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Introduction: The measurement of neurofilament light chain (NfL) in blood

is a promising biomarker of neurological injury and disease. We investigated

the genetic factors that underlie serum NfL levels (sNfL) of individuals without

neurological conditions.

Methods: We performed a discovery genome-wide association study (GWAS) of

sNfL in participants of the German BiDirect Study (N = 1,899). A secondary GWAS

for meta-analysis was performed in a small Austrian cohort (N = 287). Results

from the meta-analysis were investigated in relation with several clinical variables

in BiDirect.

Results: Our discovery GWAS identified 12 genomic loci at the suggestive

threshold ((p < 1 × 10−5). After meta-analysis, 7 loci were suggestive of an

association with sNfL. Genotype-specific di�erences in sNfL were observed for

the lead variants of meta-analysis loci (rs34523114, rs114956339, rs529938,

rs73198093, rs34372929, rs10982883, and rs1842909) in BiDirect participants. We

identified potential associations inmeta-analysis loci withmarkers of inflammation

and renal function. At least 6 protein-coding genes (ACTG2, TPRKB, DMXL1,

COL23A1, NAT1, and RIMS2) were suggested as genetic factors contributing to

baseline sNfL levels.

Discussion: Our findings suggest that polygenic regulation of neuronal processes,

inflammation, metabolism and clearance modulate the variability of NfL in the

circulation. These could aid in the interpretation of sNfL measurements in a

personalized manner.
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Background

Neurofilament light chain (NfL) is a subunit of neurofilaments (NFs), cytoskeletal

components found exclusively in neurons and particularly abundant in axons. NfL is a

major component of the backbone of NFs in the central and peripheral nervous systems

(1). Axonal damage and neuronal death due to neurological diseases, including those

of inflammatory, neurodegenerative, traumatic and cerebrovascular nature, result in NfL
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release into the cerebrospinal fluid (CSF) and blood. Recent

technological advances in immunoassay detection have enabled

the accurate measurement of the small amounts of NfL that

reach the circulation, facilitating its application as a universal

peripheral biomarker of the presence and progression of

neurological conditions, and of treatment responses (1–3).

Therefore, investigating the factors that influence concentrations

of NfL in the periphery becomes crucial for the interpretation of

results. To date, it has been demonstrated that NfL serum levels

(sNfL) increase with age (4) and potential confounding factors,

such as body mass index and cardiovascular risk factors, have been

suggested (5, 6).

Studies in population-based cohorts have shown a polygenic

nature of numerous health-related serum biomarkers, including

alanine transaminase (liver function), fibrinogen (clot formation)

and glycated hemoglobin (type 2 diabetes mellitus), among many

others. These findings can provide novel biological insights and

facilitate disease diagnosis and stratification (7). Nevertheless,

to our knowledge, no genetic associations with sNfL have been

investigated. We hypothesized that the identification of genetic

factors that modulate sNfL in physiological conditions will help

interpretation on an individual basis, consequently improving the

clinical applications of sNfL as a biomarker. To test our hypothesis,

we performed a genome-wide association study (GWAS) and

meta-analysis of sNfL in a total of 2,186 individuals of European

descent without known neurological conditions, and correlated

our findings with clinical data to identify potential sources of

sNfL variability.

Subjects and methods

Study populations

The BiDirect Study was initiated in 2009 as a prospective,

observational study integrating three cohorts: (1) community-

dwelling adults (control cohort), (2) patients with an acute

depressive episode (depression cohort), and (3) patients who

recently suffered from acute myocardial infarction (MI cohort).

The study, whose principal goal is the exploration of the

bidirectional relationship between depression and subclinical

arteriosclerosis, recruited participants in the district of Münster,

Germany, and carried out extensive phenotyping and follow-up of

all cohorts in parallel. The study design and methods have been

previously described in detail (8). Here, we included 1,899 BiDirect

participants (977 males, 922 females; mean age: 52.1 ± 7.9) from

the control (763), depression (851) and MI (285) cohorts.

The Austrian Stroke Prevention Family Study (ASPS-Fam)

cohort represents an extension of the prospective, population-

based ASPS (Austrian Stroke Prevention Study) on the effects of

vascular risk factors in normal aging. ASPS was established in 1991

in the city of Graz, Austria (9). For ASPS-Fam, first-degree relatives

of ASPS participants were invited to join the study. The study’s

composition and inclusion criteria have been described elsewhere

(10, 11). Here, we included 287 ASPS-Fam participants (115 males,

172 females; mean age: 64.3± 10.6).

