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Multiple sclerosis (MS) is a chronic central nervous system disease characterized 
by neurodegeneration and inflammation. Neurofilament light chain (NfL), a protein 
released during axonal injury, has gained recognition as a potential biomarker for 
monitoring MS progression and treatment response. Evidence indicates that blood NfL 
(bNfL) offers a minimally invasive, cost-effective tool for tracking neuroaxonal damage. 
Regular bNfL assessments can identify subclinical disease activity, guide treatment 
intensification, and support individualized care. However, bNfL level evaluation is 
currently not optimized in Italian clinical practice. This work examines the utility of 
bNfL monitoring in clinical practice, focusing on optimizing its use within specific 
patient profiles, especially in resource-limited settings. bNfL testing, particularly in 
targeted MS patient profiles, including stable patients exhibiting subclinical signs of 
disease activity, such as fatigue, and patients off-treatment, represents a promising 
adjunct for personalized disease management. Its integration into clinical practice, 
alongside MRI and clinical assessments, can enhance decision-making and improve 
care efficiency, especially in settings with limited MRI resources. Further research 
is needed to standardize testing protocols and establish disease-specific cutoffs.
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous 
system (CNS) (1), characterized by neuroaxonal damage that correlates with clinical events, 
magnetic resonance imaging (MRI) findings, and disease prognosis (2). Neurofilament light 
chain (NfL), a structural protein within the neuronal cytoskeleton, mainly localized in axons 
but also found in neuronal cell body (3), is crucial for maintaining neuronal integrity in both 
the central and peripheral nervous system. Neuro-axonal injury leads to the release of NfL into 
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cerebrospinal fluid (CSF), reflecting underlying neurodegenerative 
and inflammatory processes (4). This release is seen in MS (5) as well 
as in other conditions such as Alzheimer’s disease and amyotrophic 
lateral sclerosis (4). Elevated NfL levels indicate neuro-axonal damage, 
regardless of the primary cause (6).

Although most NfL remains within the CSF, approximately 2% is 
released in the blood (6), allowing blood NfL (bNfL) to be used as a 
minimally invasive biomarker. Technological advancements, such as 
single-molecule array (SiMoA) assays (7, 8) and more recent 
immunometric assays, have enabled the detection of NfL in serum and 
plasma at picogram/milliliter concentrations (9), facilitating its use in 
clinical and research settings (4, 5).

Retrospective cohort studies (10–15) and phase 2 and 3 clinical 
trials in relapsing and progressive MS (16–20) have demonstrated the 
promise of NfL as a biomarker. High correlations between CSF and 
bNfL levels (10, 13, 14) suggest that blood-based measurements of NfL 
can reliably reflect neuroaxonal damage, making bNfL a useful tool 
for monitoring disease activity (10, 11).

In patients with relapsing and progressive MS, elevated bNfL 
concentrations have been observed compared to healthy controls (10, 
11). Levels of bNfL correlate with clinical and MRI indicators of 
inflammatory disease activity, including baseline T2 lesion volume 
and number (11, 21, 22), T1-hypointense lesion and volume (23, 24), 
and the presence and quantity of gadolinium-enhancing (Gd+) lesions 
(10, 25).

Similarly, pediatric MS patients exhibit elevated bNfL levels 
during their first clinical demyelinating episode (26), with higher 
levels correlating with MRI activity, relapses, and EDSS scores, 
mirroring the correlations seen in adults (27). Additionally, the 
initiation of effective treatment leads to a reduction in bNfL levels, as 
demonstrated in both clinical trials and real-world studies (6).

Currently, NfL is primarily used as a secondary outcome measure 
in clinical trials for MS therapies (28), and further validation is 
needed before it can be routinely adopted in clinical practice. NfL 
assays are still designated for research-oriented use in most 
neurodegenerative diseases.

Despite its promising role in MS management and its potential for 
widespread clinical adoption, the practical use of bNfL testing remains 
limited. Consensus documents have outlined potential clinical 
applications for bNfL analysis in MS, providing recommendations on 
its role, optimal timing, and factors influencing bNfL levels, such as 
age and comorbidities (29–31). Several challenges, however, must 
be addressed before it becomes a routine practice, including the need 
for standardized assay protocols, consistency in the timing of sample 
collection, and consideration for confounding factors like age, 
comorbidities, and BMI (5, 29).

