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opening the blood-brain barrier
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Yuelin Cheng, Linyan Liu, Shunli Kan, Xinyan Zhao, Sa Feng,

Zehua Jiang and Rusen Zhu*
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Due to the complex pathological mechanisms of Alzheimer’s disease (AD), its

treatment remains a challenge. One of the major di�culties in treating AD is

the di�culty for drugs to cross the blood–brain barrier (BBB). Low-intensity

ultrasound (LIUS) is a novel type of ultrasound with neuromodulation function.

It has been widely reported that LIUS combined with intravenous injection of

microbubbles (MB) can e�ectively, safely, and reversibly open the BBB to achieve

non-invasive targeted drug delivery. However, many studies have reported that

LIUS combined with MB-mediated BBB opening (LIUS + MB-BBBO) can improve

pathological deposition and cognitive impairment in AD patients andmice without

delivering additional drugs. This article reviews the relevant research studies on

LIUS + MB-BBBO in the treatment of AD, analyzes its potential mechanisms, and

summarizes relevant ultrasound parameters.
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1. Introduction

Treating neurological and psychiatric disorders remains a challenge due to their complex

pathogenesis, resulting in significant economic burdens on both patients and society. Taking

Alzheimer’s disease (AD) as an example, it is the most prevalent neurodegenerative disease,

and its pathogenesis has not been fully elucidated (1). In pathology, AD is characterized

by the accumulation of intracellular hyperphosphorylated tau protein and the deposition

of extracellular β-amyloid (Aβ) plaques (2). One of the major challenges in treating AD is

the difficulty of drugs crossing the blood–brain barrier (BBB), which results in low-drug

bioavailability (3). Hence, variousmethods have been developed to bypass the BBB to directly

access the brain, such as intraventricular injection. However, these approaches often come

with numerous adverse effects (4, 5).

Over the past 2 decades, researchers have found that low-intensity ultrasound (LIUS)

combined with intravascular microbubbles (MB) injection can safely and temporarily open

the BBB (6), enhancing the efficacy of therapeutic antibodies (7–10). Interestingly, a growing

number of studies have shown that LIUS combined with microbubble-mediated BBB

opening (LIUS + MB-BBBO) without drug delivery can improve pathology and cognitive

impairment in AD patients and mice (11–14). This is undoubtedly a remarkable discovery.

In this article, we review relevant preclinical and clinical studies on LIUS + MB-BBBO

in improving AD. We have discussed the possible mechanisms underlying this effect and

summarized the relevant parameters.
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2. The impact of the BBB on AD

The BBB is a specialized structure located between blood

vessels and the brain tissue. It is mainly composed of vascular

endothelial cells and surrounding glial cells and plays a vital

role in protecting and regulating the internal environment of

the brain (15). The BBB, serving as a dynamic interface between

the neural tissue and blood circulation, forms the anatomical

foundation of the functional brain vascular unit (16) (17). Extensive

research indicates a close association between BBB dysfunction

and AD. Many scholars consider this dysfunction to be an early

hallmark of AD (3). The BBB dysfunction leads to the accumulation

of harmful substances in the brain and impaired clearance,

subsequently triggering immune responses and inflammation,

which accelerate neurodegeneration. For instance, a significant

portion of Aβ plaques is primarily cleared from the brain through

various transport proteins located at the BBB. Due to the BBB

dysfunction, the expression of these proteins such as low-density

lipoprotein receptor (Aβ clearance receptor) (18), APOE isoform-

related receptors (19), and P-glycoprotein (20) is reduced, leading

to accelerated accumulation of Aβ plaques in the brain (21).

Furthermore, the correlation between BBB dysfunction and tau

pathology has been extensively reported (22). Hence, considering

the BBB as one of the strategies for treating AD may hold a

potential value.

3. LIUS combined with microbubbles
can e�ectively open the BBB

In general, LIUS refers to ultrasound waves with an intensity

level similar to or lower than those commonly used in diagnostic

examinations in the United States (23), and many articles describe

it as low-intensity pulsed ultrasound (LIPUS) (24, 25). LIUS

primarily consists of periodic mechanical sound waves that

propagate through cells and tissues, generating vibrations and

collisions, resulting in beneficial biological effects and minimal

thermal impact (26). LIUS demonstrates positive effects in

neuromodulation, including enhancing neuronal activity (27),

inhibiting neural inflammation (28), and stimulating the potential

for neural differentiation in stem cells (29).

Over the past decade, with the development of ultrasound

transducers, the introduction of low-intensity focused ultrasound

(LIFU) has improved traditional pulse ultrasound treatment

methods. Common LIFU ultrasound modes include MRI-guided

focused ultrasound surgery (MRgFUS) (11) and scanning

ultrasound (SUS) (10, 30). Unlike high-intensity focused

ultrasound, LIFU has the capability to precisely converge

energy with varying intensities and frequencies onto specific focal

points in the brain, allowing for non-invasive treatment of central

nervous system disorders. Combined with the intravascular MB

injection, LIFU can effectively, safely, and reversibly open the BBB

(31, 32).

