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Background: Noncontrast CT (NCCT) is used to evaluate for intracerebral 
hemorrhage (ICH) and ischemia in acute ischemic stroke (AIS). Large vessel 
occlusions (LVOs) are a major cause of AIS, but challenging to detect on NCCT.

Aims: The purpose of this study is to evaluate an AI software called RAPID 
NCCT Stroke (RAPID, iSchemaView, Menlo Park, CA) for ICH and LVO detection 
compared to expert readers.

Methods: In this IRB approved retrospective, multicenter study, stand-alone 
performance of the software was assessed based on the consensus of 3 
neuroradiologists and sensitivity and specificity were determined. The platform’s 
performance was then compared to interpretation by readers comprised of eight 
general radiologists (GR) and three neuroradiologists (NR) in detecting ICH and 
hyperdense vessel sign (HVS) indicating LVO.

Results: A total of 244 cases were included. Of the 244, 115 were LVOs and 26 
were ICHs. One hundred three cases did not have LVO nor ICH. Stand-alone 
performance of the software demonstrated sensitivities and specificities of 96.2 
and 99.5% for ICH and 63.5 and 95.1% for LVO detection. Compared to all 11 
readers and eight GR readers only respectively, the software demonstrated 
superiority, achieving significantly higher sensitivities (63.5% versus 43.6%, 
p  <  0.0001 and 63.5% versus 40.9%, p  =  0.001).

Conclusion: The RAPID NCCT Stroke platform demonstrates superior 
performance to radiologists for detecting LVO from a NCCT. Use of this software 
platform could lead to earlier LVO detection and expedited transfer of these 
patients to a thrombectomy capable center.
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Introduction

Acute stroke secondary to ischemia or hemorrhage is among the 
leading causes of death and disability worldwide (1). Acute ischemic 
stroke (AIS) comprises the majority of acute strokes (85–90%) (2). 
Despite accounting for a small fraction of acute stroke, intracerebral 
hemorrhage (ICH) confers a high risk of mortality (2).

Neuroimaging is crucial to contemporary stroke management 
paradigms. Noncontrast CT (NCCT) is the most commonly used 
imaging modality to screen for intracranial hemorrhage (ICH) and 
assess for early ischemic changes (3). Large vessel occlusions (LVOs) 
may also be detectable on NCCT through the identification presence 
of a hyperdense vessel sign (HVS), a variably present feature of 
intracranial LVO (4). NCCT has a high sensitivity for detecting early 
ICH (2) but has a sensitivity of only approximately 40% for detecting 
early signs of ischemic stroke (5). Sensitivity is also roughly 50% for 
detecting HVS as a marker of LVO (4). In order to facilitate 
management in the hyperacute setting, artificial intelligence (AI) 
methods are now increasingly used with NCCT to detect both ICH 
and/or AIS (6) and may serve as valuable adjuncts for 
radiologic evaluation.

Many comprehensive stroke centers perform both a NCCT and 
CTA in patients with a suspected stroke. However, community 
hospitals frequently obtain only an NCCT scan initially and then 
discuss the case with a neurologist and/or radiologist and subsequently 
obtain a CTA in selected cases. This approach can lead to significant 
delays in LVO diagnosis and lengthen the time to transfer the patient 
to a thrombectomy center. In a recent study of 23,925 suspected stroke 
patients, evaluated in 717 hospitals with both CT and CTA imaging, 
the time delay between CT and CTA was assessed. About 20% of 
hospitals had a median delay of >15 min (7). AI software has the 
potential to immediately evaluate a NCCT and notify the treating 
physicians that an LVO is suspected, which could lead to substantial 
improvements in workflow.

