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Spinal muscular atrophy (SMA) is an uncommon disorder associated with 
genes characterized by the gradual weakening and deterioration of muscles, 
often leading to substantial disability and premature mortality. Over the past 
decade, remarkable strides have been made in the field of SMA therapeutics, 
revolutionizing the landscape of patient care. One pivotal advancement is the 
development of gene-targeted therapies, such as nusinersen, onasemnogene 
abeparvovec and risdiplam which have demonstrated unprecedented efficacy 
in slowing disease progression. These therapies aim to address the root cause 
of SMA by targeting the survival motor neuron (SMN) gene, effectively restoring 
deficient SMN protein levels. The advent of these innovative approaches has 
transformed the prognosis for many SMA patients, offering a glimmer of hope 
where there was once limited therapeutic recourse. Furthermore, the emergence 
of small molecule compounds and RNA-targeting strategies has expanded 
the therapeutic arsenal against SMA. These novel interventions exhibit diverse 
mechanisms of action, including SMN protein stabilization and modulation of 
RNA splicing, showcasing the multifaceted nature of SMA treatment research. 
Collective efforts of pharmaceutical industries, research centers, and patient 
advocacy groups have played an important role in expediting the translation of 
scientific discoveries into visible clinical benefits. This review not only highlights 
the remarkable progress achieved in SMA therapeutics but also generates the 
ray of hope for the ongoing efforts required to enhance accessibility, optimize 
treatment strategies, rehabilitation (care and therapies) and ultimately pave the 
way for an improved quality of life for individuals affected by SMA.
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1 Introduction

Spinal muscular atrophy (SMA) is a rare and debilitating genetic disorder that primarily 
exerts influence on the motor neurons in the spinal cord, leading to muscle atrophy and 
weakness. This disorder has garnered significant attention in recent years due to the 
development of groundbreaking treatments, such as gene therapies, which have the potential 
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to change the prognosis for individuals affected by SMA (1). SMA is 
a heterogeneous group of inherited neuromuscular disorders 
characterized by the progressive degeneration of motor neurons in the 
spinal cord. The condition’s prevalence and incidence can vary 
significantly based on geographic and ethnic factors, making it a 
complex subject for epidemiological study (2). The estimated global 
prevalence of SMA ranges from 1 in 6,000 to one in 10,000 live births, 
with variations in different populations and regions. This range 
represents a significant burden for affected families and healthcare 
systems (3). This condition is an autosomal recessive disorder resulted 
by mutations in the survival motor neuron 1 (SMN1) gene. The 
incidence of SMA depends on the carrier frequency of these mutations 
in a given population (4). SMA is classified into different divisions 
based on the age of onset and clinical severity, which also have 
implications for epidemiology. SMA type I, with an early outbreak 
and severe phenotype, is often the most common, while SMA type IV, 
with adult onset and milder symptoms, is rarer (5). There may 
be variations in the prevalence and incidence of SMA across different 
countries and regions. For example, some studies suggest a higher 
prevalence in certain European populations. Research is ongoing to 
understand these variations better (6). Addressing the impact of SMA 
on families and healthcare systems necessitates a multifaceted 
approach that includes comprehensive support services, caregiver 
education and training, psychosocial interventions, financial 
assistance programs, and healthcare system reforms to improve access 
to specialized care (7, 8). Collaboration among healthcare providers, 
lawmakers, advocacy organizations, and community stakeholders is 
critical for reducing the effect of SMA and improving the well-being 
of afflicted individuals and their families (9). In this review, 
we discussed the epidemiology and clinical classification of SMA, 
shedding light on the latest research, rehabilitation and 
clinical findings.

2 Clinical classification of SMA

In 1891, SMA first came to light through the observations of 
Guido Werdnig in two infant brothers (10). Over the subsequent nine 
years, Johann Hoffmann documented an additional seven cases. The 
traditional framework for classifying SMA was built upon the timing 
of symptom onset and the highest level of motor function achieved. 
While the cases they scrutinized had intermediate symptom severity, 
the term “Werdnig-Hoffmann disease” was coined to denote the more 
severe manifestations of SMA (11). The year 1899 saw Sylvestre and 
Beevor describe severe forms of SMA, further delineating the 
spectrum. In 1964, Dubowitz contributed to the field by detailing 
intermediate forms of SMA in 12 patients and naming this variant 
“Dubowitz disease” (11–13). Additionally, in 1955, the discovery of a 
milder form of SMA was made, with Kugelberg and Welander 
providing a comprehensive description one year later (14). This 
division of kinds of SMA is based on the age of symptom when its 
starts, the highest motor function achieved, and the severity of muscle 
weakness. Research into the epidemiology of SMA is vital for 
understanding the wide prevalence of disease, its occurrence, and 
natural evolution. These studies provide beneficial insights into the 
biological, ecological, and demographic factors that drive the 
development and progression of SMA in populations. The 
International Standard of Care Committee for SMA (ISCCSMA) has 

classified SMA into five primary types, as shown in the Figure 1, 
which include:

2.1 SMA type 0

This is the most drastic and rarest form of SMA, with onset in 
womb or within the first few days of life. Neonate with SMA type 0 
often exhibit severe muscle weakness and may not survive beyond a 
few months (15).

2.2 SMA type I (Werdnig-Hoffmann disease)

This is the most common form of SMA. Symptoms typically 
appear before first six months of life, and affected newborn may never 
will have the ability to sit independently or stand. SMA type I  is 
characterized by severe muscle weakness, respiratory difficulties, and 
a shortened lifespan if not treated (16).

