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Introduction: Hereditary transthyretin amyloidosis (ATTRv amyloidosis) is a rare

neurological hereditary disease clinically characterized as severe, progressive,

and life-threatening while the age of onset represents the moment in time

when the first symptoms are felt. In this study, we present and discuss our

results on the study, development, and evaluation of an approach that allows

for time-to-event prediction of the age of onset, while focusing on genealogical

feature construction.

Materials and methods: This research was triggered by the need to answer the

medical problem of when will an asymptomatic ATTRv patient show symptoms of

the disease. To do so, we defined and studied the impact of 77 features (ranging

from demographic and genealogical to familial disease history) we studied and

compared a pool of prediction algorithms, namely, linear regression (LR), elastic

net (EN), lasso (LA), ridge (RI), support vector machines (SV), decision tree (DT),

random forest (RF), and XGboost (XG), both in a classification aswell as a regression

setting; we assembled a baseline (BL) which corresponds to the current medical

knowledge of the disease; we studied the problem of predicting the age of

onset of ATTRv patients; we assessed the viability of predicting age of onset on

short term horizons, with a classification framing, on localized sets of patients

(currently symptomatic and asymptomatic carriers, with and without genealogical

information); and we compared the results with an out-of-bag evaluation set and

assembled in a di�erent time-frame than the original data in order to account for

data leakage.

Results: Currently, we observe that our approach outperforms the BL model,

which follows a set of clinical heuristics and represents current medical practice.

Overall, our results show the supremacy of SV and XG for both the prediction tasks

although impacted by data characteristics, namely, the existence ofmissing values,

complex data, and small-sized available inputs.

Discussion: With this study, we defined a predictive model approach capable to

bewell-understood bymedical professionals, comparedwith the current practice,

namely, the baseline approach (BL), and successfully showed the improvement

achieved to the current medical knowledge.
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1. Introduction

Hereditary amyloidosis related to variant transthyretin (ATTRv
amyloidosis) (1) is a multisystemic disease, with predominant
involvement of the heart and the peripheral nervous system.
Point mutations in transthyretin, a plasma transport protein,
mainly produced in the liver lead to instability of the tetrameric
structure of the native protein and disassembly of the monomers
that undergo a misfolding process resulting in a widespread
deposition of amyloid in the extracellular space of many tissues
with consequent organ dysfunction (2). Genetic heterogeneity
(more than 130 pathogenic mutations have been described) and
phenotypic heterogeneity (variable organ involvement and variable
age of onset) are characteristics of this condition, but they are
not completely understood. Phenotypic heterogeneity, either the
variability of the age of onset or the predominance of a given
organ involvement, is driven both by mutation and by genetic
background (3). Nonetheless, patients with the same mutation
originating in the same region, and even in the same family, may
present significant clinical diversity. The variability of the age of
onset has been extensively studied and its causes are the object of
different types of research, including different strategies to identify
genetic modifiers (4, 5).

In recent years, researchers developed several approaches to
study and predict future symptom occurrence in patients with
different, complex, and irregular diseases. A few examples are
breast cancer occurrence and renal artery stenosis (6), Framingham
risk functions for cardiovascular diseases (7), and, most recently,
genetic frontotemporal dementia (8). In these cases, most of
the research focuses on applying statistical-based analysis that is
dependent on the dimension of the patient cohorts and sometimes
suffers from a lack of enough follow-up temporal data.

In the case of ATTRv amyloidosis, where we have variable
penetrance of the gene, the probability of a carrier of a given
mutation developing the disease has been extensively studied. This
variable penetrance translates into a variable age of onset from
the late teens until very old ages and also explains many cases of
sporadic presentation of the disease in probands, later shown to
have relatives with the same mutation remaining silent throughout
their lifespan (9). This is a phenomenon called non-penetrance of
the gene. It has been noted in this case that penetrance has been
found to be influenced by the mutation, the genetic background,
the gender of the patient, and the gender of the transmitting
parent (10).

