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Background and objectives: Sleep disorders (SD) and stroke have long been 
health concerns. Sleep disorders are known to be a risk factor for stroke, and 
in recent years it has also been shown that the prevalence of sleep disorders is 
increased in stroke patients. We inferred that there is some inevitable connection 
between the two. This study aims to identify common molecular biomarkers and 
pathways connecting SD and stroke by integrating bioinformatics and machine 
learning approaches.
Methods: We analyzed transcriptome data from the GEO dataset to identify 
differentially expressed genes (DEGs). Key biological processes, as well as 
metabolic pathways, were highlighted by GO and KGEE enrichment analyses. 
Co-expression modules were then identified in the SD and stroke datasets 
by weighted gene co-expression network analysis (WGCNA), respectively, 
and machine learning algorithms (RandomForest, LASSO, and XGBoost) were 
performed to identify ARL2 as a key diagnostic biomarker with high predictive 
value (AUC = 0.91). This was finally complemented by animal experiments to 
verify that ARL2 was upregulated in the experimental group.
Results: In GO and KEGG enrichment analyses, key biological processes 
such as ‘response to external stimuli’ and ‘organic metabolic processes’ as 
well as metabolic pathways such as ‘propionate metabolism’ and ‘oxidative 
phosphorylation’ were significantly enriched, suggesting their potential roles 
in the pathogenesis of the two disorders. With WGCNA and machine-learning 
algorithms analyses, we found that ARL2 is an important common marker for 
both diseases.
Discussion: This study provides insights into the common molecular mechanisms 
of SD and stroke, highlighting the potential of ARL2 as a diagnostic marker and 
therapeutic target. Unlike previous studies, we used circulating markers rather 
than tissue markers, improving the clinical translation in terms of non-invasive, 
rapid identification of patients at risk for sleep disorders. We  need to further 
investigate the functional role of these genes and their potential in developing 
targeted therapies for SD and stroke patients.
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1 Introduction

Sleep disorders (SD) are chronic, recurrent disorders characterized 
by disturbances in the sleep cycle. According to ICSD-3, SD is 
classified into seven categories: insomnia, sleep-related breathing 
disorders, central sleepiness disorders, circadian rhythm sleep–wake 
disorders, sleep abnormalities, sleep-related movement disorders, and 
other sleep disorders (1). The most common clinical manifestations 
of sleep disorders include difficulty falling asleep, incomplete sleep, 
and excessive daytime sleepiness (2). At the same time, sleep disorders 
not only reduce quality of life and productivity, but also increase 
medical and psychiatric problems (3). It is considered a risk factor for 
many diseases, including cardiovascular events, hypertension (4) and 
type 2 diabetes mellitus (5). Currently, SD is mainly considered to be a 
combination of mental disorders (6), environmental factors (7), and 
circadian rhythm disorders (8) that lead to functional abnormalities 
in areas of the brain such as the anterior cingulate cortex, the 
amygdala, and the thalamus (9), but the exact pathogenesis remains 
unclear. In this study, we focused on common circulating diagnostic 
markers between insomnia and stroke.

Stroke is a clinical syndrome presenting as an acute, focal 
neurological deficit, usually caused by vascular injury (e.g., infarction 
or hemorrhage) to the central nervous system, and is divided into two 
main categories: ischaemic stroke and haemorrhagic stroke (10). 
Stroke begins at age 35, with an increased incidence of overall stroke, 
is common in older adults, and can lead to long-term disability or 
death (11). Risk factors for stroke include modifiable risk factors such 
as high blood pressure, atherosclerosis, and arrhythmia, and 
non-modifiable risk factors such as age, gender, race-ethnicity, and 
genetics (12). The pathogenesis of stroke is complex, involving 
excitotoxic mechanisms, inflammatory pathways, oxidative damage, 
ionic imbalances, apoptosis, angiogenesis and neuroprotection. The 
end result of the ischaemic cascade triggered by acute stroke is 
neuronal death and irreversible loss of neuronal function (13). Strokes 
may occur alone or in conjunction with SD (14).