2.3 SMA type II

This form of SMA has a later onset, typically occurring between 
six and eighteen months of age. Affected individuals often get the 
ability to sit but may struggle with standing or walking. The rate of 
disease progression varies among individuals (12).

2.4 SMA type III (Kugelberg–Welander 
disease)

This type of disorder has an onset after 18 months of age. 
Individuals with this form may achieve the ability to walk 
independently, but muscle weakness and atrophy progress slowly. 
Some individuals may experience a relatively normal lifespan (17).

2.5 SMA type IV

This is the mildest form of SMA, with an adult onset of symptoms. 
Affected individuals may experience muscle weakness, twitching, and 
exercise intolerance. The progression of the disorder is slow, and life 
aging is normal (18). Twenty cases with SMA type 4 were found in a 
Brazilian cohort of 227 SMA patients. This study includes the biggest 
cohort of SMA type 4 patients and provides practical, genetic, 
radiological, and neurophysiological aspects that may serve as 
biomarkers for future SMA-specific genetic therapeutics (19).

3 Genetics of spinal muscular atrophy

The SMN1 gene encodes the survival motor neuron (SMN) 
protein, which is essential for the normal functioning of motor 
neurons in the spinal cord (20, 21). SMN, a foundational protein 
within the SMN-Gemin multiprotein complex, serves as a core 
component. Additionally, it actively engages in various physiological 
functions, including responding to cellular stress, facilitating axon 
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transport, regulating cytoskeletal dynamics, modulating 
mitochondrial and bioenergy pathways, and participating in ubiquitin 
pathways. Consequently, SMN emerges as a significant molecule, 
intricately involved in a multitude of essential activities that underpin 
human existence (22). These SMN genes are found within the 5q13 
region, which harbors inverted repeats and multiple gene copies (20, 
23, 24). The telomeric version of SMN1, with its nine exons, generates 
a functional 294-amino acid, 38 kDa SMN protein as shown in 
Figure 2. Typically, this protein is found in both organalles that is the 
cytoplasm and nucleus, specifically in the Gemini of coiled bodies 
compartment, which forms Cajal bodies holding high concentrations 
of small ribonucleoproteins (snRNPs) along with pre-mRNAs (25). 
SMN contains crucial and highly conserved domains that are essential 
for its cellular functions. Any kind of mutations occurring within 
these domains of SMN1 result in the production of an inefficient 
protein (26). The SMN2 is a centromeric gene which is a paralog of 
SMN1, having almost identical sequences with SMN1 except for 5 
nucleotide differences. To understand the contributions of the survival 
motor neuron 2 (SMN2) gene to spinal muscular atrophy (SMA) 
pathology, it’s important to grasp its differences in alternative splicing 
compared to SMN1 and how these differences impact disease severity 
and progression. The one of these changes leads to the exclusion of 
exon number 7  in approximately 90% of the transcripts through 
alternative splicing (27). SMN2 is located 875 kb far from SMN1 and 
originates from a duplication of an ancestral gene which is unique to 
the human lineage (28). Both SMN1 and SMN2 genes encode the 
survival motor neuron (SMN) protein, which is crucial for the survival 
and function of motor neurons. However, a critical difference between 
SMN1 and SMN2 lies in a single nucleotide difference within exon 7, 
resulting in a C-to-T transition in SMN2. This single nucleotide 
change in SMN2 affects the alternative splicing pattern, leading to the 
exclusion (skipping) of exon 7  in a significant proportion of 
transcripts. Exon 7 skipping results in the production of an isoform of 
the SMN protein lacking exon 7 (SMNΔ7), which is less stable and 
less functional compared to the full-length SMN protein produced by 

SMN1. The exclusion of exon 7  in a substantial portion of SMN2 
transcripts results in reduced levels of functional SMN protein in cells, 
contributing to the pathogenesis of SMA. While SMN2 can partially 
compensate for the loss of SMN1 function, the lower levels of full-
length SMN protein produced by SMN2 are insufficient to fully 
support motor neuron survival and function. The severity and 
progression of SMA are influenced by the number of copies of SMN2 
present in the genome. Individuals with fewer copies of SMN2 
typically produce lower levels of functional SMN protein and tend to 
have more severe forms of the disease, whereas those with more copies 
of SMN2 may produce higher levels of functional SMN protein and 
exhibit milder symptoms. The unique alternative splicing pattern of 
SMN2 has made it a primary target for therapeutic interventions 
aimed at increasing the production of full-length SMN protein. SMA 
symptoms manifest when there is a deficiency of proper functional 
SMN protein, usually stemming from minimum one copy of the 
SMN1 (29). However, around 10% of full-length SMN2 transcripts, 
often present in multiple copies within the genome, provide some 
degree of protection against motor neuron degeneration (30). The 
more SMN2 copies a patient possesses, the more they can compensate 
for the absence of SMN1 (31). Consequently, in rare cases, individuals 
with 6 or more copies can exhibit milder symptoms appearing after 
the age of 30, characterized by mild muscle weakness and retained full 
mobility. Most type I SMA patient’s carries either one or two SMN2 
copies (32). While the number of SMN2 gene copies strongly correlates 
with disease severity, some studies suggest that it may not always be a 
definitive indicator of severity, especially in SMA patients who retain 
one SMN1 allele (33). Additionally, even when SMN is expressed 
normally, point mutations in SMN can affect protein functionality and 
stability, leads to the disorder, along with genetic and epigenetic 
factors, as well as environmental influences, may modulate disease 
(34). Approaches such as antisense oligonucleotide (ASO) therapy and 
small molecule drugs target the splicing machinery to promote the 
inclusion of exon 7  in SMN2 transcripts, thereby increasing the 
production of functional SMN protein. These therapies aim to 