The disease is present worldwide (11), but it was initially
described as occurring in clusters or foci related to the same
mutation, sometimes known to originate from a common founder,
many centuries ago. Most of these clusters are related to the
TTRVal30Met mutation (also known as p. TTRVal50Met), but
other mutations also show the same behavior (12, 13). The study
of large clusters of TTRVal30Met mutation such as those present in
Portugal, Sweden, and Japan showed a particular relation between
the symptomatic presentation and the early or later age of onset,
a positive correlation of the age of onset inside the same family
but also an unexpected (14) finding of anticipation of the age
of onset, related to the gender of the patient, and the gender of
the transmitting parent (15). For subjects belonging to an affected

family, the study of the pedigree allows for the definition of the
risk of being a carrier of the mutation and to proceed to a blood
genetic test (preferably under genetic counseling conditions) to
identify those who are carriers of the mutation causing the disease
in their relatives (16). However, after this definition, it would be
important to predict the age of onset of the disease, the moment
when the first symptoms will appear, prompting the need to start
one of the presently available disease-modifying treatments, and the
moment problems commonly disabling will start impacting their
personal, familial, professional, and social life. The development
of a sound method to predict the age of onset of a carrier could
also contribute to the organization of medical care, defining that
the moment carriers should be regularly observed to detect the first
symptoms or signs of the disease.

Several studies emphasized the importance of early onset
of disease-modifying treatments (17) and we can even consider
that pre-symptomatic treatment, when the pathogenic process
has started but the functional reserve of affected tissues, such
as the heart and the peripheral nerves prevent symptomatic
manifestations of this silent evolution would have the best results
in the long term. The design of a clinical trial targeting this pre-
clinical stage would benefit from the possibility of predicting the
age of onset of the asymptomatic carriers based on the knowledge
of the age of onset of their relatives. Recently, in Conceição et al.
(18), authors discussed the prediction of the age of onset in ATTRv
patients and proposed a method currently known as PADO which
is presented as based in the clinical practice. Further discussion can
be found in Section 4.

We define the age of onset as the moment when a set of
characteristic symptoms progressively confluent andmore frequent
and severe start, disregarding isolated, inconstant, and unspecific
complaints. The diagnosis must always be confirmed with the
identification of the mutation (when not done previously) and the
confirmation of amyloid deposition in any tissue, with the least
invasive biopsy, such as abdominal fat, salivary gland, or skin punch
biopsies). In the rare cases of recurrent biopsies without evidence
of amyloid deposition, the diagnosis is accepted only if objective
and unequivocal symptoms of the disease are present and other
potential causes have been excluded (19).

Predicting the age of onset for ATTRv amyloidosis patients
is difficult as the disease is rare, with genetic and phenotypic
heterogeneity and has a wide range of possible age of onset values.
Family history can help this evaluation if other family members’
ages of onset are known, but we must understand how to valorize
this information according to what we know about the variability
of the age of onset in many families.

In this study, we follow-up on our previous study on
genealogical feature construction (20–22). Our objective is to
study, develop, and evaluate an approach to allow time to event
the age of onset prediction, in a robust manner, while focusing
on genealogical feature construction. This methodology lays the
foundation to assess the disease evolution over time.

Our main contributions are (i) the definition of a large set
of genealogical-based features constructed from heterogeneous
clinical data sets, (ii) the study and comparison of a pool of machine
learning algorithms optimized for the age of onset prediction,
and (iii) the comparison of the results with an out-of-bag
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TABLE 1 Two thousand four hundred and seventy-two patients

diagnosed with ATTRv amyloidosis in Unidade Corino de Andrade as of

December 2021.

Symptoms Gender

Symptomatic (before 2018) Male 1,258

Female 1,001

Symptomatic (after 2018) Male 110

Female 103

Asymptomatic or pre-symptomatic Male 178

Female 333

These results show that there are 511 patients asymptomatic patients as of late 2021.

evaluation set, assembled in a different time-frame than the
original data.

2. Materials and methods

2.1. Data

Our data comes from Unidade Corino de Andrade, a disease
specialized unit officially recognized as a Portuguese National
Reference Center. It is integrated into one of the largest Portuguese
public hospitals, Centro Hospitalar Universitário de Santo António,
and its medical professionals treat and maintain accurate patient
records since the 1940’s. From their records, we started by selecting
information from 2,259 patients, diagnosed and followed before
2018. Recently, in order to account and evaluate for possible leakage
problems, we added a validation data set and included data from
213 extra patients, diagnosed between 2018 and the end of 2021
(see Table 1). Of note currently, there are 511 patients classified
as asymptomatic carriers that are expected to show symptoms in
the next few years. Current patients are spread over 932 families,
and these numbers tend to increase over time, as new families are
diagnosed.