The basic descriptive information of the BiDirect and ASPS-

Fam cohorts are shown in Table 1. Summary information

on study design and composition can be found in the

Supplementary material 1. All participants of the BiDirect and

ASPS-Fam cohorts provided written informed consent. Methods

were carried out in accordance with the ethical standards laid

down in the updated version of the 1964 Declaration of Helsinki.

The BiDirect Study was approved by the Ethics Committee of the

University of Münster and theWestphalian Chamber of Physicians

in Münster, North-Rhine-Westphalia, Germany. The ASPS-Fam

protocol was approved by the Ethics Committee of the Medical

University of Graz, Austria.

Serum measurements of NfL

Quantification of sNfL in BiDirect and ASPS-Fam was

conducted at the University Hospital Basel, Switzerland, using

the single molecule array (Simoa
R©
) HDX analyzer (Quanterix,

Lexington, MA, USA). In BiDirect participants, measurements of

sNfL were obtained from non-fasting blood samples collected at the

first visit, using the Simoa
R©
NF-light Advantage Kit. In ASPS-Fam

participants, sNfL measurement (Supplementary material 1) has

been previously described in detail (4). The sNfL values obtained at

initial assessment were log2-transformed and used for all analyses

herein reported. Therefore, with sNfL in our findings, we actually

refer to log2 sNfL.

Because it is known that sNfL concentrations increase

during aging (4), we tested for age-adjusted sex- and cohort-

dependent sNfL differences in BiDirect using analysis of covariance

(ANCOVA). We also tested for sNfL correlations, using the

Pearson’s method, with markers of inflammation, renal and

liver function, lipids, hormones and brain volumes derived from

magnetic resonance imaging (MRI) data (106 clinical variables in

total). All p < 0.05 values were considered statistically significant.

Here, age represented the age at participant recruitment, when

baseline phenotyping (s0) took place. Clinical variables coming

from up to three subsequent follow-up visits were identified as time

points s2, s4, and s6.

Genotype data

For BiDirect genotypes, genomic DNA was isolated from

whole blood samples with EDTA using standard DNA extraction

kits and procedures at the University of Münster. Genome-

wide genotyping was performed with the Infinium PsychArray

BeadChip v1 (Illumina) at Life&Brain GmbH (Bonn, Germany).

Basic quality control (QC) was employed to remove samples

and variants with high rates of missing data. This included

removal of individuals with genotyping rate <2%, cryptic

relatedness (PI-HAT ≥1/16), sex mismatch and genetic outliers

(distance in first two multidimensional scaling components >5

standard deviations from the mean), as well as the removal of

variants with call rate <2% and minor allele frequency (MAF)

<1%. Genotype imputation was performed with SHAPEIT (pre-

phasing) (12) and IMPUTE2 (13) using the 1,000 Genomes

Project, phase 3, European population reference panel (from

here on, 1KG Reference Panel). Imputed variants were filtered
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TABLE 1 Basic description of BiDirect and ASPS-Fam cohorts.

Cohort Log2 sNfL (mean ± SD) Age (mean ± SD) Males (n) Females (n) Total (N)

BiDirect 2.16± 0.45 52.1± 7.9 977 922 1,899

BiDirect-control 2.15± 0.44 53.4± 8.2 385 378 763

BiDirect-depression 2.13± 0.43 49.9± 7.3 348 503 851

BiDirect-MI 2.29± 0.5 55.2± 6.7 244 41 285

ASPS-Fam 4.99± 0.65 64.3± 10.6 115 172 287

MI, myorcardial infarction; sNfL, serum neurofilament light chain; SD, standard deviation.

for the INFO metric (≥0.8), MAF≥0.01 and Hardy-Weinberg

equilibrium (HWE p ≥ 1 × 10−6). Individuals were further

removed from the sample based on missing phenotypic data

(age and baseline sNfL measurement). The final BiDirect

GWAS dataset consisted of 5,597,244 genetic variants and

1,899 individuals.

For ASPS-Fam genotypes, genome-wide genotyping was

performed with the Genome-Wide Human SNP Array 6.0

(Affymetrix). During the initial QC, variants with MAF<0.05,

HWE<5 × 10−6 and low variant call rate (>2%) were excluded.