A systematic review and meta-analysis found that insomnia after 
stroke is extremely common, with approximately 38.2% of stroke 
survivors suffering from insomnia or insomnia symptoms, and the 
prevalence is significantly higher than that of the general population (15). 
In a prospective cohort, insomnia symptoms were associated with a 
1.6-fold increased risk of stroke, and short sleep duration (<6 h) further 
amplified the risk (16). This suggests that insomnia and stroke may share 
a common pathological mechanism. Although neurological and 
cerebrovascular disorders are recognized as distinct entities, their 
overlapping pathophysiology suggests shared pathways and therapeutic 
strategies. Patients with both SD and stroke have been shown to exhibit 
altered inflammatory markers, impaired autonomic regulation and 
disruptions in circadian rhythms (17–19). Research into the relationship 
between insomnia and stroke is the most common, with the risk of 
stroke doubling in people with insomnia. In addition to this, other types 
of sleep disorders have progressively been shown to be risk factors for 
stroke (20), and they are also consequences of stroke, according to a 
meta-analysis of sleep quality after stroke, which showed that poor sleep 
quality affects 53 per cent of stroke patients (21). There is a close and 
bidirectional interaction between sleep and blood glucose regulation, a 
relationship regulated by both sleep–wake homeostasis and circadian 
rhythms. Insufficient sleep interferes with insulin signaling through 
multiple pathways, including activation of the sympathetic nervous 
system, elevated nocturnal cortisol and growth hormone levels, and 

promotion of lipolysis and free fatty acid release. This is not limited to 
insufficient sleep; the “chronic hyperarousal” state characteristic of 
insomnia also exerts independent adverse effects on blood glucose 
metabolism through persistent activation of the hypothalamic–pituitary–
adrenal axis and the sympathetic nervous system (22). In addition, 
insomnia is commonly associated with metabolic syndrome (23). 
We found that both metabolic syndrome and type 2 diabetes are risk 
factors for stroke. Among the 2097 subjects in the Framingham Offspring 
study, a higher incidence of stroke was obtained in patients with 
metabolic syndrome than in those with diabetes (24). The hypothalamic–
pituitary–adrenal (HPA) axis is a key component of the body’s stress 
response system. Research consistently demonstrates a bidirectional 
relationship between HPA axis dysregulation and insomnia: chronic 
stress activates the HPA axis, leading to hyperarousal and disrupting 
sleep, while insufficient sleep, in turn, exacerbates HPA hyperactivity. A 
review of 20 studies revealed that patients with insomnia had moderately 
elevated cortisol levels, and that there was a positive, but non-significant, 
correlation between the degree of objective sleep deprivation and group 
differences in cortisol levels (25). A meta-analysis of 23 prospective 
cohort studies systematically evaluated the bidirectional association 
between hypertension and insomnia. The results showed a significant 
bidirectional positive correlation between the two: insomnia increased 
the risk of hypertension by 11% (OR = 1.11), while hypertension also 
increased the risk of insomnia by 20% (OR = 1.20) (26). Hypertension is 
also a risk factor for stroke (27). We hypothesize that there may be a 
metabolic association between sleep disorders and stroke. Identifying 
new diagnostic markers and therapeutic targets for these conditions is 
crucial to improving patient outcomes. Machine learning to recognize 
GEO large expression profiles is an advanced and reliable method (28). 
In this study, we used circulating markers rather than tissue markers, 
which facilitates ease and speed of testing, clinical translatability, and 
rapid identification of patients at risk for sleep disorders.

2 Methods

2.1 Bulk transcriptome data preprocessing

Based on the selection strategy of previous literature, we retrieved 
SD-related datasets and their corresponding transcriptome profiles of 
control and IS patients from the Gene Expression Omnibus (GEO) 
database,1 which contains messenger RNA (mRNA) expression 
profiles and clinical information. Four relatively large transcriptome 
datasets were identified: GSE208668, GSE16561, GSE22255 and 
GSE98566. For sleep disorders, we obtained RNA expression data 
from 17 SD patients and 25 healthy controls from the GSE208668 
dataset on the GPL10904 platform (29). For stroke, we obtained 39 
control samples and 24 ischemic stroke patients from the GSE16561 
dataset as a training set. As each analysis is confined to a single dataset, 
the issue of inter-dataset batch effects is circumvented. For the 
transcriptome data mentioned above, we  performed gene symbol 
mapping according to the respective platforms (30). Finally, GSE22255 
(31) and GSE98566 (32) were used as independent datasets as 
retrospective validation, respectively. In case of multiple matches, 
we took the median and the final expression matrix was obtained by 

1  http://www.ncbi.nlm.nih.gov/geo
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normalization using the log2(X + 1) method. During preprocessing, 
after an initial quality control check, quantile normalization is 
performed using the “normalizeBetweenArrays” function in the 
“limma” package. This method adjusts the expression values so that 
each sample has the same empirical distribution of expression values, 
effectively reducing the technical differences between sample.