2.2. Baseline model

Currently, for ATTRv amyloidosis, the incorporation of a
predicted age of onset to insure a more accurate asymptomatic
patient follow-up is not an established practice. One of the most
well-known studies that reflect on this problem can be found in
Lemos et al. (15).

By taking Lemos et al. (15), we defined a baseline rule model
that assumes a linear trend between the age of onset of a patient
and that of the transmitting ancestor. In this case, we have

if (father and son) then ŷ = parent(ageonset)− 6.06,

if (father and daughter) then ŷ = parent(ageonset)− 1.23,

if (mother and son) then ŷ = parent(ageonset)− 10.43,

if (mother and daughter) then ŷ = parent(ageonset)− 7.43.

To produce comparable results, we added to the baseline a rule
for cases where we do not have information regarding the gender
or the age of onset of the transmitting ancestor. Therefore, for
simplicity purposes, we state that the patient will most likely feel

symptoms of the disease in the 2 years after the prediction time point.
Thus, the last rule states that

if (data unknown) then ŷ = patient(current_age)+ 2.

These rules, which have different constant values that represent
the average difference in the age of onset of all previously diagnosed
known pairs of (parent and child), are based on the existence of
an anticipation inheritance mechanism. This genetic anticipation, a
common factor in most hereditary diseases, indicates that a patient
has a higher risk to show symptoms of the disease prior to that
of the parent(s). In this case and for each known different pair of
(patient, ancestor) gender, we averaged the overall differences of
each pair. These values were obtained from the current pool of
patients to allow for a sound comparison between the baseline and
our machine learning based approach.

We will use this baseline (BL) as a reference in the validation
(results in Section 3) of a more powerful predictive approach.

2.3. Approach

In this study, we focused on answering two clinical questions
formulated in a classification and a regression setting.

In the classification-based setting, our purpose is to infer “if
a patient previously diagnosed with the genetic error will show

symptoms of the disease in the next 4 years.” In this case, we will
not be interested in the patient’s point age of onset but rather
in whether we will be capable of accurately diagnosing them as
showing symptoms of the disease. The results will answer how
accurate we are capable to diagnose a patient as symptomatic in the
period between 2018 and 2021.

In the regression-based setting, our purpose is to infer “when
will a patient show symptoms of the disease.” In this study, we
are interested in the difference between the ŷ and the y values to
accurately model this time event.

2.3.1. Patient representation
To answer these problems we start by representing a patient in

specific moments in time (age marks). This is not an easy task since
we are interested in a formulation that captures the highly variable
risk at which a patient will show symptoms of the disease, while
focusing on different sets of characteristics, namely, demographic,
genealogical, and based on familial disease history. In this case, we
chose to construct features that aggregate information from familial
connections between patients and their family members. To do
this, we implemented a version of the lowest common ancestor
algorithm to have a set of valid relations for each patient (23), which
helps to supply the aforementioned features. Therefore, overall, for
a specific patient and for each age mark, we calculate three sets of
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TABLE 2 List of 77 original and generated features classified between patient, first level, and extended level.

Type Description Number of features

Patient Patient’s gender 1

Father and mother age onset 1

Born before father or mother had symptoms 1

Year of birth, death, and onset 3

Current age and age of death 2

Survival current and survival length 2

Death and onset status 2

Age of onset (target variable) 1

First level Number of Children (by gender) 2

Number of siblings (by gender) 2

Number of uncles and aunts 2

Number of nephews and nieces 2

Number of children with the disease (by gender) 2

Number of siblings with the disease (by gender) 2

Number of uncles with the disease (by gender) 2

Number of nephews with the disease (by gender) 2

Avg, max and min age of onset of children (by gender) 6

Avg, max and min age of onset of siblings (by gender) 6

Avg, max and min age of onset of uncles and aunts 6

Avg, max and min age of onset of nephews and nieces 6

Extended Avg, max and min age of onset of patients followed at the clinical unit (by gender) 6

Avg, max and min age of onset of patients in the family tree (by gender) 6

Avg, max and min age of onset of early onset patients (patients with age of onset < 50) 6

Avg, max and min age of onset of late onset patients (patients with age of onset ≥ 50) 6

Overall, we have features that focus on demographic, clinical, and genealogical to familial disease history.

features (see Table 2): patient feature set, first-level feature set, and
extended feature set. By taking into account these sets of features
we characterize our patients in different age marks and later use
them to train different sets of models. These are specialized on an
age mark and will generate different risks for each patient. In this
case, the age marks for which we group our patients are 22, 25, 28,
31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, and 64 years old.