2 Methods

Given the potential of bNfL to improve MS management, and the 
source-limitation of territorial clinical settings in Italy, a panel of 
Italian experts in the management of MS discussed specific scenarios 
that should be prioritized for bNfL testing in clinical practice. Experts 
gathered in two expert meetings that were guided by a moderator. The 
first meeting, held in Rome in June 2024, discussed the value of bNfL 
measuring, investigated the characteristics of the MS patient to 
be prioritized for the bNfL evaluation, and the barrier to bNfL use. 

During the second virtual meeting, held in July 2024, the experts 
agreed on the patients’ characteristics emerged in the first meeting. 
Their goal was to provide practical recommendations to guide 
decision-making and optimize patient outcomes as this biomarker is 
widely adopted.

3 The prognostic value of bNfL for 
disease activity and progression in MS

High bNfL levels also have a prognostic value, predicting severe 
clinical outcomes and MS progression during acute disease activity, 
including relapses (10, 11, 32), development of Gd+ T1 lesions (17), 
new T2-weighted lesions (11, 16, 19), increased risk of disability 
worsening (10, 16, 17, 25), and increased expanded disability status 
scale (EDSS) scores (11, 25, 32). Additionally, bNfL levels can predict 
future brain and spinal cord atrophy (6, 11).

bNfL levels are linked to retinal neuroaxonal loss in relapsing–
remitting MS (33). Research has highlighted the prognostic value of 
combining bNfL levels with other metrics, such as optical coherence 
tomography (OCT)-derived retinal measures (34). Compared to OCT 
alone, this combination provides enhanced predictive power for 
disease activity (34). The combination of bNfL, OCT metrics, and 
clinical scores, such as the Bayesian Risk Estimate for MS at Onset 
(BREMSO), provides both a positive and negative predictive model 
for early EDSS progression, demonstrating high specificity and 
sensitivity (35).

Although bNfL is a well-established and reliable marker of 
neuroinflammation—a key factor in disability accumulation and 
disease progression—it may have limitations in accurately reflecting 
the progression of disability when there is no acute disease activity 
(36). Nevertheless, some studies (25) have identified associations 
between plasma NfL levels and disability progression, cognitive 
decline, and brain volume loss, even in contexts when there is minimal 
evidence of disease activity. In addition, recent evidence showed that 
one elevated bNfL dosage in stable patients undergoing therapy for at 
least 12 months is strongly associated with an increased risk of losing 
NEDA-3 in the following year (37).

Despite some isolated findings indicating no significant changes 
in bNfL levels following treatment (38), most of clinical trials and 
real-world studies have demonstrated that bNfL reflects the efficacy of 
MS therapies (18–20), reinforcing its value as a biomarker for assessing 
prognosis and monitoring treatment response.

A growing body of evidence supports the predictive value of bNfL 
for long-term outcomes in MS (18, 24, 39). Elevated bNfL levels have 
been associated with future brain atrophy over 2 to 12 years (11, 12, 
24, 40, 41), particularly when measured early in the disease course.

Furthermore, bNfL concentrations have been shown to be elevated 
several years before the clinical onset of MS (42), suggesting its 
potential for detecting subclinical disease activity and, thus, directly 
reflecting biological mechanisms of MS. This makes bNfL a more 
sensitive biomarker for the early detection of disease activity than 
MRI-based measurements of brain atrophy (18).