Aims and hypotheses

RAPID NCCT Stroke (iSchemaView, Menlo Park, CA; RAPID) is 
a multi-module fully automated AI platform developed to detect both 
ICH and LVO defined as occlusion of the middle cerebral artery 
(MCA) and/or distal internal carotid artery (ICA) by integrating 
multiple findings available from the NCCT. In this study, we assessed 
the sensitivity and specificity of this software for detection of LVO and 
compared the software performance to general radiologists and 
neuroradiologists. The performance of the Rapid ICH 3 detection 
algorithm has been reported in much larger series (N = 881) and a 
high sensitivity (97.8%) and specificity (99.5%) (8) has been 
documented. We did not compare the accuracy of the ICH component 
of the software to radiologists in this study as only a small number of 

ICHs were included to mimic the proportion of ICHs that are 
encountered in stroke code activations. In this study, we hypothesized 
that the AI software would outperform general radiologists (GR) and 
be non-inferior to neuroradiologists (NR) for detection of LVO in a 
multicenter retrospective evaluation of acutely presenting patients 
with suspected stroke. If non-inferiority was documented for NR 
readers, then superiority testing would be performed.

Methods

Subjects

This retrospective, multicenter study was conducted in compliance 
with the Health Insurance Portability and Accountability Act (HIPAA) 
and was approved by the institutional review boards (IRB; Advarra 
central IRB Pro00049230). Cases were obtained from consecutive 
emergency room (ER) scans obtained from Augusta University 
Medical Center and Riverside Regional Medical Center. Other 
hospitals that contributed cases included three community hospitals 
(Box Hill, Hospital de Clinicas, Olathe Medical Center) and two 
university centers (Kansas University Medical Center and, New York 
University). Two research studies that enrolled acute LVO patients, 
CRISP (9) and DEFUSE 3 (10) also contributed cases. For the LVO 
cases, only anterior circulation strokes were included. In total, 244 
cases were included in the analysis.

Definitions of pathology

ICH was defined as any type of intracranial hemorrhage 
including intraparenchymal, subdural, epidural, subarachnoid, and 
intraventricular hemorrhages (5). LVO was defined as distal 
intracranial ICA and M1 segment of the MCA (10). All LVO cases 
had occlusion of the M1 segment, some with concurrent intracranial 
ICA involvement. Lastly, HVS was determined to be a segmental 
hyper density which is comparatively more hyperdense with respect 
to the contralateral hemisphere and corresponding to the expected 
location of the distal intracranial ICA and/or M1 segment of the 
MCA (4).

Scanners

This study is composed of cases from different CT vendors. In 
total, 93 cases were obtained from Siemens scanners (Siemens 
Healthineers, Erlangen, Germany), 50 from GE Healthcare (GE 
Healthcare, Wauwatosa, WI, United  States) 44 from Phillps 
(Koninklijke Philips, Amsterdam, Netherlands), 57 from Toshiba 
(Toshiba, Minato City, Japan).
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RAPID NCCT stroke development

NCCT imaging data were anonymized and translated into a 
spatial 3D model. This AI software uses neural networks and 
automated segmentation techniques based on predefined thresholds 
for identification of ICH, HVS, and Alberta Stroke Program Early CT 
Score (ASPECTS).

A proprietary algorithm was used to determine if an LVO is likely 
to be present based on a combination of features derived from the 
assessment of HVS as well as the specific regions of involvement on 
ASPECTS modules. The specific modules that are used in RAPID 
NCCT are RAPID ICH 3.0, RAPID ASPECTS 3.0 and RAPID HVS.

Eleven total board-certified GR and NR readers assessed all 244 
NCCT scans using local installations of DICOM images through a 
viewing platform (Osirix, Geneva, Switzerland). Expert readers 
interpreted the images using only soft tissue kernels with 5 mm slice 
thickness, including multiplanar reformats. All readers performed 
interpretations blinded to the AI software results and clinical 
information. Readers then assessed for ICH, and if ICH was not 
present, they then assessed for suspected LVO. The reference truth for 
ICH was based on a consensus of two of three neuroradiologists 
evaluating the NCCT scan using the same parameters. Scans that 
expert readers identified with ICH were classified as No LVO for LVO 
performance assessment.

Stand-alone performance was based on the reference LVO 
assessment which was determined by a consensus of two of three 
neuroradiologists based on a CTA performed concurrently with the 
NCCT. CTA assessments were performed on maximum intensity 
projection (MIP) images based on 3 mm slice thickness using a soft 
tissue kernel six weeks after the initial NCCT assessment.

