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Identification immune-related
hub genes in diagnosing
atherosclerosis with ischemic
stroke through comprehensive
bioinformatics analysis and
machine learning
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1Yilong County People’s Hospital of Nanchong, Nanchong, China, 2Department of Neurology,

Gaoping District People’s Hospital of Nanchong, Nanchong, China

Background: Atheroma plaques are major etiological factors in the

pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical

involvement of the immune microenvironment and dysregulated inflammatory

responses throughout IS progression. Consequently, therapeutic strategies

targeting specific immune-related markers or signaling pathways within this

microenvironment hold significant promise for IS management.

Methods: We integrated Weighted Gene Co-expression Network Analysis

(WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to

identify disease-associated modules and hub genes. Immune infiltration analysis

evaluated hub gene-immune cell correlations, while protein-protein interaction

(PPI) and ROC curve analyses assessed diagnostic performance.

Results: Comprehensive bioinformatics analysis identified three hub

genes—OAS2, TMEM106A, and ABCB1—with high prognostic value for ischemic

stroke. Immune infiltration profiling revealed significant correlations between

these genes and distinct immune cell populations, underscoring their roles in

modulating the immune microenvironment. The diagnostic performance of the

gene panel was robust, achieving an area under the curve (AUC) was calculated

as 0.9404 (p < 0.0001; 95% CI: 0.887–0.9939) for atherosclerotic plaques,

demonstrating superior accuracy compared to conventional biomarkers.

Conclusion: By integrating machine learning with multi-omics bioinformatics,

we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for

precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit

dual diagnostic utility and may influence disease progression through immune

cell modulation. Our findings provide a foundation for developing targeted

therapies and biomarker-driven clinical tools.
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Introduction

Stroke is a serious neurological disorder caused by an

interruption or reduction in blood supply to the brain, leading

to brain cell death and various neurological deficits (1).

It primarily occurs in two forms: ischemic stroke, which

results from a blockage in arteries supplying the brain, and

hemorrhagic stroke, caused by bleeding into or around the

brain (2).

Ischemic stroke (IS) can be further classified into

several subtypes based on the underlying cause of

the blockage, including large artery atherosclerosis,

cardioembolism, small-vessel occlusion, stroke of other

determined cause, and stroke of undetermined cause

(3). Among these, atherosclerosis is a common cause of

ischemic stroke.

Atherosclerosis, a chronic inflammatory disorder, initiates

with endothelial dysfunction and low-density lipoprotein (LDL)

retention in arterial walls, triggering myeloid cell infiltration

and foam cell formation (4, 5). This cascade culminates in

plaque development, where immune-mediated processes

dictate stability: vulnerable plaques rich in inflammatory

macrophages and neutrophils predispose to rupture, whereas

stable plaques exhibit fibrous caps and regulatory T-cell (Treg)

enrichment (6–8). Over time, these plaques can harden and

narrow the arteries, reducing blood flow. Atheroma plaques

are a significant contributor to ischemic stroke, and their

transcriptomic analysis can provide valuable insights into the

of IS.

The immune microenvironment orchestrates both

atherosclerosis progression and post-ischemic neuronal injury

(9, 10). Pro-inflammatory cytokines, neutrophil extracellular traps

(NETs), and microglial activation exacerbate blood-brain barrier

disruption and infarct expansion (5, 11, 12).

Despite advances, current diagnostic modalities—including

ultrasonography, CT angiography, and lipid profiling—

lack sensitivity for early atherosclerosis detection and fail

to predict plaque vulnerability (1, 13, 14). Inflammatory

biomarkers (e.g., CRP) exhibit limited specificity, highlighting

the unmet need for mechanistically grounded diagnostic

tools (15).

High-throughput transcriptomics has revolutionized disease

mechanism exploration, enabling systematic identification of

stroke-associated genes (16, 17). Here, we integrated Weighted

Gene Co-expression Network Analysis (WGCNA)—a systems

biology approach to detect co-expressed gene modules—with

machine learning algorithms to prioritize hub genes (17–

22). Unlike conventional analyses, this strategy disentangles

complex interactions within atheroma microenvironments while

minimizing high-dimensional data overfitting.