Several research groups have investigated the longitudinal role of 
blood NfL as a marker for ongoing disease activity and treatment 
response in prospective MS cohorts (43–45). For example, a study by 
Akgun et al. (44) found that bNfL levels begin to rise approximately 
5 months before clinical relapse, peaking at onset and returning to 
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baseline within 4–5 months after remission, underscoring the utility 
of serial bNfL measurements for proactive disease monitoring. 
However, while bNfL reliably predicts brain atrophy, its role in 
forecasting long-term EDSS progression remains debated, with 
mixed evidence across different patient populations. Elevated bNfL 
levels have been associated with an increased risk of EDSS worsening 
over the next 1–3 years (10, 11, 32, 46). Another study (41), with a 
10-year follow-up, failed to demonstrate such a correlation despite a 
clear correlation with brain atrophy. Similarly, the predictive value of 
bNfL for conversion to secondary progressive MS is still under 
investigation (39, 47). Studies with long-term follow-ups show a 
stronger correlation in patients with more aggressive disease (6, 29, 
48), where the role of confounders is possibly minimal.

4 The emerging role of bNfL as a 
biomarker in MS: clinical applications 
and considerations

Although bNfL testing is currently used primarily in research, 
evidence supports its potential clinical application in MS for disease 
monitoring and treatment evaluation. As an adjunct tool, bNfL 
could complement clinical and MRI monitoring in tracking MS 
activity and informing therapeutic decisions (49). Unlike MRI, 
which captures structural changes that may lag behind ongoing 
neuroaxonal damage, bNfL provides more immediate insights into 
active neurodegeneration, enabling frequent and cost-effective 
monitoring (31). Additionally, bNfL offers advantages in detecting 
neuroaxonal injury in regions that MRI may overlook, such as the 
spinal cord or subtle alterations in brain structure not captured by 
conventional imaging (31). Notably, elevated bNfL levels remain 
detectable for approximately 3 months after new lesions develop, 
whereas Gd+ lesions are typically visible on MRI only for 3–4 weeks. 
This extended presence of bNfL may provide a longer detection 
window for disease activity, enhancing monitoring beyond the 
sensitivity of MRI alone (17).

Integrating bNfL measurements with MRI and clinical assessments 
offers a more robust, multimodal approach to MS management. This 
combined strategy enhances the sensitivity and specificity of disease 
activity detection while supporting more individualized care through 
well-informed treatment adjustments. A recent study examined the 
impact of incorporating bNfL in routine practice at a tertiary MS clinic 
by analyzing clinicians’ decision-making through questionnaire 
responses (50). The study involved routine bNfL testing in various 
clinical scenarios, such as monitoring DMTs, assessing new symptoms, 
and aiding in differential diagnosis (50). Results showed that bNfL 
measurements influenced clinical decisions in nearly 20% of cases, with 
the highest impact seen in cases with new symptoms or differential 
diagnosis concerns (50). Clinicians reported greater decision confidence 
after reviewing bNfL results, especially when elevated levels were 
detected, leading to treatment modifications and reduced reliance on 
additional MRI scans. However, no impact was observed on the 
estimated efficacy of DMTs (50).

As efforts to develop reference values and disease-specific cutoffs 
for bNfL (51–53) continue, its role in guiding therapeutic decisions in 
MS is expected to expand significantly.

There are several advantages of using bNfL as a biomarker, 
including its stability across different conditions (54), high 

reproducibility in assays like the SiMoA (7, 8), and lower cost 
compared to MRI (31).

However, it is critical to recognize and account for factors that 
influence bNfL levels. For example, bNfL levels show an approximate 
2.2% annual increase from age 18 to 70 in healthy individuals, and 
CSF NfL levels also rise with age (10, 55). Adjusting for these 
age-related changes using a Z-score calculation may provide a more 
accurate and sensitive measure of disease progression (30). 
Additionally, elevated bNfL levels have been associated with low BMI, 
diabetes, cardiovascular disease, renal impairment, and smoking (30, 
56–58). Neurotoxic medications and recent physical trauma or intense 
physical exertion may also contribute to fluctuations in NfL levels (4). 
However, these confounding factors can be minimized by tracking 
bNfL levels longitudinally in the same patient.