FIGURE 1

Comprehensive insight into the progression of SMA. The top panel categorizes the five types of SMA (0, 1, 2, 3, 4) which is based on the onset age and 
achieved motor capabilities. SMA type 3 is further subdivided upto 3a (onset <3  years) and 3b (onset >3  years). Furthermore, the figure presents the total 
count of SMN2 gene copies for each SMA type.
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augment the levels of functional SMN protein in motor neurons, 
potentially ameliorating disease symptoms and improving outcomes 
for individuals with SMA.

4 Molecular mechanisms of SMA

The underlying molecular mechanisms of SMA revolve around 
the loss of functional SMN protein and its impact on motor neurons 
and muscle cells. The reduction in functional SMN protein in motor 
neurons results in their degeneration (35). Motor neurons are 
responsible for transmitting signals from the spinal cord to muscles, 
and without proper functioning SMN protein, these neurons become 

vulnerable to damage and eventual death. This leads to muscle 
weakness and atrophy (36). SMN protein plays a crucial role in the 
assembly of snRNPs, which are essential for mRNA splicing (37). 
Impaired snRNP assembly due to SMN deficiency leads to widespread 
splicing defects in various genes, further exacerbating motor neuron 
dysfunction (38). While SMA is primarily a disorder of motor 
neurons, the resulting muscle atrophy and weakness are critical 
clinical features. The lack of neural input from affected motor neurons 
causes muscle disuse, contributing to muscle wasting (39). The 
neuromuscular junction, where motor neurons communicate with 
muscle cells, is also affected in SMA (40). The loss of functional motor 
neurons disrupts this communication, leading to muscle weakness 
and contractures (41).

FIGURE 2

Human survival motor neuron (SMN) gene expression is shown in a schematic diagram for both healthy people and those with SMA. The chromosome 
5q13 region (long arm of chromosome 5) has been explicitly identified as the location of the telomeric SMN1 and centromeric SMN2 genes. Full-
length, functional SMN (FL-SMN) protein is produced by the SMN1 gene whereas the SMN2 gene, owing to incorrect splicing, produces 90% truncated 
SMN protein (SMNΔ7) and only 10% of FL-SMN protein. (A) Both SMN genes are present in healthy individuals. (B) The SMN1 gene is absent in SMA 
patients due to mutations, which prevent SMN1 from producing FL-SMN protein (this condition is denoted by a red “X”). Because production is 
completely dependent on the SMN2 gene, there is inadequate production.
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5 Diagnostic approaches of spinal 
muscular atrophy

SMA presents with a spectrum of clinical features, ranging from 
severe, early-onset forms to milder, adult-onset forms. The key clinical 
manifestations include muscle weakness, atrophy, and hypotonia. 
Patients with SMA may also exhibit respiratory difficulties, joint 
contractures, and scoliosis (42). It is essential to recognize these 
clinical signs early, as timely intervention can significantly impact the 
prognosis and quality of life for affected individuals.

5.1 Clinical evaluation

A thorough clinical evaluation is the initial step in diagnosing 
SMA. The healthcare provider takes a detailed medical history, 
conducts a physical examination, and assesses motor function (43). 
The clinical evaluation includes a review of family history to identify 
any known cases of SMA or related neuromuscular disorders. It is 
important to consider that SMA may not be the first suspicion in cases 
with mild or atypical symptoms (44).

5.2 Electromyography

Electromyography (EMG) is a diagnostic technique used to assess 
the electrical activity of muscles and nerves (45). In SMA, EMG may 
reveal neurogenic changes, denoting motor neuron dysfunction. EMG 
can help distinguish SMA from other neuromuscular disorders and 
provide information about the extent of motor neuron 
involvement (46).

5.3 Nerve conduction studies

Nerve conduction studies (NCS) evaluate the function of 
peripheral nerves. In SMA, NCS can be  normal or show mild 
abnormalities. These tests help rule out other neurological conditions 
and provide additional information to support the diagnosis of 
SMA (47).

5.4 Muscle biopsy

While muscle biopsy is not the primary diagnostic tool for 
SMA, it can be used to confirm the absence of muscle pathology, 
ruling out conditions like muscular dystrophy. Muscle biopsies 
typically show atrophy and denervation in SMA, supporting the 
diagnosis (48).

5.5 Serum creatine kinase levels

Measuring serum creatine kinase (CK) levels can be useful in 
differentiating SMA from muscular dystrophies. In SMA, CK levels 
are usually within the normal range or only mildly elevated, 
whereas in muscular dystrophies, CK levels are significantly 
elevated (49).

5.6 Newborn screening

Newborn screening for spinal muscular atrophy (SMA) is a critical 
and rapidly evolving aspect of pediatric healthcare aimed at early 
detection and intervention for this devastating genetic disorder. One 
of the primary benefits of newborn screening for SMA is the early 
identification of affected infants. Unlike in the past, when diagnosis 
often occurred after the onset of symptoms, newborn screening allows 
for early intervention and treatment (50).