The representation of a patient at a specific age mark is only
valid if they were still alive both for the classification and regression
case and if they were still considered asymptomatic by the medical
team in the regression case. As an example, in Figure 1, we show,
for a simulated patient, its valid age marks, which range from 22
to 30 years; that the patient is symptomatic, with an age of onset
of 30 years; that the asymptomatic ages range from 22 to 28 years
old; and that the patient died with 39 years. Therefore, this patient
cannot be used in models for ages >39 years (age of death).

2.3.2. Model construction
After the construction of the set of valid age mark instances

for each patient, both for the training/ testing and validation sets,
we assembled a set of functions to assist the creation of our model

construction and evaluation phases (see Figure 1). To evaluate our
approach, we selected a temporal validation block (6, 24). To do
so, we sliced the data set into two parts: one part containing early
treated patients that were used to develop the model, and another
part containing the most recently treated patients. We started with
a non-random split (6) in which patients that showed symptoms
and were diagnosed prior to 2018 were used in the training/
testing sets to check the robustness of the model, while the patients
diagnosed after 2018 and the patients that currently have not shown
symptoms, but are expected to, were bagged together and used
in the validation phase. The definition of training, validation, and
testing is done next.

2.3.3. Model evaluation
To compare our approach with the medical baseline, we

separated between the patients with known parent(s) age of onset
and those without. For that purpose, we developed three types of
models: data set A, containing patients with previously diagnosed
ancestor(s); data set B, which contains those for whom we do not
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FIGURE 1

Conceptual model of virtual age scenarios.

have a measurable age of onset for the ancestor; and data set F,
composed of all available records.

When building a machine learning model, it is essential to
evaluate its performance accurately. To do so, each data set (data
set A, data set B, and data set F) was further split into three groups
namely, training, testing, and validation sets.

In broad terms, the training data set constitutes the reference
samples by which an algorithm learns a specific concept. Once
the model has been trained, the testing data set is used to assess
the performance of the model and to allow for a good tuning of
specific hyperparameters capable to balance between over (when
the model performs well on the training set but poorly on unseen
data) and under fitting (when the model is too simple or has
poor performance on both the training and test data). Finally, the
validation data set is used to evaluate the model’s final performance
on unseen data after it has been optimized using the training and
testing sets. This set should only be used once, after the model has
been optimized, to provide an unbiased estimate of the model’s
performance on new data and to provide a better indication of how
well the model will perform in the real world.

After dealing with the horizontal and vertical break of the
data set, i.e., the separation between different sets of features and
instances to train/ test and validate our study, we aligned (see
Figure 1) each patient’s instance according to the age it represented.
This alignment allowed for the construction and training of
different models according to the age instance of each patient. With
this process, each patient has a set of prediction results, which
correspond to a risk factor for each age instance. In this case,
the prediction of the age of onset of a patient at each age is an
independent task which allows for the bagging of sets of patients
from different temporal decades. This way, we end up with an
independently tuned model for each time horizon and are able to
select the best set of hyperparameters and algorithms for relatively
small data sets (25).

3. Results

In this section, we present the experimental set-up and
our results both for the classification as well as regression
based approaches.

3.1. Experimental setup

As discussed previously, for each asymptomatic patient, we
considered the information known at the time at which they were
22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, and 64 years
old (as long as they were still asymptomatic) and instantiate an
individual model for each group of patients. This means that for
each age group, and each data set, we have a single experiment with
each of the nine different algorithms (i.e., LR, EN, LA, RI, SV, DT,
RF, XG, and BL). In total, we ran 405 experiments to compare the
results for different patients’ ages.