In ultrasound therapy, the acoustic parameters (sound pressure,

frequency, and pulse duration) as well as the size and concentration

of MB determine the size of the BBB opening (33, 34). When

applying ultrasound stimulation to MB (sized from 1 to 10

micrometers), the expansion and contraction of the bubbles

result in mechanical stretching of the blood vessel walls. This

mechanical stretching can alter the characteristics of endothelial

cells, increasing their phagocytic activity and creating intercellular

gaps in the endothelium (35) (Figure 1). Furthermore, ultrasound

stimulation can open tight junctions, especially proteins such as

occludin and claudin-5 (36). BBB opening is transient, and the

integrity can rapidly recover within 6–24 h following the ultrasound

treatment (37). In addition to changes in the physical barrier,

ultrasound in combination withMB can also influence the function

of the BBB. Within 48 h after the ultrasound treatment, there is a

decrease in P-glycoprotein expression, but endothelial cell function

remains unimpaired. These mechanisms gradually appear in two

distinct phases of BBB opening: an early/fast leak and a late/slow

leak (38). These findings confirm the impact of ultrasound on the

BBB efflux mechanisms (39).

4. Biological e�ects of LIUS +

MB-BBBO on AD

Preclinical studies have extensively validated the safety and

feasibility of LIUS +MB-BBBO in various species, including small

rodents and non-human primates (40). This strategy achieves

spatial and temporal targeted non-invasive brain drug delivery

(41, 42). Research has reported that LIUS + MB-BBBO has the

ability to clear Aβ plaques without the need for additional drug

administration (10, 43, 44). Jessica employed LIFU combined

with MB-mediated BBB opening (LIFU + MB-BBBO) to deliver

low-dose Aβ antibodies to reduce the pathological characteristics

of Aβ plaques (45). In 2013, she first discovered the potential

effects of ultrasound: under the same parameters and without

the supplementation of exogenous antibodies, LIFU + MB-BBBO

helps to reduce the area of Aβ plaques. LIFU + MB-BBBO allows

endogenous immunoglobulins to enter the brain to help plaque

clearance, where IgM levels are positively correlated with BBB

opening. Additionally, LIFU treatment activates glial cells located

near the plaques within the cortex and enhances the internalization

and phagocytosis of Aβ plaques within these cells (9).

Neuroglial cells likely play a role in the process of Aβ plaques

clearance, with microglial cells responsible for breaking down

larger plaques into smaller components and absorbing them.

However, this effect may have its limitations (46). Compared to

peripheral immune cells, microglial cells have a weaker phagocytic

function (47). Studies have reported that LIFU + MB-BBBO

can induce local blood-borne mononuclear cell infiltration (13)

(48). Charissa (13) believed that the peripheral immune response

triggered by LIFU + MB-BBBO can effectively clear Aβ plaques.

LIFU+MB-BBBO induces local recruitment of neutrophils, which

can help Aβ plaques clearance by recruiting other downstream

immune cells, such as monocytes and macrophages with stronger

clearance capabilities than neutrophils (49). In addition, Gerhard

(10) believed that SUS combined with MB-mediated BBB opening

(SUS + MB-BBBO) can promote blood-borne immune molecules

and albumin to enter the brain, and then albumin can assist glial

cells and perivascular macrophages to engulf Aβ plaques (50).

The above results indicate that endogenous immune upregulation
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FIGURE 1

LIUS combined with microbubbles to open the blood–brain barrier.

triggered by LIUS + MB-BBBO is a possible mechanism for Aβ

plaque clearance.

Tau is a protein associated with microtubules. Phosphorylated

tau causes neuronal dysfunction and the formation of

neurofibrillary tangles. The accumulation of phosphorylated

tau is a key pathological feature of AD (51). SUS + MB-BBBO

can reduce the deposition of tau protein in the hippocampus

and improve the memory function of K369I tau transgenic mice.

Interestingly, the researchers found that this effect was through

activation of autophagy in neurons, rather than through glial

cell clearance of tau (52). The neuronal autophagy process is

impaired in AD (53), so this may be a potential mechanism.

The immune upregulation stimulated by LIFU + MB-BBBO is

not unsuitable for tau pathology. Maria (54) found that LIFU +

MB-BBBO reduced bilateral hippocampal p-tau in the rTg4510

mouse model and was accompanied by an upregulation of immune

responses. The researchers observed microglia colocalizing with

phosphorylated tau. In addition, Amandine (55) explored the

effect of LIPUS on tau transgenic P301S mice. The study found

that LIPUS + MB-BBBO does not reduce tau pathology and may

even aggravate the accumulation of pathological tau in stimulated

brain areas. LIPUS combined with MB-mediated BBB opening

(LIPUS + MB-BBBO) strongly reduced microglia density in the

brain parenchyma of P301S mice and exhibited anti-inflammatory

effects. This suggests that reduced microglial load may impair

phagocytosis of tau and other aggregated debris, thereby limiting

steady-state tau clearance.