Our study identifies OAS2, TMEM106A, and ABCB1 as

key regulators bridging atherogenesis and IS. Through protein-

protein interaction (PPI) networks and ROC analysis, we validate

their diagnostic efficacy for plaque instability (AUC = 0.9404)

and IS risk stratification (AUC = 0.7075). These findings

illuminate immune-centric pathways in stroke pathogenesis,

offering translational potential for precision diagnostics and

targeted therapies.

Methods

Ethical approval

The data used in this study are all from existing publications or

public databases with ethical approval and informed consent, and

no additional ethical approval is required.

Data source

The dataset of GSE22255 and GSE43292 from GEO websites

(https://www.ncbi.nlm.nih.gov/geo/). The GSE22255 was blood

genomic expression profile for ischemic stroke (IS), including 20

control and 20 IS sample (23). The GSE43292 was the genome-wide

expression study of human carotid atheroma, including 32 normal

tissue and 32 atheroma plaque samples (24).

Identification of the di�erentially expressed
genes

“Limma” package (25) (version 3.56.2) was utilized to identify

the DEGs between the Atheroma plaque and normal tissue. A

p <0.05 and |log FC (fold change)| > 0.25 were considered

statistically significant. The “ggplot2” package (version 3.5.1) was

used to establish a volcano plot of the DEGs. The upregulated and

downregulated gene lists were sorted by logFC in each dataset.

Weighted gene co-expression network
analysis (WGCNA)

WGCNA (26) (version 1.72) is a systems biology method

employed to construct gene co-expression networks, identifying

clusters or modules of highly correlated genes across various

samples. We applied WGCNA to analyze the top 50% of genes,

exhibiting high variance in expression. Initially, a standard scale-

free network was utilized to approximate the optimal soft threshold

power (soft power = 18). Subsequently, adjacency values among

genes, with a variance exceeding all variance quartiles, were

calculated using a power function. These adjacency values were

then transformed into a topological overlap matrix (TOM),

from which the corresponding dissimilarity values (1-TOM) were

derived. Lastly, the relationships between the modules and clinical

traits were evaluated using Pearson correlation analysis, facilitating

the identification of biologically significant modules.

Construction of the LASSO model and
random forest

We utilized the Least Absolute Shrinkage and Selection

Operator (LASSO) logistic regression [analyzed by the “glmnet” R

package (version 4.1) (22)], Random Forest (RF) as analyzed by the

“randomForest” R package (version 4.7), to screen candidate genes,
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and the overlapping genes of the two algorithms were regarded as

diagnostic markers.

Immune cells infiltration analysis

The versatile computational method known as CIBERSORT

(27) was employed to accurately quantify the fractions of immune

cells within atheroma plaque and normal tissue gene expression

datasets, utilizing specific immune cell signatures consisting of

3,812 differential expression genes. These genes exhibit high

sensitivity and specificity for identifying 22 distinct phenotypes

of human immune cells. Subsequently, samples were subjected to

filtering based on a P-value threshold of<0.05, following which the

proportions of each immune cell type were computed. Correlations

among the 22 immune cell populations were visualized using the

“corrplot” package (version 0.92).

Functional enrichment analysis

For a more comprehensive exploration of the potential

biological roles of DEGs, we employed the “ClusterProfiler”

package (version: 3.18.0) and the “org.Hs.eg.db” (version: 3.17.0)

package within the R software environment. These tools facilitated

Gene Ontology (GO) function enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis, with a significance threshold set at q value <0.05. The GO

analysis was instrumental in annotating gene functions, particularly

focusing on biological pathways (BP), cellular components (CC),

and molecular functions (MF). Meanwhile, KEGG analysis enabled

the identification of enriched pathways among the DEGs.

Correlation analysis of hub genes and the
immune status

To examine the relationship between hub genes’ expression

levels and the immune status, we performed Spearman’s rank

correlation analysis using the “ggcorrplot” package (version:

0.1.4.1) in R. This analysis aimed to depict the correlations

between the expression levels of hub genes and various aspects of

immune status.