As for our results, these are presented in two settings.
Regarding the question if it is viable to check if a patient will feel

symptoms of the disease in the next 4 years (classification setting),
we present and analyze the validation set both for asymptomatic
and symptomatic patients. Therefore, for each patient, we analyzed
each prediction age of the last known instance of each patient before
2018 and verify if the calculated age of onset fell in the period
set between 2018 and 2021 or not. This resulted in each patient
having a single prediction value, which allows us to group all the
patients together, independently of the disease stage they were at
(see Table 3 and Figure 2). In this case, our metrics of choice will
be recall (R) also referenced as true positive rate, which indicates
how well a model is capable to identify all symptomatic patients
and precision (P), also referred to as positive predictive value,
which indicates how precise or accurate a model’s symptomatic
predictions are.

On the contrary, regarding the prediction of age of onset
(regression setting), we analyze the average position (rank) of
the mean absolute error (MAE) and the root mean squared
error (RMSE) of each pair of (algorithm and data set) results.
We then compare how each model performed over the full set
of experiments (see Table 4 and Figure 3). We also analyze and
compare the average rank in the training/ testing sets with the one
in the validation set. This allows us to infer as to the robustness
of our approach and to distinguish our models between top and
worst performers.

The mean absolute error (MAE) is an evaluation metric used
to measure the average absolute difference between the actual
and the predicted values in a set of data. It measures how far,
on average, the predictions are from the true values, and it is
obtained by taking the absolute value of the difference between each
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TABLE 3 Classification-based metrics evaluation.

Model avg(P)± std avg(R)± std avg(F1)± std avg(A)± std

V(A) BL 0.42 ± 0.30 0.61 ± 0.37 0.48 ± 0.31 0.54 ± 0.26

DT 0.69± 0.26 0.96 ± 0.05 0.77± 0.19 0.76± 0.20

EN 0.56± 0.31 0.95± 0.07 0.66± 0.26 0.65± 0.24

LA 0.63± 0.33 0.88± 0.11 0.68± 0.24 0.67± 0.24

LR 0.53± 0.33 0.90± 0.25 0.62± 0.30 0.63± 0.25

RF 0.75± 0.30 0.89± 0.25 0.80± 0.26 0.83± 0.18

RI 0.55± 0.31 0.97± 0.06 0.65± 0.25 0.65± 0.23

SV 0.92 ± 0.25 0.81± 0.26 0.85 ± 0.25 0.93 ± 0.06

V(B) XG 0.66± 0.31 0.90± 0.25 0.73± 0.27 0.77± 0.19

BL 0.55 ± 0.08 1.00 ± 0.00 0.71 ± 0.07 0.55 ± 0.08

DT 0.71± 0.15 0.98± 0.03 0.81± 0.10 0.74± 0.16

EN 0.62± 0.12 0.99± 0.02 0.76± 0.09 0.65± 0.12

LA 0.99± 0.06 0.88 ± 0.11 0.92± 0.08 0.92± 0.08

LR 0.57± 0.10 0.98± 0.06 0.71 ± 0.07 0.57± 0.10

RF 0.77± 0.17 0.98± 0.03 0.86± 0.11 0.80± 0.16

RI 0.59± 0.10 1.00± 0.01 0.74± 0.07 0.62± 0.10

SV 0.99 ± 0.03 0.97± 0.05 0.98 ± 0.03 0.97 ± 0.03

V(F) XG 0.70± 0.16 0.99± 0.02 0.81± 0.11 0.73± 0.16

BL 0.55± 0.12 0.91± 0.04 0.67 ± 0.09 0.58± 0.08

DT 0.55 ± 0.18 0.98 ± 0.03 0.69± 0.14 0.57± 0.17

EN 0.59± 0.19 0.95± 0.06 0.71± 0.12 0.62± 0.15

LA 0.99± 0.03 0.77 ± 0.13 0.86± 0.08 0.88± 0.08

LR 0.56± 0.21 0.96± 0.05 0.68± 0.15 0.56 ± 0.19

RF 0.65± 0.20 0.98 ± 0.03 0.76± 0.14 0.69± 0.19

RI 0.57± 0.17 0.98 ± 0.03 0.70± 0.13 0.60± 0.16

SV 0.99 ± 0.02 0.88± 0.08 0.93 ± 0.04 0.94± 0.04

XG 0.59± 0.18 0.98 ± 0.03 0.72± 0.13 0.63± 0.16

With a black background, we show the top performers, and in light gray, we show the worst performers. (P, precision; R, recall; A, accuracy; F1, harmonic mean of the precision and recall).