Other studies have shown that MRgFUS combined with

MB-mediated BBB opening (MRgFUS + MB-BBBO) can cause

cerebrospinal fluid extravasation in AD patients, which is related

to lymphatic efflux and enhanced meningeal venous permeability

(56, 57). Convection in the cerebrospinal fluid of higher mammals

rapidly removes proteins, and particles with larger molecular

weights are removed through diffusion (58). This effect may be

related to the clearance of Aβ plaques. In summary, LIUS +

MB-BBBO can activate autoimmunity, autophagy, and lymphatic

efflux to promote the clearance of pathological deposits, which can

help improve cognitive function, but further research is needed to

elucidate the biological effects of this pathway.

5. Related parameters of LIUS +

MB-BBBO

Due to anatomical differences in the brain, skull, and cerebral

vasculature between small and large animals, the parameters for

LIUS + MB-BBBO have species-specific differences (59). This

review summarizes relevant parameters of clinical studies on LIUS

+MB-BBBO (Table 1).

In Lipsman et al. (11) used MRgFUS at a frequency of 220 kHz

to open the right prefrontal BBB in a clinical study of five AD

patients for the first time. The ultrasound coverage consisted of

a 3 by 3 grid of spots, each 3mm in diameter, with the axial

size of the target adjusted according to the subject degree of

brain atrophy. Ultrasound was applied to each grid for a total

of 50 s, and each point was ultrasonically treated with 2ms on

and 28ms off burst pulses for 300ms, the repetition interval was

2.7 s (duty cycle 0.74%). After 1 month, the BBB was opened

at the original location and adjacent areas according to the

same parameters. The tissue volume opened this time was twice

that of the previous time. This study demonstrates the clinical

safety and technical feasibility of MRgFUS + MB-BBBO. Based

on this study, Rezai et al. (12) conducted a multicenter phase

II trial in six AD patients, demonstrating that MRgFUS can
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safely, reversibly, and accurately open the BBB located in deep

brain structures (hippocampus and entorhinal cortex) (opening

degree: 95%). In this study, the researchers selected five targets

of 5 × 5 × 7 mm3, and the opened hippocampal BBB was

∼2–3 cm3. However, due to limited sample size, neither study

observed changes in patients’ cognitive function or reduction in

Aβ plaque deposition. Rezai et al. (60) increased the number

of subjects (10 AD patients) in subsequent clinical studies and

used MRgFUS to open the BBB in multiple brain locations

(hippocampus, frontal lobe, and parietal lobe). On follow-up

for 6–12 months after ultrasound treatment, the researchers

observed that compared with before treatment, amyloid levels

in the FUS target area decreased by an average of 5%, and the

patients’ Centiloid scale decreased by 14%, without serious related

adverse events.

In addition, there are some exciting results. D’Haese et al. (7)

used MRgFUS + MB-BBBO in a clinical trial of six AD patients.

At 7 days of follow-up after treatment, the researchers observed a

slight decrease in amyloid levels compared with before treatment,

with an average decrease of 5% in patients, but no cognitive

assessment was observed. Park et al. (14) conducted a clinical trial

of MRgFUS + MB-BBBO, the average volume targeted by FUS

was 21.1 ± 2.7 cm3. Five AD patients received two treatments

every 3 months. The results showed that MRgFUS + MB-

BBBO reduced Aβ deposition (−1.6%) and improved the patients’

neuropsychiatric symptoms.

In addition to the above-mentioned extracranial devices,

implantable devices have also entered the clinical stage (61,

62). Epelbaum (8) implanted an implantable LIPUS device (1-

MHz) into the skulls of 10 patients with mild AD under

local anesthesia, and this device had previously been used in

a Phase I/IIa study of patients with recurrent glioblastoma

(61). The results showed that the implantable LIPUS device

combined with MB was effective and safe in opening the

BBB, and in all cases, the researchers observed a reduction in

amyloid burden after 4 months of follow-up. Due to the small

sample size and short follow-up period, no cognitive changes

were detected.

6. Outlook and challenges

Overall, there have been several small cohort clinical trials

demonstrating the safety and feasibility of LIUS + MB-BBBO

in AD patients (Table 1). However, due to the small sample

size and short follow-up time of these studies, whether LIUS +

MB-BBBO can reduce amyloid burden and improve cognition

in AD patients still needs to be confirmed by more large

cohort studies. In addition, the complete pathophysiology of

AD is still unclear. Even though several preclinical studies

have tried to reveal the mechanism of LIUS + MB-BBBO

on AD, there are few relevant reports. Therefore, the main

goals in future are to improve our understanding of the

pathophysiology of AD and further explore the mechanism and

maximum energy efficiency of ultrasound-mediated BBB opening

in improving AD. Furthermore, the neuromodulation effects

of LIUS cannot be ignored, including increasing the activity

of neurons (27), promoting the release of neurotrophic factors
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in the brain (63), and promoting the neural differentiation

potential of stem cells (29), non-invasive drug delivery (7–

10), etc. It is necessary to consider these effects together

to provide new opportunities for improving the treatment of

neurodegenerative diseases.

7. Conclusion

LIUS+MB-BBBO may be a potential treatment for AD.
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