5.7 Genetic testing

Genetic testing is the gold standard for diagnosing SMA. It 
provides a definitive diagnosis, identifies the specific genetic mutation, 
and helps determine the severity of the condition. Genetic testing 
typically involves the following approaches: (a) the primary genetic 
test for SMA involves analyzing the SMN1 gene. Most SMA cases 
result from deletions or mutations in this gene, leading to reduced 
SMN protein levels. This test is highly specific and sensitive and can 
diagnose SMA with a high degree of accuracy (51). (b) In addition to 
SMN1 analysis, counting the number of copies of the SMN2 gene can 
provide information about the disease severity. SMA patients with 
more SMN2 copies tend to have milder forms of the disease, while 
those with fewer copies typically have more severe forms (52).

5.8 Next-generation sequencing

Next-generation sequencing (NGS) is a powerful tool for 
identifying rare or typical mutations in the SMN1 gene. It can 
be especially useful in cases where standard genetic tests do not yield 
a diagnosis. NGS can also detect other rare genetic conditions that 
may mimic SMA (53).

5.9 Prenatal testing

Genetic testing can be performed during pregnancy to identify 
SMA in the fetus. This can be done through chorionic villus sampling 
or amniocentesis. Early diagnosis allows for informed reproductive 
decisions and early intervention if the fetus is affected (54). Prenatal 
testing for spinal muscular atrophy (SMA) raises several ethical 
considerations, including issues related to informed consent, 
autonomy, disability rights, and the potential for discrimination. It’s 
crucial that expectant parents fully understand the purpose, benefits, 
limitations, and potential consequences of SMA prenatal testing. They 
should have access to comprehensive information about SMA, 
including its prognosis, available treatments, and the emotional 
impact of receiving a positive result. Current recommendations by the 
American College of Medical Genetics (ACMG) include offering SMA 
carrier screening to all couples, regardless of race or ethnicity, before 
conception or early in pregnancy. Current recommendation by the 
American Congress of Obstetricians and Gynecologists (ACOG) do 
not advise preconception and prenatal screening for SMA be offered 
to the general population and advice testing offered to general 
population (55). Some disability rights advocates argue that prenatal 
testing for conditions like SMA perpetuates ableism and sends a 
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message that individuals with disabilities have less value or are not 
worthy of existence. This perspective challenges the notion that 
certain disabilities should be actively prevented or eliminated through 
selective abortion.

6 Disease-modifying treatments and 
current implications

There are several treatments approaches for the SMA such as 
(Table 1).

Nusinersen (marketed as Spinraza®) was the first FDA-approved 
disease-modifying treatment for SMA having obtained approval in 
December 2016 and by the EMA in 2017 for both infant and adult 
(56). This innovative therapeutic approach, which involves the 
intrathecal administration of a 2′-O-methoxyethyl phosphorothioate 
modified antisense oligonucleotide (ASO), focuses on enhancing the 
incorporation of exon 7 into mRNA transcripts of SMN2 (57). The 
intrathecal route of administration is crucial for nusinersen’s 
effectiveness in treating SMA because it allows for targeted delivery to 
the site of pathology, bypasses the blood-brain barrier, optimizes 
concentration at the target site, minimizes systemic side effects, and 
provides a longer duration of action within the central nervous system 
(57). By administering nusinersen directly into the central nervous 
system (CNS) through the intrathecal route, the medication effectively 
suppresses the activity of certain splice-factors and binds to a specific 
intronic splice-silencing site within intron 7 of SMN2 (58). This 
intervention substantially increases the probability of exon 7 being 
included in the mRNA, ultimately enabling the translation of a more 
substantial quantity of fully functional SMN protein (27). This 
enhanced production has demonstrated significant improvements in 
both survival and the overall condition of various experimental 
models of SMA. Importantly, nusinersen’s journey to approval and 
commercialization has been bolstered by a multitude of studies 
confirming its efficacy, without any notable drug-related adverse 
events (59). Due to ASOs’ inability to traverse the blood-brain barrier, 
nusinersen was consistently administered intrathecally in all clinical 
trials. During the initial loading phase, it was administered four times 
over two months, and in the maintenance phase, it was given once 

every four months (60). The standard dosage of nusinersen typically 
amounts to 12 milligrams (61). Studies on nusinersen have revealed 
the potential for some patients to regain lost abilities, such as sitting 
up, standing, and walking, without the need for therapy. Furthermore, 
early initiation of this treatment has demonstrated positive outcomes 
in individuals with SMA types I, II, and III (62). It is worth noting that 
a notable drawback of this therapy is the possibility of side effects, 
including constipation and upper and lower respiratory tract 
infections (63).