Individuals with sex mismatch, cryptic relatedness, low sample

call rate (>2%), a heterozygosity rate exceeding the mean ±

3 standard deviations and erroneous duplicates were removed.

No genetic outliers were present. Genotype imputation was

performed using theMichigan Imputation Server (14) and the 1KG

Reference Panel.

Of note, genetic variants herein comprise single nucleotide

polymorphisms (SNPs), as well as small insertions/deletions

(indels) present in the datasets.

Screening for genetic associations with
sNfL

We conducted a discovery GWAS in the BiDirect dataset under

an additive regression model, adjusting for age, sex, cohort and the

first 10 principal components. A secondary GWAS in the smaller

ASPS-Fam dataset was performed independently at the Medical

University of Graz and was adjusted for age, sex and the first 10

principal components. After harmonization of summary statistics

from both studies, we performed a weighted meta-analysis of all

overlapping variants with Rsq≥0.8 and MAF≥0.01 using Plink 1.9

(15). Variants with high heterogeneity between studies (I>40 and

Q<0.1) were subsequently neglected.

Definition of genomic loci for sNfL

For the discovery GWAS and the meta-analysis, we carried

out downstream analyses on the FUMA GWAS platform (16) and

defined genomic loci at the suggestive threshold of significance

for genome-wide studies (p < 1 × 10−5), obtained variant

annotations and identified the level of support for each signal.

Linkage disequilibrium (LD) was defined by r2 ≥ 0.6 and a window

of 500 kb, according to the 1KG Reference Panel. Subsequently, LD

blocks were formed with variants under the suggestive threshold as

lead variants, and containing all variants with p< 0.05 in the dataset

that were in LD with the corresponding lead variants. Positional

(gene) mapping was performed according to a maximum distance

of 1 kb for the categories protein-coding, long non-coding RNA

(lncRNA), non-coding RNA (ncRNA) and processed transcripts.

Expression quantitative trait loci (eQTLs) were mapped using the

BRAINEAC and GTEx v8 Brain databases. Only SNP-gene pairs

with false discovery rate (FDR) <0.05 were annotated.

Functional implications of suggested
candidate genes

To inform the biological meaning of our findings, we created

a protein-protein interaction (PPI) network using our suggested

meta-analysis candidate genes as input. The network was generated

with the Gene Set analysis tool of the ReactomeFIViz app

for Cytoscape v.3.7.1 (17, 18). Linker proteins and functional

interaction (FI) annotations were incorporated into the network

(version 2018). In addition, we performed clustering of nodes, as

well as enrichment analyses of pathways and gene ontology cellular

components (GO_CC) for each network cluster. Gene sets with

FDR<0.05 were considered significantly enriched.

SNP heritability (h2SNP)

We calculated the proportion of variance in sNfL

concentrations explained by our discovery GWAS in BiDirect

using the GREML-LDMS (LD- and MAF-stratified GREML)

method implemented in GCTA (19, 20). For all autosomal variants

with MAF≥0.01 in the imputed dataset, we calculated the 200 kb

segment-based LD scores, stratified variants according to LD

scores of individual SNPs, computed one genetic relationship

matrix for each quartile of the stratified variants, and performed a

restricted maximum likelihood analysis using these four matrices.

The variance explained was adjusted for the same covariates as

the GWAS. SNP heritability from our meta-analysis summary

statistics was calculated using LDSC software (21) with LD scores

pre-computed in 1KG Reference Panel data, as suggested by

the authors.
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Screening for associations with clinical
variables

For the lead variant of each loci resulting from our meta-

analysis, we performed genotype-specific comparisons in BiDirect

participants using an ANCOVA model adjusted for age. Moreover,

for all variants within meta-analysis loci, we tested for associations

with the same set of clinical variables used in the correlation

analyses. These association tests were performed in the same

manner as for baseline sNfL. The Benjamini-Hochberg method was

used to correct for multiple comparisons (adjP).