A board-certified NR (JJH, 10 years of experience) independently 
reviewed cases deemed positive for LVO to screen for suspected vessel 
calcification in the distal intracranial ICA or M1 segment of the 
MCA. This review was based on binary determination of presence or 
absence of vessel calcification. Cases interpreted as positive for ICH 
were not assessed for vessel calcifications and classified as “No LVO.”

The primary endpoint was sensitivity and specificity of the 
software as compared to those of the GR and NR readers who were 
blinded to the CTA results. In total, eight GR and three NR expert 
readers (different individuals than the experts who determined the 
reference standard on the CTAs) participated in this phase of the 
study. Readers were instructed to consider both the presence of HVS 
as well as early parenchymal signs of brain ischemia when making 
their determination of LVO. The primary hypothesis was that the 
automated software would have a higher sensitivity than GR for 
detecting LVO and be non-inferior to NR readers. If non-inferiority 
was achieved, then the software would be tested for superiority against 
all readers as well as NR readers alone. Overall accuracy was also 
compared between the software and individual readers to assess for 
both sensitivity and specificity.

Statistical analysis

Sensitivity and specificity analyses were calculated by comparison 
of the software results to the CTA reference standard for LVO for the 
stand-alone evaluation Subsequently, the sensitivity of the software 
was compared to the GR and NR readers using a t-test of either 

superiority or non-inferiority (NI) with a 0.025 margin. The test 
statistic is (average reader - software – NI margin)/standard error 
(readers) and the sign of the NI margin is based on if we are testing 
NI or superiority.

Results

Ultimately, a total of 244 cases were included in this study. Of the 
244, 115 were LVO (115/244, 47.1%) and 26 (26/244, 10.7%) were 
ICHs based on the consensus of two of three expert neuroradiologists. 
One hundred three cases (103/244, 42.2%) were independently 
reviewed for suspected vessel calcification after initial screening. One 
hundred three cases (103/244, 42.2%) did not have LVO nor ICH.

NCCT stroke stand-alone performance

LVO: The software identified 73 true suspected LVOs (73/115, 
63.5%) with 42 false negatives (42/115, 36.5%). It also correctly 
categorized 90 cases (90/115, 78.2%) where LVO was not present with 
five false positives (5/115, 4.3%). This resulted in a sensitivity of 63.5% 
(95% CI:54.4–71.7%) and specificity of 95.1% (95% CI: 89.1–97.9%).

ICH: The software identified suspected ICH in 25 of the 26 cases 
(25/26, 96.1%). Among the 217 ICH-negative cases, the software 
correctly identified the absence of ICH in 216 (216/217, 99.5%), with 
one false positive (1,217, 0.4%). The overall sensitivity and specificity 
for ICH detection were 96.2% (95% CI: 81.1–99.3%) and 99.5% (95% 
CI: 97.4–99.9%), respectively.

Comparison with GR and NR readers – 
LVO detection

Eleven total readers independently assessed the presence of 
LVO. Sensitivities ranged from 20% up to 64.3% with specificities 
ranging from 70.9% up to 100%. See Figure  1 for details of the 
independent readers in comparison to the platform. Comparison of 
sensitivities of RAPID and expert readers are shown in Table 1.

Non-inferiority/superiority testing

The primary endpoint was to compare the stand-alone 
performance of the RAPID NCCT platform to the 11 expert GR and 
NR readers. We hypothesized that the RAPID NCCT Stroke platform 
would demonstrate superior performance to the eight GR readers 
and non-inferior performance to the three NR readers. In assessing 
non-inferiority of the platform compared to the 11 readers, the 
platform achieved both non-inferiority as well as superiority, with a 
significantly higher sensitivity (63.5% versus 43.6%, p < 0.0001). 
When compared to the eight GR readers only, the platform also 
showed both non-inferiority and superiority with significantly higher 
sensitivity (63.5% versus 40.9%, p = 0.001). Non-inferiority and 
superiority were also established for the comparison with the 3 NR 
readers alone. Please refer to Table 1 for additional detail. The overall 
agreement with the reference standard was also highest with 
the software.
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Vessel calcification assessment

