (i.e.,

mounted on a tripod). Using a microphone on a tripod allows

fluctuations in the distance between the speaker’s mouth and

the microphone. This fact could have affected the computation

of intensity variability (even though normalization was applied).

As previously observed by Rusz et al. (87), good practice

would require using a head-mounted microphone so that the

mouth-to-microphone distance can be reduced and maintained

constant at 4 cm. This way, the speech should be at least 10

dB greater than background noise. If a standard microphone

placement 30 cm away from the mouth is used, the speech

intensity level is ∼35 dB, and the background noise and

reverberation could be high, except in acoustically controlled

conditions.

In addition, although we analyzed biomarkers extracted

from the same task typology, comparing the results across data

sets can still be problematic, given the differences between

variants of the same task. In general, as observed in Section

3, if a database has relatively more complex tasks than

others in cognitive load or task length, this can impact the

results and the comparison across languages. Moreover, not

the same clinical data (e.g., UPDRS III, UPDRS III.I, and

H&Y scale) are available for each data set considered. This

missing information could have prevented observing a significant

correlation between the biomarkers and the clinical scores and

influenced comparing the results obtained on different data

sets.

Concerning the NLS data set collected by the authors of

this study, some further observations should be reported. First,

the participants recorded in NLS have been diagnosed with PD

more recently than in GITA and GermanPD. Second, all the

participants were required to wear surgical masks during the

recording session to meet the COVID-19 safety requirements.

Third, in the SS task, we imposed a time limit of 60 s

for the participants to complete the task. This time limit is

not imposed on the SS task collected in the other studies,

meaning that the spontaneous speech samples could be longer

and result in the extraction of more significant biomarkers.

These aspects can motivate the lower number of significant

biomarkers discovered on NLS. However, it is worth noting that

even though a surgical mask could have modified the channel,

it did that equally for all participants. Moreover, our study

employed mask models that minimally interfered with jaw and

lip movement. Moreover, the results of the linguistic analysis

could not have been influenced by the presence of the mask

since the syntactic and semantic abilities of the participants do

not change depending on whether an individual wears a mask

or not.

5. Conclusions and future work

In this study, we analyzed the behavior of a composite array

of interpretable biomarkers encoding acoustic, linguistic, and

cognitive information. The aim was to explore the effectiveness

of these biomarkers in modeling characteristic patterns occurring

in PD and assess their discriminatory power and language

independence. Our statistical analysis showed that 13 of our

biomarkers met the robustness conditions. In particular, the

spontaneous production of participants with PD was characterized

by shorter narratives in terms of speech time, number of words,

nouns, auxiliaries, and NPs. Longer and more frequent pauses

and a lower F0 variability (monotonic pitch) were observed

in both spontaneous and read speech. A more static speech

rhythm characterized spontaneous production only. Hence, this

study provides insights into the objective assessment of PD

from language and speech. It also represents one of the first

studies that leverages the concept of robustness to explore

biomarkers that encode information other than the acoustic

one.

In a future study, we plan to validate the results obtained in

this study by analyzing more languages and balancing the classes in

terms of the number of subjects, age, gender, medication time, PD

disease severity, and specific phenotype. It will also be important to

balance the number of sentences in the analysis of read speech and

compare spontaneous speech samples that report similar speech

content. This procedure should be done to avoid external factors

that can influence the comparison of the results across languages.

In general, it would be ideal for performing an analysis that

compares tasks with a similar cognitive load. In addition, results

should be commented on considering cognitive impairment (if

present). Even though clinical cognitive measures (e.g., MOCA

scores) have been collected for NLS, we encourage the creators

of new data sets to collect these measurements and conduct a

more exhaustive analysis. Finally, we plan to extend the analysis

to articulatory and phonatory speech aspects to complement

the current study and to assess the robustness of the presented

biomarkers in a machine-learning framework performing multi-

lingual and cross-lingual classification experiments. In doing this,

we aim to develop diagnosis-supporting tools whose performances,

in addition to being accurate and language-robust, are interpretable

by clinicians.
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