2.2 Preselection of diagnostic biomarkers

The limma package was utilized for differential gene expression 
(DEG) analysis on the GSE208668 and GSE16561 datasets, following 
the guidelines for RNA sequencing and microarray studies. DEGs 
were identified using a stringent cutoff criterion of an adjusted p-value 
(Benjamini-Hochberg false discovery rate, FDR) < 0.05 and an 
absolute log2 fold change (|LogFC|) > 0.5. To identify common signals 
across datasets, the final list of common DEGs was defined as the 
intersection of the DEGs from both GSE208668 and GSE16561.

2.3 GO and KEGG enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were conducted for common 
driver genes using the clusterProfiler package, an R tool for comparing 
biological themes across gene clusters. GO analysis was employed to 
annotate the biological processes, molecular functions, and cellular 
components associated with the genes, while KEGG was used to 
annotate the gene pathways. Statistical significance for the enrichment 
analyses was defined as p < 0.05.

2.4 WGCNA

Weighted gene co-expression network analysis (WGCNA) was 
further applied to identify gene modules co-expressed in SD and stroke, 
revealing their possible shared mechanisms in biological processes such 
as inflammation, oxidative stress and circadian regulation. Within this 
analysis, gene significance (GS) was defined as the absolute value of the 
correlation between an individual gene and the trait of interest. Module 
membership (MM) was defined as the correlation between the gene 
expression profile and the module eigengene. To identify highly 
connected and biologically relevant hub genes, we applied thresholds 
of GS > 0.2 and |MM| > 0.8. The final list of high-confidence candidate 
genes was obtained by extracting the intersection of common DEGs 
(from differential expression analysis) and hub genes (from WGCNA 
analysis). This multi-step filtering approach ensured that the selected 
genes were both statistically significant and biologically relevant to the 
trait under study.and then this genes are subjected to machine learning 
analysis. We will then analyze these genes by machine learning.

2.5 Machine learning selection of 
diagnostic biomarkers

RandomForest, LASSO and Xgboost were utilized as machine 
learning methods to identify core genes. RandomForest is an integrated 
learning method that performs classification and regression analysis 

by constructing multiple decision trees. It can efficiently process high-
dimensional data (e.g., gene expression data) and perform feature 
selection (33). By calculating the feature importance of 37 genes, it can 
identify those genes that contribute the most to disease correlation. 
LASSO is a linear regression model that achieves variable selection and 
model compression by applying L1 regularization to the regression 
coefficients. LASSO can simplify the model by penalizing unimportant 
features (by making their coefficients zero) when dealing with a large 
number of features, and retaining those genes that are most influential 
genes (34). XGBoost can accurately model gene expression data to 
identify key genes associated with diseases and construct accurate 
prediction models based on these genes (35).