Onasemnogene abeparvovec (Zolgensma), an advanced gene 
therapy: In May 2019, the FDA granted approval to AVXS-101, also 
known as Zolgensma is a gene therapy approved for the treatment of 
SMA, developed by AveXis, a subsidiary of Novartis (56). This 
approval followed the release of favorable outcomes from the phase 
one clinical trial known as START (Identifier: NCT01547871). This 
trial assessed the drug’s safety and effectiveness when administered as 
a one-time infusion to infants with SMA symptoms appearing before 
six months of age. Subsequently, in March 2020, Zolgensma received 
conditional marketing authorization, and in May 2020, it was granted 
approval by the European Medicines Agency (EMA) as well 
(Zolgensma, 2020a; Novartis, 2020) (64). The adeno-associated virus 
9 (AAV9) capsid is used to transport the SMN-encoding 
complementary DNA (cDNA) to the motor neurons that need it (65–
67). A single dose of AVV9 administered intravenously (IV) is 
sufficient to transport a functional copy of the SMN1 gene over the 
blood-brain barrier and into patient cells, where it may stimulate the 
production of SMN protein (27). The SMN1 trans gene and synthetic 
promoter based on AVV9 are also crucial components in maintaining 
SMN protein synthesis throughout time (68). Although it successfully 
corrects the underlying molecular defect in SMA, it has a deleterious 
effect on the liver by elevating serum amino transferase (69). However, 
prednisone is effective at reducing elevated liver enzymes. Therefore, 
at least three months after administration, patients should 
be monitored for liver function (70, 71). The long-term durability of 
the benefits of Zolgensma (onasemnogene abeparvovec) is still being 
actively studied and monitored. Zolgensma is a gene therapy approved 
for the treatment of spinal muscular atrophy (SMA) in pediatric 
patients, and it has shown remarkable efficacy in improving motor 
function and survival in clinical trials. While the initial data from 

TABLE 1 Treatment options currently in use for spinal muscular atrophy.

Treatment Nusinersen (Spinraza) Onasemnogen abeparvovec 
(Zolgensma)

Risdiplam (Evrysdi)

Class Antisense oligonucleotide Adeno-associated virus (AAV) based gene therapy Small molecule

Mechanism Improves SMN2 splicing to produce 

full-length SMN protein

Provides a functioning SMN trans gene Improves SMN2 splicing to 

produce full-length SMN protein

Administrative route Intrathecal injection Intravenous injection Oral

FDA approved age categories All Greater than 2 years More than two months

Frequency Dosing schedule: 4 loading doses in the 

first 2 months, then every 4 months

Just one time dose (single dose) Daily

Problems with current treatments Unable to get a lumbar puncture done AAV9 antibodies present at the baseline Interactions between drugs

FDA approval December 2016 May 2019 August 2020

Cost $125,000 per dosage (approx.) $2.125 million per treatment $100,000–$340,000 annually

Unfavourable outcomes Lumbar puncture problems, 

proteinuria, Thrombocytopenia

Transaminitis, thrombocytopenia, troponemia, and 

acute liver damage

Diarrhoea, rash, and fever

https://doi.org/10.3389/fneur.2024.1368658
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bagga et al. 10.3389/fneur.2024.1368658

Frontiers in Neurology 07 frontiersin.org

clinical trials and real-world experience have shown sustained benefits 
of Zolgensma treatment over several years, including improvements 
in motor function and survival, more long-term follow-up is needed 
to fully understand the duration of these benefits. Clinical trials and 
observational studies are ongoing to assess the durability of 
Zolgensma’s effects, including its impact on motor function, 
respiratory function, quality of life, and survival rates over extended 
periods. These studies involve monitoring patients treated with 
Zolgensma for several years to track their progress and detect any 
potential changes in treatment outcomes over time. It’s important to 
note that as research continues and more data become available, our 
understanding of the long-term benefits and potential limitations of 
Zolgensma treatment will continue to evolve. Patients and caregivers 
should work closely with healthcare providers to stay informed about 
the latest research findings and recommendations regarding the use 
of Zolgensma in the management of SMA (65, 72).

Risdiplam (Evrysdi™) was authorized by the FDA as of 7 August 
2020, as the first oral medication for children as young as 2 months old 
and adults with SMA. It is a collaborative development effort involving 
Roche, PTC Therapeutics Inc., and the SMA Foundation, aimed at 
addressing spinal muscular atrophy (56, 73). Risdiplam serves as a 
modifier of mRNA splicing that leads to an elevation in SMN protein 
expression (74). It is a tiny molecule that changes the splicing of the 
SMN2 by binding to two locations in the SMN2 pre-mRNA. These 
sites are known as the 5′ splice site (5′ ss) of intron number 7 and the 
exon splicing enhancer 2 (ESE2) of exon 7 (75). Increases in full-
length SMN mRNA and protein levels are caused by the unique 
specificity of binding two sites, which also reduces impact on other 
pre-mRNA splicing and prevents the likelihood of off-target effects 
(76). According to preclinical studies, risdiplam can reach the central 
nervous system and peripheral organs in vivo and can result in a 
significant increase of SMN protein in the blood, brain, and muscles, 
as well as an increase in survival in various SMA mouse models (77). 
While risdiplam’s systemic distribution in preclinical tests with oral 
administration allowed for the possibility of an impact on other 
tissues, nusinersen’s intrathecal delivery method mostly limited its 
effect to motoneurons of the central nervous system (78). Previous 
studies in human and murine models suggest that SMA may in fact 
be considered a multi-system disorder involving the neuromuscular 
junction, cardio-vascular system, lung, gastrointestinal-tract, and liver 
(79). Risdiplam has shown significant improvements in motor 
function and has the advantage of being an oral therapy, making it a 
more convenient option for many patients (80).