Biotin supplements, commonly used by MS patients, were 
previously considered a potential interference risk for bNfL 
measurement using SiMoA technology. However, recent studies have 
shown that the SiMoA assay design effectively mitigates this concern 
by removing excess biotin during processing, ensuring accurate bNfL 
measurement (59). A manufacturer’s application note states that biotin 
concentrations up to 80 μM in serum, plasma, or sample diluent do 
not impact the performance of SiMoA bead-based assay. Since the 
highest biotin dose intake of 300 mg/day used in high-dose treatments 
for MS, corresponds to a maximum serum/plasma concentration of 
4.92 μM no significant interference can occur in the assay (60). 
Moreover, manufacturers of in  vitro diagnostic tests follow the 
recognized consensus standards Clinical and Laboratory Standard 
Institute (CLSI EP07) (61), that provides a structured approach to 
identifying and verifying interference in bioassays, ensuring that 
clinical chemistry tests are reliable and accurate.

In summary, while various extrinsic and intrinsic factors may 
affect bNfL concentrations, careful interpretation and consideration 
of these factors ensure its reliable use as a biomarker. As consensus 
guidelines continue to evolve, they provide clearer criteria for 
interpretation of bNfL levels in the context of disease monitoring and 
treatment response in MS (29–31).

Currently, several limitations restrict bNfL’s widespread clinical 
use, including cost consideration, resource allocation, and logistical 
feasibility. For these reasons, it is essential to establish precise 
guidelines to determine which patient groups and timeframes are best 
suited for bNfL analysis (29–31). Although an emerging consensus 
supports its utility across all MS patients, its use in a limited resource 
setting should be prioritized in cases where bNfL measurement offers 
the most clinically actionable insights.

5 Discussion/perspective

5.1 High-priority MS patients for bNfL 
monitoring

In clinically stable patients who exhibit subclinical signs of disease 
activity, such as fatigue, sudden onset of anxiety and depression (62), 
or early cognitive changes without corresponding MRI findings, bNfL 
measurements every 4–5 months after 1 year of treatment may serve 
as an early indicator of disease reactivation (Table 1). This approach 
could help detect subtle disease progression, prompting more frequent 
MRI evaluations or a change in therapy. Very high bNfL levels may 
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indicate a need for treatment escalation or closer monitoring, whereas 
low or normal bNfL levels would support the continuation of the 
current therapy (30). However, elevated bNfL levels in seemingly 
stable MS patients should also prompt evaluation of other potential 
causes, such as head trauma or comorbid conditions like 
polyneuropathy or cerebrovascular events (4).

The value of bNfL monitoring is especially pronounced when MRI 
access is limited, as bNfL levels can help optimize the timing of MRI 
follow-ups. In these cases, bNfL levels serve as a cost-effective adjunct, 
potentially minimizing unnecessary MRI scans while offering 
comprehensive disease surveillance.

For patients in off-treatment phases or those following immune 
reconstitution therapies such as cladribine or alemtuzumab, biannual 
bNfL monitoring is particularly relevant (Table 1). Real-world data 
show that cladribine sustains reduced bNfL levels, confirming its role 
in limiting axonal damage (20, 63, 64) and validating bNfL as a 
therapeutic response biomarker. Notably, a study by Manni et al. (64) 
found an inverse correlation between 12-month bNfL levels and the 
time to NEDA-3 loss, further supporting bNfL as a predictor of MS 
progression following cladribine treatment. Similarly, alemtuzumab 
significantly reduces bNfL levels post-treatment, with effects lasting 
up to 7 years (65). A pilot study further highlighted that bNfL level 
fluctuations in alemtuzumab-treated patients corresponded with 
relapse events or MRI lesion activity, suggesting that long-term bNfL 
monitoring could help assess the efficacy of immune reconstitution 
therapies (44). In these cases, stable bNfL levels may signal adequate 

disease control, whereas elevated levels could trigger MRI evaluations 
or the resumption of treatment. Regular bNfL monitoring in such 
patients could also reduce the need for frequent MRI scans, 
potentially lowering healthcare costs without compromising 
disease surveillance.