Overall, the best results were achieved by SV.

actual value and its predicted value and then taking the average
of all those absolute differences. As for root mean squared error
(RMSE), it corresponds to a metric used to measure the average
difference between the actual and predicted values in a set of data.
The main difference between MAE and RMSE is that the later
(RMSE) is more sensitive to larger differences (outliers) than the
first (MAE).

3.2. Is it viable to check when will a patient
feel symptoms?

For the classification-based evaluation, and by considering the
interval between 2018 and 2021, we had to align each patient at the
beginning of 2018 and transform the predicted age of onset to a
year instance. Due to the lack of a valid predictionmodel prior to 22

years of age, here we had to exclude nine patients, that are currently
asymptomatic.

In the study, we observe that in the early ages, we are mostly
able to identify the negative examples (patients that will remain
asymptomatic). This result decreases in the later onset ages (e.g.,
before 50 years old as opposed to after 50 years old). We can see the
impact by the peek of the onset age dispersing the results following
the period of 30–35 years.

Overall, these results are impacted by the rather small
prediction period that ranges between 2018 and 2021. The results
of the top and worst performers show that although there is some
fluctuation, the overall top performer is the support vector classifier
(SV) algorithm for most of the chosen metrics. In the case of recall
(R), most algorithms obtain good results, and SV is usually well
above 0.9 except in one point for data set A. In fact, when having
a closer look at the different ages, it is clear the consistency of the
SV algorithm.
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FIGURE 2

Evolution of precision and recall for V(A), V(B), and V(F) data set (these and other metrics, aggregated in the age dimension, are referenced on

Table 3). In the early ages, we are mostly able to identify the patients that will remain asymptomatic. This decreases in the later onset ages (e.g.,

before 50 years old as opposed to after 50 years old). The best results are given by SV.

TABLE 4 Average MAE ranks of each tuple (algorithm and data set) for

model-based imputation with parameter k = 10.

T(A) T(B) T(F) V(A) V(B) V(F)

BL 7.47 8.47 8.73 8.83 8.97 9.00

DT 4.63 5.00 4.67 3.83 3.30 3.03

EN 5.57 6.00 4.57 4.77 5.87 5.90

LA 4.63 5.97 6.27 6.60 7.80 8.00

LR 8.13 8.47 6.67 3.97 4.77 5.33

RF 2.43 1.73 1.50 5.10 4.47 4.23

RI 4.03 2.90 3.70 5.53 5.90 5.70

SV 5.60 6.67 7.17 2.00 1.00 1.00

XG 2.50 1.73 1.73 4.37 2.93 2.80

T (data set) corresponds to training+testing results. V (data set) corresponds to validation

results. With a black background, we have a top (2) top performers. With gray coloring, we

have a top (2) worst performers. Overall, the MAE results are not stable. In the training +

testing set, we have as top performers, the RF and XG. In the validation set, we have as top

performers SV and XG.

3.3. When will an asymptomatic patient feel
symptoms of the disease?

When comparing the validation results of the MAE error
distribution among the different ages (see Figure 3), it is clear that
for the data set A case, and at the early ages, our approach ranks the
top when compared with the BL although in later years this is not
as clear. This fact is likely affected by the decrease in the validation

set size throughout the age groups. It is important to reference that
this approach suffers from a lack of new asymptomatic patients as
the ages increase (presently, the average age of onset of the training/
testing + validation sets is 36.32 years) as well as in the change
between the training/testing and validation sets (see Table 1).

As for data set B and data set F, it is clear that our approach
shows the best results, with SV being the best-chosen algorithm and
XG being the second-best.

Regarding the average ranks (see Tables 4, 5), and when
comparing the dispersion and difference between the top two
performers, we have two main observations. First, on the one hand,
the different MAE ranks are not stable between the training/ testing
and validation sets. When taking a closer look at the RMSE average
ranks, we see that this does not happen. These rank difference
between training/testing (T) and validation (V) sets in MAE results
suggest that there is a difference in large error distribution in SV
results. This can indicate some future problems since we want
to have some assurances as to the future performance of the top

selected approaches.
Second, that, there is a good degree of stability of the ranks

between each vertical data set separation (e.g., between data set A,
data set B, and data set F).