SMA treatments have evolved notably in recent years, particularly 
as previously stated gene therapies like Zolgensma and disease-
modifying drugs like Spinraza (nusinersen). Much more significant 
perspective, which should consider insurance coverage, availability 
across regions, and efforts to improve access to SMA treatments. 
While these drugs offer a promising treatment option for children 
with SMA, they are highly costly, as seen in Table 1. According to 
studies, certain governments have made efforts to design policies for 
such disease treatments, such as: The Department of Revenue, 
Ministry of Finance, govt. of had issued Notification No. 46/2021-
Customs dated 30.09.2021, which waives all Basic Customs Duty 
(BCD) and Integrated Goods and Services Tax (IGST) on drugs 
imported (personal use only) for the treatment of spinal muscular 
atrophy (SMA) rare disease, making medicines for SMA rare disease 
more affordable (81). Government of India also made a provision for 
financial assistance of up to Rs. 50 lakhs to patients suffering from any 

category of Rare Diseases such as SMA and for treatment at any of the 
Centres of Excellence (CoE) identified in the NPRD-2021, outside of 
the Rashtriya Arogaya Nidhi umbrella scheme (82). The National 
Health Service (NHS) England, for example, states that Biogen (the 
pharmaceutical company that manufactures treatment for SMA) will 
make the treatment for spinal muscular atrophy (SMA) available to 
the youngest and most severely affected (SMA type 1) patients 
immediately, with NHS England offering funding contingent on the 
National Institute for Health and Care Excellence (NICE) publication 
of final guidance. In Singapore, the Rare Disease pay has been 
established to pay five drugs to treat three rare diseases. In Malaysia 
and Australia, qualifying patients are given discounted access to pricey 
and life-saving medications (83).

7 Rehabilitation (care and therapies) 
and disease management for spinal 
muscular atrophy

In addition to disease-modifying treatments, SMA management 
often involves a multidisciplinary approach as shown in Figure 3 that 
focuses on addressing the symptoms and complications associated 
with the disease. Supportive care strategies aim to improve the quality 
of life for individuals with SMA and include:

7.1 Physical therapy

Physical therapy is essential in managing muscle weakness, 
contractures, and maintaining range of motion (84, 85). People 
affected by spinal muscular atrophy may experience limitations in 
their ability to fully articulate their joints due to muscle weakness. This 
can potentially lead to the development of contractures, characterized 
by muscle tightness that may become permanent and restrict mobility 
(86). Physical therapy often incorporates exercises and stretching 
routines designed to enhance flexibility and overall functionality (87). 
These interventions aim to minimize the likelihood of joint 
contractures, mitigate the progression of scoliosis, and promote the 
maintenance of a healthy weight. Mounting evidence suggests that 
consistent participation in physical therapy sessions can yield positive 
outcomes in terms of both function and the progression of spinal 
muscular atrophy in patients (86, 87).

7.2 Respiratory care

The management of the respiratory system plays a pivotal role in 
addressing spinal muscular atrophy (88). Weakness in the chest muscles 
can hinder one’s capacity to breathe or cough effectively, consequently 
elevating the likelihood of infections (89, 90). The available respiratory 
care solutions encompass both non-invasive and invasive methods: (i) 
non-invasive respiratory care comprise strategies that aim to circumvent 
or postpone the necessity for invasive procedures (88). Specialized 
apparatus, such as a ventilator or a bilevel positive airway pressure 
(BiPAP) machine, can provide a constant airflow to the lungs using a 
mask that covers the mouth and/or nose. Additionally, a home-based 
cough assist device may be  utilized to facilitate coughing and the 
clearance of secretions. (ii) Invasive respiratory care establishes a 
protected passage to the lungs using an endotracheal tube inserted either 
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through the mouth (intubation) or directly into the trachea via a minor 
neck incision (tracheotomy) (91, 92).

7.3 Nutritional support

The weakening of muscles can result in some individuals with SMA 
experiencing a decline in their ability to chew and swallow proficiently. 
This situation increases the risk of food or liquids being aspirated into 
the lungs, potentially leading to respiratory infections (93, 94). To address 
this, a temporary or permanent feeding tube may be inserted to ensure 
the essential intake of nutrition and hydration (93). Broadly speaking, 
there are two categories of feeding tubes: those inserted through the nose 
and those placed in the abdominal area. Nasogastric (NG) tubes are 
inserted through the nasal passage and deliver nutrition directly into the 
stomach (95, 96). These are typically employed for patients requiring 
short-term feeding tube access and are conveniently replaceable (95). 
Gastrostomy (G) tubes are surgically implanted through the abdominal 
wall and directly into the stomach (97–99). Due to their ease of 
maintenance, they are often the favored choice for individuals in need of 
extended-term feeding assistance.

7.4 Orthopedic interventions

Orthopedic surgery may be required in cases where there are severe 
joint contractures or scoliosis (98, 100). Scoliosis, characterized by a 
spinal curvature, can be a challenge for individuals with spinal muscular 
atrophy as a consequence of muscle weakness (101). An orthopedic 
specialist may propose postural support in the form of bracing or 
recommend surgical intervention to address scoliosis (98, 101).

7.5 Occupational therapy

Occupational therapists work with SMA patients to enhance their 
ability to perform daily tasks and improve their independence (102, 

103). They assess patients’ needs and recommend assistive devices or 
home modifications to facilitate daily activities. Their role includes: 
adaptive techniques means teaching individuals adaptive techniques 
and recommending assistive devices that enable greater independence 
(104). Home modifications means assessing home environments and 
suggesting modifications to make daily tasks more manageable (105). 
Assisting with communication means in cases of severe SMA, 
occupational therapists can help individuals use communication devices 
to facilitate interaction with others (106).