2.6 Establishment of animal models

We used a controlled experimental setup. We  divided 24 rats 
randomly (n = 4) into four groups (n = 6 for each group): normal 
control group (group 1), sleep disorder group (group 2), stroke group 
(group 3), and group with both sleep disorder and stroke (group 4). 
All groups were modeled on 10-month-old male rats. The triggers for 
sleep disorders in Group 2 and Group 4 mice were sleep deprivation, 
chronic mild stress, or placing the animals in a disturbed light/dark 
cycle. Sleep deprivation is achieved primarily by a mild stimulus such 
as a standardized process of hitting the cage, slightly shaking the cage, 
or disrupting the sleeping nest when this is not enough to keep the 
animal awake (36). Middle cerebral artery occlusion (MCAO) was 
performed on Group  3 and Group  4 rats to simulate stroke. The 
occlusion model of the middle cerebral artery strictly adopts a 
permanent MCAO model, induced by intraluminal filament method, 
i.e., anesthetized rats with chloral hydrous (400 mg/kg, ip) and 3–0 
nylon sutures, whose tip is heated near the flame that advances from 
the external carotid artery to the internal carotid artery, making its tip 
round until it blocks the origin of the middle cerebral artery (MCA) 
and leaves the surgical filaments in situ 24 mice. Transcranial laser 
Doppler blood flow method (PeriFlux 5,000; Perimed AB). Blood flow 
drops to 80% of baseline, indicating successful occlusion of the middle 
cerebral artery (37). No sleep disturbance or stroke was induced in the 
control mice. Meanwhile, the feeding and living environments of the 
4 groups of rats should be consistent. 4 groups of rats were placed in 
a comfortable environment with a 12-h light–dark cycle and 
unrestricted access to water and food. All rats were fed a standard 
pellet diet, and the amount of food consumed per day was consistent 
across all groups (38). This experiment passed the ethical review of 
animal experiments in the First Affiliated Hospital of Henan 
University of Traditional Chinese Medicine (YFYDW2019035).

2.7 RT-qPCR

Total RNA was extracted from the cortex of four groups of mice 
using the TransZol Up Plus RNA kit (TransGEN, Beijing, China) (38). 
RNA concentration and quality were then assessed using a nanodrop 
spectrophotometer (Termo Scientifc, Waltham, MA, USA). 
Subsequently, reverse transcription was performed using 
TransScript®OneStep gDNA Removal and cDNA Synthesis SuperMix 
(AT311, TransGEN, Beijing, China). Amplification was monitored 
using ChamQ Universal SYBR qPCR Master Mix (Novozymes Q711) 
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and QuantStudio™5 Real-Time PCR System (Thermo Fisher 
Scientific). Prior to the start of the experiment, we  evaluated the 
expression stability of the candidate internal reference gene β-actin in 
different treatment groups (control, SD, Stroke, SD + Stroke) using the 
geNorm algorithm. geNorm analysis identifies the most stable internal 
reference gene by calculating the gene expression stability metric 
value, M. A lower M value indicates a more stable gene expression. 
The results of the analysis showed that β-actin, with an M value of less 
than 0.5 (0.335), exhibited a high degree of stability under all 
experimental conditions and was therefore selected as the data-
normalized endogenous gene for this study. Relative gene expression 
was then determined using the 2^(–ΔΔCT) method. We assessed the 
statistical significance of the differences in ARL2 expression between 
the four experimental groups (Control, SD, Stroke, SD + Stroke) using 
one-way ANOVA analysis. And Tukey’s HSD (Honest Significant 
Difference) post hoc test was used for two-by-two comparison of 
means between groups. Raw Ct values for each group with their mean, 
standard deviation (SD) and more specific information are detailed in 
Supplementary Table  2. Detailed primer sequences are shown in 
Table 1.

2.8 Independent clinical validation cohort

2.8.1 Data source and study participants
To confirm the clinical relevance of our findings, we conducted an 

independent retrospective cohort study, which was approved by the 
Ethics Committee of The First Affiliated Hospital of Henan University 
of Chinese Medicine (Approval No. 2025HL-389).

We retrospectively enrolled 72 participants admitted between 
2024 and 2025, dividing them into four groups of 18 each. The Control 
group included healthy individuals with no history of stroke or sleep 
disorders, confirmed by a Pittsburgh Sleep Quality Index (PSQI) score 
below 5. The Stroke group comprised patients diagnosed with acute 
ischemic stroke through neuroimaging (CT or MRI), without 
significant sleep disorder (PSQI score < 7). The Sleep Disorder (SD) 
group consisted of individuals without a diagnosis of stroke but with 
significant sleep disturbances, as defined by a PSQI global score 
greater than 10. Lastly, the SD + Stroke group included patients who 
met the criteria for both conditions. The Chinese version of the PSQI 
has been validated and shown to have good reliability and validity in 
the Chinese population (39).

All participants provided written informed consent upon 
admission for biospecimen banking, allowing the use of their 
anonymized clinical data and residual samples for future research. 
Personal identifiers were removed to protect privacy.