4. Discussion

This study explores genealogical features in modeling and
predicting the age of onset of ATTRv amyloidosis patients. The
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FIGURE 3

Evolution of MAE for Val(A), Val(B), and Val(F) data sets. For the data set A case, and at the later ages, our approach ranks top when compared with the

BL. This also happens in data set B and data set F, notwithstanding the fact that the average error rates of the BL decrease as current age increases.

There is some instability in the LR results in the early ages, for data set B resulting of the large number of features. Overall, the SV and XG correspond

to the best models for a high majority of age models created.

definition of different sets of data explores different levels of pre-
existing information regarding the patients’ ancestry.

To compare our approach with current medical practice, we
studied works focused on ATTRv amyloidosis guidelines regarding
the age of onset of asymptomatic patients, namely, Lemos et al. (15)
and Conceição et al. (18).

Our purpose was to provide a concise and clear baseline
method, which follows the current medical practice. The baseline
needs to be defined in a manner that enables its implementation
without major adaptations.

In the first study, authors studied the evolution of the age
of onset in a group of families and found the existence of an
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TABLE 5 Average RMSE ranks of each tuple (algorithm and data set) for

model-based imputation with parameter k = 10.

T(A) T(B) T(F) V(A) V(B) V(F)

BL 8.87 8.87 9.00 8.80 8.97 8.93

DT 4.87 4.13 4.20 3.43 3.63 3.00

EN 5.00 6.00 6.07 4.77 5.80 6.13

LA 5.53 7.73 7.80 6.53 7.80 7.93

LR 6.20 6.33 6.67 4.43 4.90 5.13

RF 4.80 3.13 3.20 4.87 4.10 4.13

RI 4.53 5.53 6.07 5.67 6.07 6.20

SV 1.27 1.07 1.00 2.33 1.07 1.00

XG 3.93 2.20 2.00 4.13 2.67 2.53

T (data set) corresponds to training + testing results. V (data set) corresponds to validation

results. With a black background, we have a top (2) top performers. With gray coloring, we

have a top (2) worst performers. Overall, we have stable rank results since top performers, for

the training+testing set, are SV and XG, while in the the validation set, we also have as top

performers SV and XG.

anticipation mechanism (26), a common factor in hereditary
diseases. This fact has been studied for ATTRv amyloidosis in other
geographic areas with the studies of Drugge et al. (27), Tashima
et al. (28), and Cisneros-Barroso et al. (29). This study, which used
a large enough pool set of patient records, presents a statistically
based foundation that can foster the development of a wide range of
analytical inferences focused on the distribution of the age of onset
of ATTRv patients and its genealogical influence.

In a later study (18), a team of doctors with a wide knowledge in
treating and following patients diagnosed with ATTRv amyloidosis
debated the importance of assessing the predicted age of onset of
asymptomatic patients (PADO). As the authors acknowledge, the
definition of a prediction value can insure the correct monitoring
of known asymptomatic subjects until such time that the onset is
medically observed with fewer costs for the public health system.
Authors mention that PADO depends on patient mutation, the
typical age of onset for that mutation, and the age of onset in family
members with ATTRv amyloidosis, specifically its proband (e.g.,
family first diagnosed case).

When comparing both studies, a few differences emerge. In
Lemos et al. (15), researchers study the impact of genealogical
inheritance factors and validate their work with data results.
In the case of subjects in the asymptomatic status, they only
consider information known from their affected relatives and
present their results in a clear and concise manner as to allow for
the implementation of the resulting rules in a non-biased manner.
On the contrary, in Conceição et al. (18), we have a few concerns.

Although we know in different mutations and in many regions,
there is a trend in favor of early or late onset with correspondence
on the predominant neurological or cardiac phenotype, we also
know that there is a major variability in the age of onset and the
clinical presentation, even when we consider such subgroups of the
disease.

The authors of Conceição et al. (18) indicate that their approach
depends on the particular mutation, the typical age of onset for
that mutation, and the age of onset in family members with ATTR
amyloidosis, without elaborating as to in what manner should the
age of onset of family members be used. By this, we mean that

authors did not specify if a patient with known family will have
a PADO value that gives the average AOO of patients in his/her
family tree or will have a PADO that corresponds to the same value,
or the result of an anticipation factor when considering the proband
and/or immediate family members. These are only a few of the
possible considerations that can be made regarding PADO and why
it is unclear when it comes to the usage of family data.