7.6 Psychosocial support

SMA affects not only the physical health but also the emotional 
and psychosocial well-being of patients and their families (107). 
Ensuring the holistic care of a patient with SMA and their family is 
insufficient without the monitoring and treatment of their 
psychosocial welfare. Requirements differ based on the patient’s age 
and specific sub-types of SMA. Psychosocial health can be influenced 
by various elements, including social and emotional factors as well as 
treatment factors such as innovative therapies. Psychosocial care 
should encompass a wide range of characteristics, including social and 
cognitive development, quality of life, and the impact on patient and 
family functioning in various situations such as home, school, or job. 
The care of SMA should include the involvement of a mental health 
practitioner, such as a psychologist, psychiatrist, or neuropsychologist, 
as well as a social worker who has specialised experience in assisting 
patients with chronic diseases. Assessments should be considered 
around the time of diagnosis, before entering school, and after a 
change in functionality. Implementing psychologically informed care 
and employing a range of interventions has the potential to mitigate 
psychological morbidity in both children and parents. During every 
multidisciplinary appointment, it is important to assess the individual’s 
mental health and quality of life. If deemed essential, the mental health 
clinician will be involved in evaluating the psychological state of the 
patient, as well as their parents and siblings (107). Psychosocial 
support addresses these aspects and may include: (i) counseling: 

FIGURE 3

Supportive care and multidisciplinary approach flow chart.

https://doi.org/10.3389/fneur.2024.1368658
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bagga et al. 10.3389/fneur.2024.1368658

Frontiers in Neurology 09 frontiersin.org

individual and family counseling can help individuals and caregivers 
cope with the emotional challenges of living with SMA (107, 108). (ii) 
Support groups: joining support groups, either in person or online, 
can provide a sense of community and shared experiences. (iii) Mental 
health services: access to mental health services is essential for 
addressing anxiety, depression, and stress that may result from the 
condition (108, 109).

7.7 Palliative care

For individuals with advanced SMA or those with severe 
complications, palliative care can provide symptom management, pain 
relief, and emotional support to enhance quality of life (110).

7.8 Disease management approaches for 
SMA management

7.8.1 Supportive care and multidisciplinary 
approach

The management of SMA requires a multidisciplinary team 
approach involving various healthcare professionals to address the 
diverse needs of individuals with the condition. The team may include 
neurologists, physical and occupational therapists, respiratory 
therapists, nutritionists, orthopedic surgeons, and social workers. This 
collaborative approach ensures that the physical, emotional, and 
psychosocial aspects of SMA are managed comprehensively (111). 
Supportive care is the fundamental aspect of clinical management in 
spinal muscular atrophy (SMA). The development of disease-modifying 
medications such as nusinersen, onasemnogene abeparvovecxioi, and 
risdiplam has provided improved treatment choices for the most severe 
forms of the condition. These medications have increased survival rates 
and brought hope for a longer and better quality of life. Additionally, 
they have influenced the way healthcare is provided for these patients. 
Although there have been some improvements in the field, adults living 
with SMA and those transitioning into adulthood have been somewhat 
overlooked, despite the emergence of studies and advancements such as 
enhanced respiratory care, home adaptations, and devices that promote 
greater independence, like power wheelchairs and voice amplifiers. It is 
important for everyone to acknowledge and appreciate these 
achievements. The effects of fragmented care might be intensified for 
individuals migrating from paediatric to adult care, as they no longer 
receive the same degree of coordinated assistance provided in paediatric 
settings. According to reports, individuals who are transferring from 
paediatric to adult healthcare services face challenges in understanding 
and interacting with a complex health system and new specialists. They 
commonly describe this experience as “challenging and intimidating.”

In addition, adults with SMA may have difficulties during this 
phase of transition, particularly when they need to relocate (e.g., for 
higher education), as this necessitates them to become part of a new 
healthcare system. Although not prevalent within the SMA 
community as a whole, certain jurisdictions have acknowledged this 
issue and have adopted targeted measures to mitigate its effects. For 
instance, they have established transitional clinics where medical 
professionals from both adult and paediatric fields participate in 
appointments. We advocate for increased implementation of optimal 
methods and specialised procedures (such as established transitional 

care clinics, communication paths between paediatric and adult 
experts, and a nationwide network of specialists) that streamline the 
transition to adult care and the transfer of knowledge (46).

7.8.2 Assistive devices and technology
The use of assistive devices and technology plays a significant role 

in SMA management. These devices help individuals with SMA lead 
more independent and fulfilling lives (112). Examples include: 
wheelchairs, scooters, and other mobility aids provide individuals with 
the freedom to move and explore their environments (113). 
Augmentative and alternative communication (AAC) devices assist 
those with severe SMA in expressing themselves (106). These systems 
enable individuals to control various aspects of their environment, 
such as lights, doors, and appliances, through adapted technology. 
Adapting the home environment with features like ramps, wider 
doorways, and accessible bathrooms enhances accessibility (105). 
Adaptive technology and software allow individuals with limited 
physical mobility to use computers and access the internet (104).

8 Emerging therapies

Research into SMA continues, with several promising therapies 
under investigation. These therapies include small molecule drugs, 
gene-editing technologies, and exon-skipping therapies, among others. 
The goal is to further enhance the disease-modifying potential and 
offer a more comprehensive treatment approach for SMA. Advances 
in genetic testing have made it easier to diagnose SMA accurately and 
offer prenatal testing for at-risk pregnancies. These advancements 
include: NGS has become a powerful tool in identifying rare or atypical 
mutations in the SMN1 gene and other related genes. It can uncover 
genetic variations that were previously challenging to detect (114, 115). 
Techniques like chorionic villus sampling and amniocentesis allow for 
the diagnosis of SMA in the fetus, enabling informed reproductive 
decisions and early intervention if the fetus is affected (116, 117).