Approximately 15–30% of MS patients may experience relapses 
during pregnancy, and pregnancy can influence the course of MS, as 
reviewed in Villaverde-Gonzalez et  al. (66). Relapse risk in MS 
decreases during pregnancy but increases significantly postpartum, 
especially within the first 3 months of postpartum (66). DMT 
discontinuation before pregnancy and extended washout periods are 
factors linked to an increased risk of relapse during pregnancy (66, 
67). Although evidence on bNfL dynamics in MS patients during 
pregnancy is limited, it is known that bNfL levels naturally increase 
during pregnancy in healthy women. These levels also show a positive 
correlation with maternal age and tend to be  higher in cases of 
preeclampsia (68). A study showed that in stable patients, bNfL levels 
in the third trimester were similar to those of healthy pregnant 
women, however, these levels increased during relapses (69). For 
women planning pregnancy or currently pregnant and off treatment, 
bNfL monitoring could provide early warning signs, facilitating 
proactive disease management with pregnancy-safe DMTs, if deemed 
necessary (Table 1).

For MS patients treated with natalizumab who test positive for 
John Cunningham virus (JCV) antibodies, bNfL monitoring every 
6 months between MRI scans is advisable to improve follow-up for 

TABLE 1 High-priority categories of MS patients for bNfL monitoring in clinical practice settings.

Type of patient Alert/parameter Timing Clinical importance Actions to consider

On therapy, without typical 

signs of disease activity

Fatigue, sudden onset of mood 

disorders (anxiety and 

depression), signals of initial 

cognitive impairment with no 

evident indication in MRI

After 1 year of treatment, 

every 4/5 months

Evaluation of subclinical disease 

activity

Advanced/more frequent MRI 

analysis

Change of therapy

Off-therapy (including 

patients previously treated 

with CLAD or ALEM)

– Every 6 months Monitoring of disease activity Resumption of therapy or 

switch to a different treatment 

depending on the evidence and 

characteristics of disease 

activity

 • booster of CLAD/ALEM if 

previously well-tolerated 

with good long-term 

response or

 • in the short term, switch to a 

different HET

Off-therapy

Pregnant Women seeking 

pregnancy

– Every 6 months Monitoring disease activity Close monitoring/Resumption 

of pregnancy-safe therapy if 

necessary

Safety monitoring in JCV+ 

patients treated with NTZ

Subacute Memory loss and 

behavioral disturbance, cognitive 

dysfunction, new focal 

neurological signs, new-onset 

seizures

Every 6 months, in the 

absence of symptoms

In the presence of warning 

symptoms, to complement a 

negative MRI result

Ameliorating follow-up in patients 

at risk of PML

NTZ withdrawal

ALEM, alemtuzumab; CLAD, cladribine; HET, High-Efficacy Therapy; MRI, magnetic-resonance imaging; JCV, John Cunningham virus; PML, progressive multifocal leukoencephalopathy; 
NTZ, natalizumab.
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patients at risk of progressive multifocal leukoencephalopathy (PML) 
(70) (Table 1). Early detection of PML is associated with improved 
patient outcomes (71), and bNfL has been proposed as a reliable 
biomarker for its early identification in MS patients (72).

By focusing on these high-priority patient groups, bNfL analysis 
can be strategically implemented in a targeted manner to maximize 
its clinical impact while working within the constraints of current 
healthcare resources.

5.2 Secondary priority MS patients for bNfL 
monitoring

In an ideal setting with ample resources, more patient groups 
would benefit from bNfL monitoring. For newly diagnosed or 
treatment-naïve MS patients, an initial bNfL assessment should 
be conducted before starting therapy, followed by a re-baseline 
measurement after therapy initiation. This approach is essential 
for more accurate longitudinal comparisons in the future, 
providing a clearer view of disease progression than single-point 
measurements. Determining the optimal timing for the initial 
bNfL assessment in treatment-naïve patients, whether during an 
acute phase or after stabilizing from an acute event, is  
paramount.

A baseline measurement during a stable phase may provide a more 
accurate reference for evaluating the effects of subsequent DMTs. If bNfL 
levels are elevated at baseline, this information could influence the 
therapeutic approach, potentially supporting an early decision to initiate 
a more aggressive treatment. Ideally, bNfL levels should be reassessed 
6–12 months after starting treatment to evaluate the response, monitor 
disease progression and guide any necessary therapy adjustments. Due to 
the significant inter-individual variability in bNfL levels, longitudinal 
monitoring within individual patients is the most effective approach. In 
patients starting first-line DMTs, bNfL levels generally decrease within 
3–6 months, indicating a reduction in neuroinflammation. Conversely, a 
sustained elevation of bNfL levels despite treatment may indicate 
unresolved neuroinflammation and suboptimal therapeutic effects, 
potentially necessitating treatment adjustments. In such cases, regular 
monitoring every 3–6 months may provide important insights into the 
effectiveness of current treatment in controlling disease activity.