ROC curve and protein-protein interaction
network

The protein-protein interaction network, with genes as nodes,

expresses the edge with the mapping interaction of genes

encoding proteins, thus forming an undirected graph. Using the

STRING database, a comprehensive dataset containing functional

connections between proteins, based on experimental evidence of

protein-protein interactions and interactions predicted through

comparative genomics and text mining. STRING uses a scoring

system designed to reflect evidence of predicted interactions. In this

study, we included interactions with a score of at least 0.4, which

corresponds to amedium confidence network. The diagnostic value

of this key gene for atherosclerotic plaque and ischemic stroke

was evaluated by receiver operating characteristic (ROC) curves.

R software (version 4.3.0) and Adobe Illustrator CS6 was utilized

for statistical analysis and drawing. P-value < 0.05 was considered

statistically significant.

Nomogram prediction model

To evaluate the predictive capabilities of hub genes related to

disease occurrence and progression, we will construct a nomogram

based on a logistic regression model. Logistic regression analysis

will identify significant factors associated with the outcome, with

each variable assigned a regression coefficient to estimate its

contribution to the model. Utilizing the R package “rms” (version:

6.8), we will create the nomogram, linking each predictor to a

corresponding score, which enables the calculation of a total score

representing the predicted probability of the outcome.

Results

Study design and di�erential gene
expression analysis

The schematic of this study is illustrated in Figure 1.

Initially, differentially expressed genes (DEGs) were identified

from the GSE43292 dataset; subsequently, biologically significant

modules were detected using the Weighted Gene Co-expression

Network Analysis (WGCNA) method. The CIBERSORT algorithm

was utilized to quantify the fractions of immune cells within

atheroma plaque gene expression datasets, using specific immune

cell signatures. Functionally relevant DEGs were screened by

overlapping the identified DEGs with the genes in the brown

module through a Venn diagram analysis. To identify the key genes

with the highest prognostic significance for ischemic stroke, the

Least Absolute Shrinkage and Selection Operator (LASSO) and

Random Forest algorithms were applied. This approach identified

three pivotal hub genes: OAS2, TEME106A, and ABCB1. The

diagnostic value of these three key genes for atherosclerotic plaque

and ischemic stroke was further evaluated using protein-protein

interaction (PPI) network analysis, receiver operating characteristic

(ROC) curve analysis, and a nomogram model.

Differentially expressed genes were screened using the “limma”

package with a threshold of p < 0.05 and |logFC| > 0.25). From

the GSE43292 dataset, a total of 3,812 DEGs were identified,

comprising 1,989 upregulated genes and 1,823 downregulated

genes. The volcano plot illustrating these DEGs is presented in

Figure 2A.

Functional enrichment analysis of DEGs

To gain deeper insights into the biological mechanisms and

signaling pathways associated with differentially expressed genes

(DEGs) in atheroma plaque, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were
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FIGURE 1

Overview of the study design.

conducted. The results of GO analysis demonstrated that the DEGs

were primarily enriched in processes related to the immune system,

regulation of response to stimuli, cell surface receptor, cell adhesion

(Figure 2B).

Similarly, the KEGG analysis revealed that the DEGs were

significantly associated with pathways such as the chemokine

signaling pathway, cell adhesion molecules, phagosome

(Figure 2C). These findings highlight the critical involvement

of immune system regulation and cell adhesion processes

in the progression of atheroma plaques, providing valuable

insights into the underlying molecular mechanisms and potential

therapeutic targets.