8.1 Gene-editing technologies

Emerging gene-editing techniques, such as CRISPR-Cas9, offer 
the potential to correct genetic mutations directly, providing a curative 
approach to SMA. These technologies are in the early stages of 
development and are being explored in preclinical studies. In addition 
to this, CRISPR technology, which expands the scope of genetic 
engineering and gene treatments, enables the treatment of a wide 
range of hereditary illnesses. Some prior research in the literature 
show that SMA can be treated using the CRISPR method. Homology 
directed repair (HDR)-based CRISPR technology, which produces a 
high rate of in-del (insertion-deletion) mutations rather than editing, 
has been proven unsuitable for therapeutic purposes. CRISPR-prime 
editing (PE) technology is a novel type of gene editing technique that 
enables precise genomic alterations without the need for double-
strand breaks or donor DNA sequences. The CRISPR-prime editing 
approach has also been employed in rare disorders like as sickle cell 
anaemia and Tay–Sachs, and its effectiveness in editing diverse 
harmful variants has been proven. However, CRISPR Prime Editing-
mediated gene editing for spinal muscular atrophy (SMA) has yet to 
be investigated (114).
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8.2 Small molecule therapies

Small molecules that target specific pathways involved in SMA are 
also under investigation. These drugs aim to increase SMN protein 
production and improve motor function (116).

8.3 Combination therapies

Researchers are exploring the use of combination therapies, 
including a mix of SMN2-targeting drugs and other treatments, to 
enhance the efficacy of SMA management (118). Combining 
different therapeutic strategies to maximise SMA treatment 
outcomes is an exciting approach. Limited data supports the 
efficacy of expensive drug combinations in people, encouraging 
clinicians and scientists to examine all therapeutic options (56, 
119) A combination of SMN-dependent ASO-inducing SMN2 
exon inclusion and SMN-independent myostatin inhibition 
yielded positive results in a SMA animal model (56, 120). A 
limited sample of patients were treated with a combination of 
Zolgensma and nusinersen, but the long-term benefits remain 
unclear. Zolgensma and nusinersen have distinct modes of action, 
making drug-to-drug interactions less common. Nusinersen 
targets an intron sequence to increase exon 7 inclusion. The 
transplanted Zolgensma gene lacks introns and hence should not 
interfere with nusinersen translation. Zolgensma treatment should 
be approached with caution due to the reported adverse event of 
thrombocytopenia associated with nusinersen. Long-term 
follow-up data, particularly in pre-symptomatic patients, is 
needed to evaluate the effectiveness and hazards of combination 
therapy (56). Combination therapies, treatments and advocacy 
initiatives have played an important role in determining research 
orientations and legislative changes in the management of spinal 
muscular atrophy (SMA). Advocacy groups such as cure SMA, 
SMA foundation, and fight SMA have been instrumental in 
catalyzing SMA research. By raising awareness, funding research 
initiatives, and fostering collaborations among scientists, these 
organizations have accelerated the pace of discovery in 
understanding the underlying genetic mechanisms of SMA, 
identifying potential therapeutic targets, and developing 
innovative treatment strategies.

8.4 Early intervention and pre-symptomatic 
treatment

Research has shown the benefits of early intervention, even before 
the onset of symptoms, in infants with SMA (121). The nurture study 
demonstrated that early treatment with nusinersen in pre-symptomatic 
infants significantly improved motor function and developmental 
outcomes (122).

8.5 Patient and caregiver advocacy

SMA patient and caregiver advocacy groups have played a crucial 
role in raising awareness, driving research, and improving access to 
care and treatments. Their efforts have been instrumental in advancing 
the SMA field (123).

9 Conclusion

Thirty years after the discovery of the SMN gene, global scientific 
efforts have successfully transformed spinal muscular atrophy (SMA) 
into a manageable condition. Three distinct drugs utilizing cutting-edge 
technology—gene therapy, antisense oligonucleotides (ASOs), and 
small molecules focused on SMN2 splice correction—have gained 
approval from both the FDA and EMA, demonstrating remarkable 
enhancements, particularly when administered prior to the onset of 
symptoms. SMA, known for its substantial economic impact, has 
become even more financially demanding with the introduction of 
these novel therapies. Addressing the considerable economic burden 
associated with these treatments has led to an increasing advocacy for 
the inclusion of SMA in newborn screening (NBS) programs. While the 
existing therapies are likely sufficient for immediate administration after 
birth in cases of intermediate and mild SMA, questions arise regarding 
whether individuals with only two SMN2 copies will follow a trajectory 
similar to their age-matched counterparts and if they may require 
additional SMN-independent therapies. Comprehensive longitudinal 
studies are imperative to explore potential new phenotypes linked to 
these innovative therapies. Despite the presence of biomarkers 
associated with disease progression, further investigations are needed 
to identify potential non responders, enabling them to transition to 
alternative therapies. SMA treatments are often expensive, prompting 
concerns regarding equal access for all patients, especially in low-income 
areas or nations with limited healthcare resources. Addressing pricing 
and guaranteeing access to these life-changing medications for all SMA 
patients worldwide remains a serious concern. Numerous unanswered 
questions persist, necessitating meticulous future research. Nonetheless, 
SMA stands as a model illustrating how genetic insights can pave the 
way for the development of targeted therapies.
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