We would also like to refer that the authors of Cisneros-
Barroso et al. (29), while assessing the hypothesis of an anticipation
factor in the AOO in a cohort of Mallorca patients, examine
PADO. They state that while in a previous international consensus
on ATTRV30M amyloidosis authors recommended to start
monitoring asymptomatic carriers 10 years before PADO, their
findings suggest that this should be done with caution, specifically
when patients come from endemic areas where ATTRv amyloidosis
is common.

In summary, when comparing Lemos et al. (15) and Conceição
et al. (18), it is clear that while in the first study, authors reflect
on the fact that there is an evolution related with the AOO of
patients when their family data is taken into consideration, and
that despite of the obvious experience of Conceição et al. (18)
authors’ in treating and following patients, their study lacks a
clear mathematical description of the rules that correspond to the
V30M variant, which allows for their translation to computational
operations. As such, the study of Lemos et al. (15) represents a more
suitable baseline (BL) to compare with our study.

Regarding our results for the prediction questions, we have the
following issues. Our results in the classification problem show the
supremacy of the SV algorithm even though they are impacted by
the rather small prediction period. As for the regression problem,
our results show the supremacy of themachine learning approaches
when compared to the baseline results: in particular, SV and XG
are ranked as top performers. In specific, XG results tend to be
the most stable, when comparing training/ testing and validation
results, namely, with the MAE rank values. Indeed, although SV
ranked first in the validation set, its inconsistency between testing
and validation sets leads us to rely mainly on XG. In the case
of XG, its good position was already expected in part due to
the algorithm’s strengths and the intrinsic characteristics of the
problem of predicting the age of onset of ATTRv amyloidosis
patients, with clinical and genealogical data, namely, the existence
of missing values, complex data, and small sized available inputs.
It is also important to reference that these results might well be
influenced by XG built-in capabilities to prevent overfitting while
working well with small data, as well as with data with subgroups.
The differences in size between the training/ testing and validation
set can impact the generalization of each algorithm and can lead
to differences between training/ testing and validation results (see
Table 1).

Since some of the tried methods showed some instability,
namely, in later ages (see Figure 3), from a cautionary perspective,
we also suggest the usage of DT, as a more intelligent, but still
human perceptible, baseline. In practice, this method represents a
simpler approach that, regardless of age group and data set, can
function as a computational baseline.

To the best of our knowledge, this is the first work that
studies and presents a data-oriented approach that can report
the risk of a patient showing symptoms before they appear. We
base our results and conclusions on data from a single reference
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center but with the largest number of patients and families with
the same mutation and genetic background known worldwide.
The registers we analyzed go back many decades and have been
collected and sanitized according to similar criteria. Although
this is an important work for guiding the clinical follow-up of
Portuguese families, from a cautionary perspective, it would be
important to verify its replicability in other disease foci, namely,
with different mutations and clinical characteristics such as France,
Spain, Sweden, and Japan (30). By this, we mean that even though
it may be difficult to apply our conclusions to other centers and
groups of patients, we think this study can be a first step in defining
the much-needed guidelines for a data-oriented prediction of the
age of onset of a carrier of a TTR mutation.

Overall, with this study, we successfully achieved our goals
as we defined a predictive model capable to be well-understood
by medical professionals since in the top performance, we have
tree-based algorithms; compared with the current medical practice,
namely, the baseline approach (BL) and successfully showed the
improvement with good predictive results. We also defined an
adequate experimental approach that enables us to explore different
sets of genealogical features and compare their results in a time-to-
event prediction setting.

Regarding future work directions, we intend to (i) work on
the definition of a modeling strategy to predict the age of onset
independently of patients’ current age (ensemble guided approach);
(ii) work on a modeling strategy that uses genotypic information of
the patients, i.e., the genetic mutation of each patient; (iii) study
the age limits for which to develop statistical validated models; (iv)
attempt to accurately and amply model the costs of asymptomatic
patients as well as missed treatments for symptomatic patients; (v)
study different approaches to extract valuable information from
genealogical data sets; and (vi) explore the definition of another
medical baseline that follows the inferences of Conceição et al.
(18), although in this case, we would need to integrate information
from several different and geographically disperse medical centers.
Finally, we add that we believe that there is also a need to focus
on studying explainability approaches, such as LIME, in order to
understand a few of the irregular trends found in our results and
supply medical professionals with a set of workable results for their
daily patient assessment.
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