Immune infiltration analyses

To comprehensively characterize immune cell infiltration

in atheroma plaque, we applied the CIBERSORT algorithm

(version 1.06) with the LM22 leukocyte gene signature matrix

(1,000 permutations, p-value threshold < 0.05 for deconvolution

reliability) to RNA-seq data from GSE43292, including atheroma

plaque samples and normal control tissues. Raw counts were

normalized using the TMM method in edgeR to correct for library

size variation, and batch effects were minimized via ComBat prior

to analysis. The proportions of different infiltrating immune cell

types between atheroma plaque and control tissues were shown

in Figures 2D, E. Obviously, Macrophages M2 accounted for the

majority of all infiltrating cells. In comparison to normal tissue,

atheroma plaque exhibited higher levels of memory B cells, plasma

cells, resting memory CD4T cells, M0 macrophages, Neutrophils

and activated Mast cells. Conversely, the percentages of naive

B cells, CD8T cells, activated memory CD4T cells, Monocytes,

activated NK cells, activated Dendritic cells, resting Mast cells,

activated Mast cells, and M2 macrophages were relatively lower

(Figure 2F).

These findings underscore the pivotal role of altered immune

cell composition in the progression of atheroma plaques, suggesting

that immune infiltration may serve as a key driver of atherogenesis

and a potential target for therapeutic intervention.

WGCNA and identification of critical
modules

Weighted Gene Co-expression Network Analysis (WGCNA)

was employed to construct a co-expression network based on the

top 50% of genes with the highest variation in expression, that

show substantial variation across the dataset, as they are more

likely to reflect biological processes relevant to disease. Data quality

from the 64 samples (including 32 Atheroma plaque and 32 intact

tissue samples) was confirmed through cluster analysis. To establish

a scale-free network, the soft threshold power β was set to 18,

ensuring an independence degree of 0.9, and mean connectivity

close to 0 (Figure 3A).

Genes exhibiting similar expression patterns were clustered

into 17 distinct co-expression modules. The reliability of these

modules was validated using hierarchical clustering, heatmaps,

and adjacency relationship analyses (Figures 3B, C). Notably,

the eigengenes of the brown and green modules demonstrated

significant positive correlation with atheroma plaque (cor= 0.58, P

= 4× 10−7 and cor= 0.57, P= 9× 10−7, respectively; Figure 3D).

These findings suggest that the brown module is likely to play a

critical role in the progression of atheroma plaques. Consequently,

the brown module was further analyzed to identify hub genes,

which may serve as potential biomarkers or therapeutic targets

for atherogenesis.

Identification of the hub genes most
associated with Ap

To elucidate the regulatory role of DEGs in the development

of Ap, an intersection of DEGs and genes from the brown module

was performed, resulting in the identification of 760 signature genes

(Figure 3E). To refine the selection of core genes, LASSO regression

and random forest analyses were utilized.

The LASSO model was used to perform feature selection by

penalizing the coefficients of less informative variables, effectively

shrinking them to zero. To validate the LASSO model, we

performed 10-fold cross-validation (CV) during the training

process. In this approach, the dataset was randomly partitioned into

10 subsets, and themodel was trained and validated on each of these

subsets, with 1 fold reserved for validation at each iteration. The

average performance across the folds was used to assess the model’s

stability and predictive power.
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FIGURE 2

Functional enrichment analysis and the immune infiltration landscape of di�erential expression gene. (A) the volcano of di�erentially expressed

genes between Atheroma plaque compared with normal tissue. A p < 0.05 and |log FC (fold change)| > 0.25 were considered statistically significant.

Grenn blot represent downregulated and pink blot represent upregulated. (B) To analyze potential mRNA targets, using the Gene Ontology (GO)

system. The ClusterProfiler utility within R software facilitated the clustering of prospective targets based on biological pathways (BP), molecular

functions (MF), and cellular components (CC). A significance threshold of q value <0.05 was applied to determine statistical significance in the

enrichment results. (C) Enriched KEGG signaling pathways were selected to illustrate the significant biological activities associated with potential

mRNA. The gene ratio is represented on the abscissa, while the enriched pathways are depicted on the ordinate. (D, E) The proportion of 22 immune

cell subpopulations in 64 samples from the GSE43292 datasets. (F) The disparity in immune infiltration between atheroma plaque and healthy

controls was examined. The normal controls group was color-coded red, while the atheroma plaque group was color-coded green. Statistical

significance was defined as a P < 0.05.
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FIGURE 3