Of the 244 cases screened, a total of 103 cases were classified 
as suspected vessel calcifications in the horizontal segment of 

the MCA. Two cases showed calcification and were classified  
as true negatives (2/103, 1.9%). An additional 16 true  
negative cases had calcifications noted elsewhere (16/103,  
15.5%).
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FIGURE 1

(A) Shows sensitivity for LVO detection with 95% CI for each reader and for the Rapid software. The light grey band covers the 95% CI on the Rapid 
estimate. This allows a visual comparison of individual readers to the Rapid performance. The order of the readers is listed based on highest sensitivity. 
(B) Shows specificity for LVO detection with 95% CI for each reader and for the Rapid software. The light grey band covers the 95% CI on the Rapid 
estimate. This allows a visual comparison of individual readers to the Rapid performance. The order of the readers is listed based on highest sensitivity.  
Note that readers with higher sensitivity tended to have lower specificity. GR, general radiologist; NR, neuroradiologist.

TABLE 1 Sensitivity comparison of Rapid with GR and NR readers.

Reader description N readers RAPID sensitivity Reader sensitivity SE (Readers) p-value

Average of all general 

radiologists

8 0.64 0.41 (95% CI 0.28–0.54) 0.065 0.001

For superiority

Average of all readers 11 0.64 0.44 (95% CI 0.32–0.55) 0.055 NI = <0.0001

Superiority = 0.0008

Average of neuroradiologists 3 0.64 0.51 (95% CI 0.35–0.67) 0.061 NI = 0.0088

Superiority = 0.056

The p-values are from a t-test of either superiority or non-inferiority (NI) with a 0.025 margin. The 95% CI for the Rapid sensitivity of 0.64 is 0.54–0.72.
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Discussion

NCCT is a readily available and efficient imaging modality for 
excluding ICH and detecting early signs of ischemia but CTA is 
typically required for confirming large vessel occlusions. In this 
investigation, we  focus on the utility of NCCT as it pertains to 
detecting LVOs and ICH. We report that the RAPID NCCT module 
has a superior sensitivity for detecting LVO compared with general 
radiologists and neuroradiologists. The platform also showed excellent 
sensitivity and specificity in identifying ICH. Our findings suggest that 
this software has potential utility as an adjunct for radiologists, 
neurologists, and neurointerventionalists in routine clinical practice 
for increasing the accuracy of LVO and ICH detection on NCCT.

Community hospitals often perform an initial NCCT in patients 
who present with new neurological symptoms. Subsequently, CTA 
may be performed if the initial CT does not disclose the diagnosis or 
if an LVO is suspected. However, CTA acquisition can be challenging 
in smaller community hospitals and rural centers across the world 
because of the need for iodinated contrast, concerns for increased 
radiation exposure, and technical expertise needed to obtain a study 
that is considered diagnostic (11). Furthermore, the delay between 
clinical assessment/evaluation of the NCCT and when the CTA is 
obtained can be  considerable, often >30 minutes (7), for the 
aforementioned reasons. AI software has the potential to address these 
concerns by substantially reducing this delay when providing an 
immediate notification that an LVO is suspected. This notification 
could expedite additional imaging or urgent transfer to a 
thrombectomy capable center.

NCCT is the most common screening modality when stroke is 
suspected but excluding ICH is essential in order to potentially 
administer thrombolysis. NCCT is highly sensitive and specific for 
detecting ICH of all subtypes (12). For instance, a meta-analysis by 
Dubosh et al. found NCCT within six hours of symptom onset has a 
sensitivity and specificity of 98.7 and 99.9% for detection of 
spontaneous subarachnoid ICH (13). The high specificity and 
sensitivity of NCCT makes it the primary screening modality for not 
only subarachnoid ICH but all forms of ICH (14).