In cases of potential relapse mimics, where patients present with 
symptoms similar to a relapse but lack definitive MRI or objective 
evidence, bNfL testing can help distinguish between actual 
inflammatory activity and mimicking conditions.

When minimal evidence of disease activity is observed, either 
radiological (a mildly positive MRI in a prognostically 
non-unfavorable location) or clinical (without disability accrual), after 
a period of long-term disease stability, a closer follow-up is suggested. 
In these instances, the persistence of elevated bNfL levels may indicate 
the need for a therapy switch.

Indeed, bNfL levels are reported to gradually decrease following 
an acute relapse. However, persistently elevated bNfL levels with no 
noticeable decrease 3–4 months after an acute event may predict a 
poorer prognosis or an underlying smoldering disease, suggesting that 
a switch to a higher-efficacy therapy could be advisable.

Using bNfL as a biomarker reflecting disease course can help 
optimize treatment decisions, minimizing the risks of overtreatment 
and ensuring timely responses to actual disease activity.

5.3 Broader implications and future 
perspectives

Looking ahead, bNfL is anticipated to play an expanding role in 
managing diverse neurological disorders beyond MS, offering a 
valuable biomarker for monitoring the neurodegeneration of different 
etiologies. Developing biobanks to store bNfL samples could greatly 
enhance large-scale longitudinal studies, improving our understanding 
of disease mechanisms and reinforcing the biomarker’s clinical 
applications. However, successfully integrating bNfL into clinical 
practice across multiple centers will require the standardization of 
testing methods and platforms to ensure uniformity and reliability 
in results.

While bNfL provides key insights into disease activity, it is not yet 
a standalone diagnostic tool and cannot replace MRI for MS diagnosis 
or ongoing disease monitoring. Instead, bNfL should be incorporated 
into a multimodal approach that combines clinical evaluations and 
imaging findings. Future research should aim to establish disease-
specific thresholds, explore the kinetics of bNfL release, and investigate 
potential combinations with other biomarkers to enhance its 
prognostic capabilities. Additionally, as highlighted in Table 1, bNfL 
monitoring holds promise for the early detection of PML, representing 
another potential application of this biomarker.

6 Limitations

Despite its utility, bNfL lacks specificity to MS, as its levels may 
also rise due to various other neurological conditions or injuries (4), 
complicating its application in distinguishing MS activity or treatment 
response. Additionally, specific comorbidities associated with 
progressive MS may lead to elevated bNfL levels. This lack of 
specificity may limit bNfL’s ability to accurately capture the 
neurodegenerative components of progressive MS or reflect the effects 
of neuroprotective therapies. Possible limitations due to bNfL 
sensitivity compared to MRI should be considered, as the temporal 
association with new gadolinium-enhancing lesions needs to 
be further investigated (73). Understanding the dynamics of bNfLs in 
MS patients in different conditions will be crucial for advancing its use 
in personalized MS care. While bNfL is primarily useful for 
monitoring disease activity in relapsing MS, its applicability in 
progressive MS remains limited. Emerging evidence suggests that glial 
fibrillary acidic protein (GFAP) may serve as a complementary 
biomarker, as it reflects neurodegenerative processes more 
characteristic of progressive MS (29).

7 Conclusion

bNfL levels serve as a powerful biomarker, offering essential 
insights into the neurodegenerative processes associated with 
MS. Their stability and capacity to reflect disease activity in real-time 
hold potential for enhancing personalized care in MS. However, to 
maximize its clinical impact in resource-limited clinical settings, it is 
essential to prioritize patient profiles that would benefit the most from 
bNfL monitoring. A targeted approach to bNfL testing can optimize 
its benefits, reduce unnecessary interventions, and support a more 
personalized, cost-effective strategy for MS care.
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