Construction of the co-expression network. (A) Soft threshold (power = 20) and scale-free topology fit index (R2
= 0.9). (B) The correlation heatmap

of di�erent modules. (C) Gene hierarchy tree clustering diagram. The graph indicates di�erent genes horizontally and the uncorrelatedness between

genes vertically, the lower the branch, the less uncorrelated the genes within the branch, i.e., the stronger the correlation. (D) Heatmap showing the

relations between the modules and Ap feature. The value in the small cells of the graph represent the two-calculated correlation values cor

coe�cients between the eigenvalues of each trait and each module as well as the corresponding statistically significant p-values. Color corresponds

to the size of the correlation; the darker the red, the more positive the correlation; the darker the green, the more negative the correlation. (E) Venn

diagram for identification the overlapping genes from DEGs and WGCNA modules.
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FIGURE 4

The final hub genes were identified by lasso regression and random forest analyses. (A, B) A least operator shrinkage and selection operator (LASSO)

logistic regression was used to screen characteristic variables. (C) Ordination plot of gene importance scores. (D) Venn diagram showing the

intersection feature variables filtered by the two algorithms. (E) The correlation between hub genes and the immune status was obtained by

CIBERSORT algorithm analysis.

The LASSO model uses an L1 penalty to shrink

irrelevant coefficients to zero, effectively reducing the model’s

complexity and helping to avoid overfitting. For the Random

Forest model, we adjusted the number of trees and the

maximum depth of each tree to prevent excessively deep

trees that might overfit the data. We also ensured that a

sufficiently large number of trees were included to capture the

underlying signal.
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FIGURE 5

Protein-protein interaction network and diagnostic e�cacy of OAS2. (A–C) protein-protein interaction network of OAS2, ABCB1, TMEM106A; (D)

Receiver operating characteristic (ROC) curves assessing the diagnostic e�cacy of OAS2, TMEM106A and ABCB1 in GSE43292 dataset. (E) Receiver

operating characteristic (ROC) curves assessing the diagnostic e�cacy of OAS2, TMEM106A and ABCB1 in GSE22255 dataset.
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FIGURE 6

Nomogram for predicting the risk of ischemic stroke based on key gene expression.

The LASSO regression algorithm identified 11 genes as

potential biomarkers (Figures 4A, B), while the random

forest (RF) algorithm highlighted 19 candidate genes

(Figure 4C). By intersecting the results from the two methods

(Figure 4D), three core genes were identified: OAS2, ABCB1,

and TMEM106A.

These core genes represent key regulators associated with

atheroma plaque development and may serve as promising

biomarkers for diagnostic or therapeutic applications

in atherosclerosis.

Hub genes associations to immune cell
infiltration

The associations between the expression levels of hub genes

and the infiltration of immune cells were investigated using the

CIBERSORT algorithm. The results revealed significant positive

correlation between the expression levels of hub genes and the

infiltration levels of immune cells, such as M0 macrophages, M2

macrophages, and resting memory CD4T cells. Conversely, there

was a notable negative correlation observed with the immune

infiltration level of naive B cells, Monocytes, and CD8T cells

(Figure 4E). Notably, TMEM106A exhibited the highest positive

correlation with M0 macrophages (Corr = 0.54) and a negative

correlation with naive B cells (Corr = −0.53). Similarly, OAS2

showed a prominent positive correlation with M2 macrophages

(Corr = 0.45) and a negative correlation with CD8T cells (Corr

=−0.56), while ABCB1 displayed a significant positive correlation

withM2macrophages (Corr= 0.45) and a negative correlationwith

CD8T cells (Corr=−0.43).

These findings highlight the intricate relationship between

hub gene expression and immune cell infiltration, suggesting that

these genes may play critical roles in modulating the immune

microenvironment of atheroma plaques. This underscores their

potential as therapeutic targets for immune-based interventions

in atherosclerosis.