Results

Basic characterization of sNfL in BiDirect

Our initial characterization of sNfL in BiDirect found similar

distributions of sNfL in the three cohorts (sNfL raw mean ±

standard deviation values: control 9.49 ± 6.57, depression 9.24 ±

4.99, MI 11.76 ± 11.62; corresponding log2 values: control 2.15

± 0.44, depression 2.13 ± 0.43, MI 2.29 ± 0.5; Figure 1A) and

a positive association with age (p < 2 × 10−16, beta = 0.03),

which was independent of the cohort (Figure 1B). Age-adjusted

comparisons showed mean differences in sNfL levels between both

patient cohorts (depression p= 8.2× 10−5, MI p= 1.4× 10−3) and

the reference cohort, while no differences could be attributed to sex

(p= 0.56) in this dataset (Figure 1C). Moreover, baseline (s0) sNfL

correlated well with all other sNfL measurements (i.e., log- and

non-transformed values from follow-up visits), and with markers

of inflammation, and of the functions of kidneys, liver and thyroid

glands (Supplementary material 2, Supplementary Table 1).

Genetic associations with sNfL

We identified no genetic associations with sNfL surpassing the

desired genome-wide significant threshold (p< 5× 10−8). But, our

observations reached a significance threshold commonly accepted

for suggestive associations (p< 1× 10−5) in GWASs. Therefore, we

wished to further explore these suggestive findings from our GWAS

and meta-analysis.

With our discovery GWAS in BiDirect (N = 1,899), we

observed suggestive signals in 10 chromosomes (Figure 2A).

Because the SNP2GENE tool integrates observations coming

from GWAS summary statistics with information on LD

structure coming from well-established reference panels to define

lead variants and genomic loci, and can also be used to

annotate an array of functional features for SNPs within the

defined loci, we considered this tool to provide an appropriate

means for the interpretation of our results. Twelve suggestive

genomic loci for sNfL were defined through this analysis.

These loci contained 13 lead variants (i.e., identified from

independent variants and independent from each other at r2 ≥

0.1), 14 independent signals (i.e., independent variants at the

suggestive p-value threshold and independent from each other

at r2 ≥ 0.6), and implicated a total of 246 genetic variants

and of 18 mapped genes, from which 7 (CNTNAP5, NAT1,

NATP, MTDH, RIMS2, VWA8, and RBFOX1) are protein-coding

(Table 2, Supplementary material 2, Supplementary Table 2). The

SNP heritability estimation performed with GCTA showed that this

GWAS explained about 30% of the variance in sNfL (h2SNP= 0.299).

However, the analysis also suggested that a larger sample size would

be required to confidently detect the genetic component of sNfL

(LRT= 2.4, p= 0.061).

Because the ASPS-Fam cohort has a small sample size and

differences in its composition, in comparison with BiDirect,

were evident, we chose not to seek validation of our findings in

ASPS-Fam, but to use this cohort to carry out a meta-analysis with

the aim to gain statistical power (N = 2,186). After performing a

weighted meta-analysis and filtering out heterogeneous variants

(i.e., variants with inconsistent effects), we applied again the

SNP2GENE approach to extract a relevant interpretation of our

results. Even with the addition of the ASPS-Fam cohort, we did

not observe genomic variants reaching genome-wide significance

(Figure 2B). Nevertheless, we were able to define 7 suggestive

meta-analysis loci spanning 5 chromosomes, 144 variants and

8 mapped genes, including 6 protein-coding genes (ACTG2,

TPRKB, DMXL1, COL23A1, NAT1, and RIMS2), that associated

with sNfL levels in individuals without neurological conditions

(Table 2, Supplementary material 2, 3, Supplementary Table 3,

Supplementary Figures 1–7). In comparison with our discovery

GWAS, meta-analysis loci represented the identification of 4

robust signals (i.e., meta-analysis loci that overlapped GWAS

loci; meta-analysis loci #4–7 in chromosomes 8, 9, and 11), as

well as the addition of 3 new signals (i.e., meta-analysis loci not

found with the discovery GWAS; meta-analysis loci #1–3 in

chromosomes 2 and 5). SNP heritability performed with LDSC

in our sNfL meta-analysis was estimated to be about 5% (h2SNP
= 0.0557). Nevertheless, we observed a low Chi2 statistic (mean

Chi2 = 1.01) for this analysis, which may be due to the small

sample size.

Investigation of biological context

The PPI network created with the protein-coding genes

implicated by our meta-analysis loci was able to link 5/6 (exception

ofNAT1) genes by the incorporation of 9 linker proteins (Figure 3).