Several prior studies have utilized AI platforms in detecting 
ICH. Goyal used machine learning (ML) techniques in detecting ICH 
on NCCT with sensitivities ranging from 95 to 100% and specificities 
between 85 and 100% (15). Seyam et al. similarly used a developed AI 
based software geared toward ICH detection on NCCT with a 
sensitivity of 87.2% and specificity of 93.9% (16). Others have also 
utilized deep learning (DL) based models in ICH detection on NCCT 
with similarly strong results (17–19). Only a small number of ICHs 
were included in this study, therefore the confidence intervals for the 
sensitivity were wide but compatible with the 98% sensitivity reported 
in larger series (8, 20). The large number of cases without ICH 
provides confirmation of the very high specificity (>99%) documented 
in prior series (8, 20).

When compared to ICH detection, detecting LVO is more 
challenging on NCCT. The HVS is an important sign of LVO on 
NCCT evaluation. However, prior studies have reported sensitivities 
ranging from 17 to 52% with specificities approaching 100% for HVS 
detection (3, 4, 21). Despite the variability in detection, the high 
specificity of HVS makes it particularly useful in early LVO detection 
for expeditious transfer to a larger center and/or emergent treatment.

Similarly, to ICH evaluation, LVO detection on NCCT using AI 
applications is a growing area of interest. A systematic review by 
Shlobin et al. concluded that AI applications for LVO detection on CT 
imaging have reasonable accuracy and show promise as an adjunct 
tool in the decision making process (22). More recently, a study by 
Olive-Gadea et al. developed a DL technique that identified LVOs on 
NCCT with 83% sensitivity and 71–85% specificity with human 
interpretation as the ground truth (23). However, concerns with this 
algorithm were raised based on the cohort which the algorithm was 
applied to, the use of clinical and imaging data (NIHSS in addition to 
NCCT) and the generalizability. The generalizability concern was 
mainly based on the remote hospital setting the original study 
performed as the quality of NIHSS assessments may be higher at 
larger academic institutions (24). In our study, the software detected 
LVO with a sensitivity of 63.5% and a specificity of 95.1% using only 
NCCT data. The higher specificity can be particularly useful in smaller 
centers where mobilizing resources to transfer patients to 
comprehensive stroke centers may be more challenging.

As with previous reports, the software performance was 
compared to human expert interpreters. We hypothesized that the 
platform will be superior to that of GR readers and non-inferior to 
NR readers. Eleven GR and NR readers independently interpreted 
the cases, showing a sensitivity range of 20–64.3% and specificity of 
70.9–100%. When compared to only the eight GR readers, the 
platform demonstrated superior performance sensitivities (63.5% 
versus 40.9%, p = 0.001). Furthermore, with the inclusion of NR 
readers, the platform’s performance was not only non-inferior but 
still superior with respect to sensitivity (63.5% versus 43.6%, 
p < 0.001).

Our study has several limitations to acknowledge. Firstly, it is 
limited due to the retrospective design. It is nevertheless 
strengthened by the robust sample size acquired from five centers 
that utilize different CT vendors, thus improving generalizability. 
Secondly, the HVS can be difficult to differentiate from calcifications. 
We identified cases where calcifications may also be present, all of 
which were confirmed as true negatives after expert interpretation 
in order to address this potential limitation. Lastly, although the 
sensitivity of the platform for independently detecting LVO in 
absolute measures may be  considered low, it is a significant 
improvement compared to current practice (64% versus 43% for 
combined GR and NR expert readers). Nevertheless, this study lays 
the foundation for future investigations exploring the combined 
sensitivity of the platform with the assessments of interpreting 
physicians, including neurologists, neurointerventionalists, and 
radiologists for improved LVO detection. Future studies building 
upon the current results will also be necessary for detecting posterior 
circulation and medium vessel occlusions.

Conclusion

The RAPID NCCT Stroke platform demonstrated superior 
performance to GR and NR readers, suggesting that this software 
can function as a useful adjunct tool for stroke physicians for 
expediting the detection of LVOs and urgent transfer to a 
thrombectomy capable center. Prospective studies are needed for 
further validation.
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