Identification the diagnostic ability of hub
gene and the biology role of stroke

To investigate the biological functions of the identified hub

genes in Ap and ischemic stroke, a protein-protein interaction

(PPI) network was constructed using the STRING database with

a medium confidence score threshold >0.4 (Figures 5A–C). The

investigation revealed OAS2 involvement in the interleukin-

27-mediated signaling pathway and the negative regulation of

chemokine (C-X-Cmotif) ligand 2 production, highlighting its role

in innate immunity responses. TMEM106Awas shown to stimulate

macrophages and drive them toward an M1-like phenotype via the

activation of the MAPK and NF-kappaB signaling pathways.

These findings suggest that OAS2 and TMEM106A are involved

in key immune regulatory processes that may contribute to the

progression of atherosclerosis and ischemic stroke.

Diagnostic potential of hub genes

The diagnostic capabilities of the identified hub genes (OAS2,

TMEM106A, and ABCB1) were evaluated using a gene panel

and receiver operating characteristic (ROC) curve analysis. For

atherosclerotic plaques, the area under the curve (AUC) of 0.9404

(p < 0.0001; 95% CI: 0.887–0.9939), indicating excellent diagnostic

potential (Figure 5D). For ischemic stroke, the AUC was calculated

was 0.7075 (p = 0.0248; 95% CI: 0.5441–0.8709), suggesting

moderate diagnostic and evaluative capabilities (Figure 5E).
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To further assess ischemic stroke risk, a nomogram was

constructed based on the expression levels of key genes OAS2,

TMEM106A, and ABCB1. Gene-specific scores were calculated and

summed to produce a total score reflecting an individual’s stroke

risk. This nomogram provides a practical tool for clinical risk

assessment, with results visualized for ease of application (Figure 6).

These findings highlight the diagnostic value of the hub

gene panel in both atherosclerosis and ischemic stroke, while

also emphasizing the need for further research to elucidate the

underlying mechanisms.

Discussion

Ischemic stroke is a major global health issue that is intricately

linked to the presence of atherosclerotic plaques. The accumulation

of lipids and immune cells within these plaques significantly

contributes to the pathogenesis of ischemic stroke by promoting

inflammation and vascular instability. The identification of these

connections underscores the potential for targeted therapeutic

strategies aimed at both atherosclerosis and ischemic stroke

prevention, paving the way for more effective management of these

interconnected conditions.

In our investigation, we aimed to pinpoint hub genes associated

with ischemic stroke derived from atheroma plaque and blood

samples by employing a combination ofWGCNA, the CIBERSORT

method, and machine learning methodologies. We identified

overlapping genes from the LASSO and random forest analyses as

potential diagnostic markers, which included OAS2, TMEM106A,

and ABCB1. However, the identification of hub genes represents

only an initial step in understanding their roles in ischemic stroke.

Further research is needed to establish their causal relationships

with ischemic stroke and their potential as therapeutic targets.

The CIBERSORT algorithm was employed to analyze immune

cell infiltration in individuals with atherosclerosis, revealing a

marked distinction in immune cell infiltration patterns between

atheroma plaque and intact tissue from atherosclerosis patients.

Specifically, there was a notable contrast in the relative abundance

of various cell types, including naive B cells, memory B cells,

plasma cells, CD8T cells, activated memory CD4T cells, and M0

macrophages (Figure 2F). Subsequently, we conducted an immune

infiltration analysis to investigate the relationship between OAS2,

TMEM106A, and ABCB1 with immune cells. The findings indicate

a significant correlation between hub genes and macrophages,

CD8T cells, and monocytes (Figure 4E).

Determining whether these genes have a causative link with

ischemic stroke is essential for evaluating their potential as

therapeutic targets. Recent studies and information from UniProt

indicate that TMEM106A can stimulate macrophages and promote

their differentiation into an M1-like phenotype via the activation

of the MAPK and NF-kappaB signaling pathways (28, 29). This

activation leads to the release of pro-inflammatory cytokines,

including TNF, IL1B, IL6, CCL2 and nitric oxide (30, 31). Given

that atherosclerosis is a chronic inflammatory condition, and that

atheroma plaques significantly contribute to ischemic stroke, we

propose that TMEM106A plays a crucial role in the progression of

ischemic stroke.