Four small clusters were defined within this network, which

illustrated the differential, yet interconnected functional properties

between clusters. The most prominent pathways enriched in each

cluster (Supplementary material 2, Supplementary Table 4) were

related to cell signaling and organization of the extracellular matrix

(lilac module: ACTG2, COL23A1, FURIN, MMP13, MMP16),

senescence, inflammation and cell death (green module: AKT1,

TP53, TP53RK, TPRKB), glucose and insulin metabolism (magenta

module: MYH9, RAB8A, RIMS2), and immune processes (olive

module: DMXL1, RICTOR). These pathways showed consistency

with the associations observed between sNfL and clinical variables,

including not only inflammation but also those related to thyroid

and renal functions, and to blood lipids (e.g., Parathyroid

hormone synthesis, secretion and action-FDR = 0.0086 in lilac

module-; Thyroid hormone signaling pathway-FDR = 0.0052 in

green module-; Plasma lipoprotein assembly, remodeling, and
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FIGURE 1

Serum neurofilament light chain (NfL) levels (log2-transformed) in BiDirect. Cohorts showed similar distributions of sNfL concentrations (A). There

was a positive correlation of sNfL with age (B). Mean di�erences associated with the diagnostic group (BiDirect cohort: depression, myocardial

infarction-MI-, and population-based control individuals), but not with sex, were observed (C). **p < 0.001, ***p < 0.0001.

FIGURE 2

Genetic associations with serum neurofilament light chain were only identified at the suggestive level. Manhattan and quantile-quantile (QQ) plots

for the discovery genome-wide association study in BiDirect (N = 1,899) (A), and its meta-analysis with ASPS-Fam (N = 2,186) (B). Yellow lines in the

Manhattan plots mark the suggestive threshold for genome-wide significance (p < 1 × 10−5).

clearance-FDR = 0.03 in lilac module). Additionally, network

modules were enriched for distinct cellular compartments

(Supplementary material 2, Supplementary Table 5), mainly:

extracellular matrix and Golgi (lilac module), cytoplasm and

nucleus (green module), presynaptic cytoskeleton and transport

vesicles (magenta module), and the RAVE (regulator of ATPase

of vacuoles and endosomes) and TORC2 (target of rapamycin

complex 2) complexes (olive module).

Because none of the variants in our GWAS reached the

common threshold accepted for genome-wide significance, we also

dissected these associations. For all lead variants from our meta-

analysis loci (rs34523114, rs114956339, rs529938, rs73198093,

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2023.1145737
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


H
e
rre

ra
-R

iv
e
ro

e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
3
.1
1
4
5
7
3
7

TABLE 2 Suggestive genomic loci for sNfL measures in BiDirect and the meta-analysis with ASPS-Fam.

Locus Index
variant

Alleles Chr Index
BP

Index P Index
e�ect

Start
(BP)

End (BP) # Variants #Ind.Sig.
Variants

Ind.Sig.
Variants

#Lead
variants

Lead
variants

Genes
(protein-
coding)

Discovery GWAS (BiDirect; N = 1,899)

1 rs76037384 T/A 2 125357776 2.17E-06 + 125357776 125403277 23 1 rs76037384 1 rs76037384 CNTNAP5

2 rs12674781 C/T 8 1377915 9.64E-06 + 1356333 1378411 25 1 rs12674781 1 rs12674781 -

3 rs184931198 C/T 8 18210838 2.90E-06 + 17954598 18218371 10 2 rs184931198,

rs73198093

1 rs184931198 NAT1,

NATP

4 rs142838371 G/A 8 98741426 6.88E-06 + 98656430 98741426 5 1 rs142838371 1 rs142838371 MTDH

5 rs34372929 AT/A 8 104596668 8.87E-06 + 104530581 104718242 7 1 rs34372929 1 rs34372929 RIMS2

6 rs62576696 A/G 9 118311682 2.15E-06 + 118167915 118488131 100 2 rs62576696,

rs12380012

2 rs62576696,

rs12380012

-

7 rs1842909 C/G 11 18918227 9.10E-06 + 18873142 18939666 25 1 rs1842909 1 rs1842909 -

8 rs146801204 T/C 12 117050196 4.07E-06 – 117039399 117060536 10 1 rs146801204 1 rs146801204 -