Our study suggests that OAS2 is involved in the signaling

pathwaymediated by interleukin-27, leading to the downregulation

of chemokine (C-X-C motif) ligand 2 production. Both of these

factors play crucial roles in immune responses. Evidence indicates

that OAS2 can be stimulated not only by IFNβ, but also by

psoriasis-associated cytokines such as IL-17A and IL-6 (32, 33).

Research conducted by Zhou et al. indicates that OAS2 may serve

as a predictor for the severity and activity of psoriasis, and it could

also be utilized as a marker to assess or monitor the effectiveness of

clinical treatments (34). Considering that the immune response is a

pivotal mechanism in ischemic stroke, it can be inferred that OAS2

has a significant impact on the progression of this condition.

Furthermore, we established a gene panel that includes OAS2,

TMEM106A, and ABCB1 to evaluate their potential in predicting

the diagnosis of atherosclerotic plaques and ischemic stroke. The

calculated AUC was 0.9404, indicating that this gene panel exhibits

promising diagnostic and evaluative capabilities for atherosclerotic

plaques. In parallel, with an AUC of 0.7075, the gene panel also

demonstrates notable diagnostic potential for ischemic stroke.

Given the complex interplay between circulating blood and

localized lesions, as well as the challenge in accurately reflecting

local lesion conditions using blood markers, it is not surprising that

the diagnostic performance of the gene panel in the blood of stroke

patients shows a decline.

Recent studies, such as those by Zhang et al. (35) and

Wang et al. (5), have successfully applied bioinformatics and

machine learning to identify biomarkers for atherosclerosis or

ischemic stroke. These studies focused on biomarkers for either

atherosclerosis or ischemic stroke. Our work is novel in identifying

shared diagnostic markers (OAS2, TMEM106A, ABCB1) that

bridge both conditions, reflecting their clinical comorbidity

and overlapping inflammatory pathways. Our machine learning

model achieved an AUC of 0.9404 for diagnosing atherosclerotic

plaques, outperforming previous studies. This improvement

stems from our hybrid approach, which prioritizes genes

with both high connectivity in co-expression networks and

strong correlations to immune infiltration. While earlier works

emphasized well-known inflammatory markers (e.g., IL6, TNF-

α), we identified novel candidates (OAS2, TMEM106A, ABCB1)

with limited prior links to atherosclerosis or stroke. For

example, TMEM106A has been studied in neurodegeneration

but not in vascular diseases, highlighting the originality of

our findings.

While our study has yielded promising findings, it is crucial

to acknowledge its limitations. One key limitation is the relatively

small sample size, which may have affected the statistical power

of our analysis. Consequently, the results should be interpreted

with caution. Despite these limitations, our study offers a valuable

starting point for further exploration in this field. We remain

dedicated to advancing our understanding of these complex

diseases and working toward the development of more effective

diagnostic and therapeutic strategies.

As we continue to deepen our understanding of the genetic

underpinnings of atherosclerotic plaques and ischemic stroke, the

potential for breakthroughs in diagnosis and treatment expands.

Our study, which identifies OAS2, TMEM106A, and ABCB1 as

pivotal players in these conditions, contributes to a growing body
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of knowledge that could fundamentally transform our approach to

cardiovascular health.

Conclusion

Our study identified key genes associated with ischemic

stroke from atheroma plaque and blood samples by employing

WGCNA and machine learning methods. By establishing a gene

panel comprising OAS2, TMEM106A, and ABCB1 for diagnostic

prediction, we have opened new avenues for early detection and

intervention. These findings could prove instrumental in the

developing novel therapeutic strategies, potentially transforming

the management of these complex diseases. Furthermore, our

results indicate that OAS2, TMEM106A, and ABCB1 may

serve as promising candidates for the diagnosis and assessment

of atherosclerotic plaques and ischemic stroke. Despite some

limitations in our study, these discoveries provide newmechanisms

and potential targets for the prevention and treatment of

ischemic stroke.
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