9 rs76207901 G/T 13 42524241 7.12E-06 + 42388330 42524241 3 1 rs76207901 1 rs76207901 VWA8

10 rs1514928 C/A 14 62678303 1.29E-06 + 62669677 62678303 3 1 rs1514928 1 rs1514928 -

11 rs8060528 C/T 16 7024428 7.69E-07 – 7011164 7038560 34 1 rs8060528 1 rs8060528 RBFOX1

12 rs74607435 T/C 19 45235700 5.21E-06 + 45235700 45235700 1 1 rs74607435 1 rs74607435 -

Meta-analysis (BiDirect + ASPS-Fam; N = 2,186)

1 rs34523114 A/AT 2 74131786 6.75E-06 – – 74127289 74140230 42 1 rs34523114 1 rs34523114 ACTG2,

TPRKBa

2 rs114956339 G/A 5 118578014 5.88E-06 ++ 118365512 118595407 4 1 rs114956339 1 rs114956339 DMXL1

3 rs529938 T/T 5 177961577 4.61E-06 ++ 177959285 177963534 21 1 rs529938 1 rs529938 COL23A1

4 rs73198093 G/C 8 17954598 6.81E-06 ++ 17954598 18107883 8 1 rs73198093 1 rs73198093 NAT1

5 rs34372929 AT/A 8 104596668 8.20E-06 ++ 104530581 104718242 5 1 rs34372929 1 rs34372929 RIMS2

6 rs10982883 T/C 9 118461688 7.14E-06 ++ 118450617 118488131 40 1 rs10982883 1 rs10982883 -

7 rs1842909 G/C 11 18918227 5.89E-06 ++ 18873142 18939666 24 1 rs1842909 1 rs1842909 -

sNfL, serum neurofilament light chain; Chr, chromosome; BP, base pair; Ind.Sig.Variants, individual significant variants.

Loci were defined using FUMA GWAS (LD block r2 ≥ 0.6, window 500 kb, lead variant p < 1e−5 , clumped variant p < 0.05).
aeQTL effects of variants in the locus according to the BRAINEAC dataset. #means “number of”.
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FIGURE 3

Protein-protein interaction network of mapped and brain

expression quantitative trail loci genes implicated by the identified

(meta-analysis) suggestive loci for serum neurofilament light chain.

Circles denote input genes. Diamonds denote linker proteins. Colors

denote network clusters, whose enrichments for pathways and

gene ontology cellular compartments can be found in the

Supplementary material 2, Supplementary Tables 4, 5.

rs34372929, rs10982883 and rs1842909), we found significant

differences in sNfL levels from BiDirect participants with different

genotypes, particularly in those individuals with two copies

of the effect/minor allele (AA genotype), as compared to

those homozygous for the non-effect/major allele (BB genotype)

(Table 3). With the exception of rs114956339 (p = 0.0016),

we found no interactions for sNfL measurements between the

genotypes of these variants and the diagnostic group (i.e.,

depression, MI and control).

Finally, we tested the associations of meta-analysis loci with

clinical variables. None of these survived correction for multiple

comparisons (adjP > 0.05), therefore we focused on the top

signals (p < 0.05) from these tests only. At this threshold,

we found evidence suggesting associations of meta-analysis

loci with several clinical variables (Supplementary material 2,

Supplementary Table 1). When prioritizing these by the integration

of our results from genetic association and sNfL correlation

tests, we identified overlaps for 18 variables from the clinical

phenotypes (Table 4). These included markers of inflammation

(interferon-α, and interleukins 6 and 1α), renal function

(cystatin, creatinine, albumin and urea), liver and muscle

function (lactate dehydrogenase and lipase), thyroid function (free

thyroxine and free triiodothyronine), and blood lipids (HDL

cholesterol and triglycerides). Noticeably, the index of comorbidity

(which included stroke, leg thrombosis, peripheral artery disease, T
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hypertension, MI, diabetes, depression, cancer, kidney and lung

diseases, chronic arthritis, and Parkinson’s disease) and gray matter

volume (relative to total brain, coming from magnetic resonance

imaging data) were also prioritized.Moreover, the associations with

all sNfL measurements from follow-up visits remained suggested

(Supplementary material 2, Supplementary Table 1).

Discussion

With the increasing interest in the clinical use of sNfL as a

peripheral biomarker for the presence, progression and treatment

response of neurological conditions in general, there is a need

to define which biological factors contribute to physiological

variations in sNfL concentrations. Previous studies have reported

age, body mass index, blood volume, renal function (as measured

by serum creatinine levels), hypertension and pregnancy may

act as determinants of sNfL (3–6, 22). To some extent, we

corroborated the association of sNfL with aging and renal function,

and observed other physiological variables potentially associated

with sNfL in the BiDirect study. Nevertheless, because of the

small-effect interactions and overlaps at the genetic level that we

observed, more studies will be necessary to clarify whether these

findings may represent true determinants of serum sNfL levels or

an epiphenomenon.

As our primary goal was to determine genetic factors that

contribute to modulate sNfL concentrations, we performed a

discovery GWAS and meta-analysis study in Europeans. Although

we report here the findings from both analyses, we focused on the 7

suggestive loci resulting from our meta-analysis of the BiDirect and

ASPS-Fam study populations to gain some biological insights on

the implicated genomic regions. Results from our network analysis

and overlapping genetic associations with a set of clinical variables

show consistency. These highlighted particularly important roles

for inflammation, lipids, thyroid hormones and vesicular transport.

We also found in the literature, for all protein-coding mapped

and/or any-tissue eQTL genes for variants in all of our meta-

analysis loci, functions that are relevant for neuronal development

and function. As neuronal processes may impact the release of NfL

into the CSF and, consequently, its dissemination into peripheral

blood, we focused on identifying potential roles of our meta-

analysis loci in neuronal functions. However, as suggested by our

analyses, it is possible that some variants contribute to regulate sNfL

levels through effects on the body’s metabolism and renal clearance.

In our study, NAT1, RIMS2 and DEC1 (meta-analysis loci

#4–6, respectively) were the more robustly suggested candidate

genes. The NAT1 (N-Acetyltransferase 1) protein forms an

enzymatic complex with ARD1 (N-Alpha-Acetyltransferase 10,

NatA Catalytic Subunit; NAA10 gene) that is required for neuronal

differentiation and dendritic arborization (23, 24). The product of

RIMS2 (Regulating Synaptic Membrane Exocytosis 2) functions

as a Rab effector involved in synaptic membrane exocytosis (25).

DEC1 (deleted in esophageal cancer 1, DELEC1), a lncRNA gene,

is a candidate tumor suppressor (26), which means that it may

regulate the cell cycle and other fundamental cellular processes.

Moreover, meta-analysis locus #1 mapped to ACTG2 (Actin

Gamma 2) and implicated TPRKB (TP53RK Binding Protein)

as a brain eQTL gene. Although the ACTG2 protein primarily

localizes to the cytoskeleton of enteric smooth muscle, this gene

has also been found downregulated during the chemical conversion

of cultured human cortical astrocytes into neurons by treatment

with small molecules (27), suggesting a role for ACTG2 in

neuronal development. TPRKB is a subunit of the KEOPS (Kinase,

Endopeptidase and Other Proteins of small Size) complex, which

is required for the threonyl carbamoyl adenosine (t6A) transfer

(t)RNA modification (28). An increasing number of reports link

defects in these modifications to various neurodevelopmental

disorders, suggesting a role in the development of the nervous

system (29, 30). Additionally, when looking at any-tissue eQTL

effects, genetic variants in meta-analysis locus #1 were found

to regulate the expression of DCTN1 (Dynactin Subunit 1) and

DGUOK (Deoxyguanosine Kinase). The product of DCTN1 is

essential for the retrograde transport of vesicles and organelles

along microtubules mediated by dynein. In neurons, it activates

retrograde axonal transport and regulates microtubule stability

(31, 32). On the other hand, DGUOK is a mitochondrial protein

that may be involved in neuronal differentiation, as suggested by

experiments in retinoic acid-induced differentiated neuronal-like

cells (33).

Meta-analysis locus #2 mapped to DMXL1 (Dmx Like 1).

In ngr1−/− mice, this gene was upregulated in axotomized

corticospinal motor neurons 4 weeks after pyramidotomy (34),

suggesting a role in axonal repair. Meta-analysis locus #3 mapped

to COL23A1 (Collagen Type XXIII Alpha 1 Chain), whose

dysregulated expression has been reported in different brain

regions of mice with repeated experience of agonistic interactions

(35). The work suggested the involvement of extracellular matrix

remodeling (and of COL23A1) in the development of experimental

psychopathologies. Although meta-analysis locus #7 did not map

to protein-coding genes or showed eQTL effects on any in

the brain datasets, we found variants in this locus with any-

tissue eQTL effects on PTPN5 (Protein Tyrosine Phosphatase

Non-Receptor Type 5). This gene regulates synaptic plasticity,

and has been implicated in diverse neurological and psychiatric

disorders (36–38).

We acknowledge important limitations of our study. First,

the relatively small sample size limited the power to detect

genetic associations at the genome-wide level and, therefore,

to estimate SNP heritability. This was indeed reflected by the

statistics from our heritability analyses. Second, serum samples

from non-fasting study participants were used to determine

sNfL concentrations. However, it is unknown if fasting status

influences sNFL levels. Future assessments of sNfL levels in

fasting and non-fasting blood should clarify whether this is a

relevant factor for sNfL measurement. And, third, the nature

of the study design of the sample populations included in the

present study derived in an enrichment of individuals with

depression, cardiovascular risk factors and cardiovascular disease.

While most prior research focused on neurological conditions,

recent studies have shown increased levels of sNfL in patients

with cardiovascular or metabolic conditions and multimorbidity

(39). In fact, we also showed this to be the case in the

BiDirect study. To overcome this, we adjusted for these conditions

and other confounding factors, including age. We expect that
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TABLE 4 Prioritized clinical variables in BiDirect showed significant correlations with sNfL and the GWAS meta-analysis loci.

BiDirect time
point

Variable label Instrument E�ective N # Variants p
< 0.05

sNfL Pearson
p-value

sNfL Pearson
coe�cient

dx Index of comorbidity Comorbidity 1,899 2 0 0.1889

s0 Gray matter volume

relative total brain

(f)MRI 1,208 7 0 −0.2749

s0 HDL cholesterol i.S.

mmol/l

Blood lipids 1,849 26 1.40E-03 0.0741

s0 Triglyceride i.S. mmol/l] Blood lipids 1,850 3 3.60E-02 −0.0488

s0 Interleukin-6 (IL-6) i.S.

pg/ml

Inflammation 1,880 7 3.60E-02 −0.0483

s0 Interleukin-1α (IL-1α)

i.S. pg/ml

Inflammation 1,880 7 4.10E-02 −0.047

s0 Lactate dehydrogenase

i.S. µkatal/l

Liver+muscle

function

1,850 38 2.90E-07 0.1189

s0 Lipase i.S. µkatal/l Liver+muscle

function

1,841 21 1.70E-03 0.0732

s0 Cystatin i.S. mg/l Renal function 1,842 51 0 0.3109

s0 Creatinine i.S. µmol/l Renal function 1,850 30 0 0.2028

s0 Urea i.S. mmol/l] Renal function 1,845 31 0 0.197

s0 Albumin in serum (i.S.)

g/l

Renal function 1,849 21 3.50E-04 −0.0831

s0 Free triiodothyronine

(ft3) i.S. pmol/l

Thyroid function 1,792 1 7.70E-04 −0.0793

s4 Interferon-alpha

(IFN-α) i.S. pg/ml

Inflammation 957 21 3.10E-02 −0.0698

s4 Lactate dehydrogenase

i.S. µkatal/l

Liver+muscle

function

968 26 2.60E-06 0.1504

s4 Creatinine i.S. µmol/l Renal function 970 4 2.50E-09 0.1899

s4 Urea i.S. mmol/l Renal function 971 4 1.30E-09 0.1933

s4 Free thyroxin (ft4) i.S.

pmol/l

Thyroid function 970 23 8.00E-03 0.0851

#means “number of”.

this is sufficient to adequately address condition-induced biases.

Finally, we did not perform analyses within each condition

cohort due to their limited sample sizes. Overall, we are

positive that the future inclusion of appropriate population-based

cohorts will help establish these and other genomic regions

as genetic drivers of sNfL variations in individuals without

neurological conditions. Further bioinformatics and functional

studies should help to elucidate the biological relevance of

our findings for sNfL measurements. The potential genetic and

physiological factors associated with sNfL that were identified

by our study warrant future investigations that will pave the

way for an optimal application of sNfL as a marker of

neuronal conditions.
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