Inclusion criteria for patients were: (1) age ≥ 40 years; (2) hospital 
admission and collection of baseline blood samples within 24 h of stroke 
onset or initial clinical assessment; and (3) availability of complete PSQI 
assessment data. Exclusion criteria were: (1) severe aphasia, impaired 
consciousness, or cognitive dysfunction (MMSE score < 10); (2) 

comorbid severe hepatic or renal insufficiency or advanced malignant 
tumors; and (3) incomplete clinical or biospecimen data.

2.8.2 Experimental procedures: RNA extraction, 
qRT-PCR and statistical analysis

Peripheral blood samples were collected from all participants using 
PAXgene Blood RNA tubes. Total RNA was extracted using the PAXgene 
Blood RNA Kit (Qiagen, Germany) according to the manufacturer’s 
instructions. RNA concentration and purity were assessed using a 
NanoDrop spectrophotometer. GAPDH was chosen as the reference 
gene due to its well-documented stability in human blood transcriptomics 
studies (geNorm analysis yielded an M-value of less than 0.5 (0.330)). Its 
stable expression across all groups was confirmed by one-way ANOVA, 
which showed no significant differences in Cq values (p > 0.05). Reverse 
transcription was performed using the PrimeScript RT Reagent Kit 
(TaKaRa, Japan). The relative expression levels of ARL2 mRNA were 
quantified by qRT-PCR using the SYBR Green Premix Pro Taq HS qPCR 
Kit (Accurate Biology, China), with GAPDH as the internal control. 
Relative expression was calculated using the 2^(−ΔΔCt) method.

Statistical comparisons of ARL2 expression levels among the four 
groups were performed using one-way analysis of variance (ANOVA), 
followed by Tukey’s post hoc test for pairwise comparisons. Data are 
presented as mean ± standard deviation. A *p*-value < 0.05 was 
considered statistically significant.

3 Results

3.1 An integrative workflow for identifying 
common circulatory biomarkers

To identify circulating biomarkers common to both sleep 
disorders and ischemic stroke (IS), we implemented a multi-stage 
discovery and validation pipeline, summarized in Figure 1. Our 
strategy was predicated on the hypothesis that shared pathological 
mechanisms between SD and IS would be reflected by common 
alterations in gene expression. We  first defined distinct gene 
signatures from SD (GSE208668) and IS (GSE16561) transcriptomic 
datasets independently through differential expression analysis and 
weighted gene co-expression network analysis (WGCNA). We then 
integrated these signatures using a consensus approach, prioritizing 
genes at their intersection. This candidate set was further refined 
using machine learning feature selection, which converged on 
ARL2. Subsequently, the diagnostic relevance and specificity of 
ARL2 were further evaluated through experimental validation of 
animal models and independent validation datasets (GSE2225, 
GSE98566).

3.2 Identification of differentially expressed 
genes in SD and stroke

Based on the SD dataset (GSE208668), a total of 5,137 differential 
genes were identified, and the volcano plot showed that the identified 
differential genes included 2,948 down-regulated and 2,189 up-regulated 
genes. In addition, based on the stroke dataset (GSE16561), a total of 
886 differential genes were identified, including a total of 394 down-
regulated and 492 up-regulated genes. The heat map showed the top 50 

TABLE 1  Primer sequences used for RT-qPCR.

Gene Primer sequence 5′-3’ 
Forward

Reverse

ARL2 CAGTCTGGCAGAGAACTGG GTCAGAGGGAGTGAGAGGA
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most significantly up- and down-regulated genes (Figures 1A,B). Finally, 
a total of 254 overlapping deg. were created in the SD and stroke datasets.

3.3 GO and KEGG enrichment analysis of 
genes

The SD and stroke modules share 121 overlapping genes, while the 
DEG module contains 254 shared genes. Given that the modules 
identified through WGCNA represent groups of genes with similar 
expression patterns, they may not encompass the full spectrum of 
DEG genes. In fact, these DEG genes may even diverge significantly 
from those critical for disease progression. To prevent potential 
omissions, we integrated DEG genes with the module genes for a more 
comprehensive analysis (Figure 2).

We first analyzed these genes for GO and KEGG enrichment. 
First, The most significantly enriched DEGs in the SD dataset were 
organitrogen compound metabolic process and oxidative 
phosphorylation (Figures  3A,B). Secondly, the most significantly 
enriched DEGs in the IS dataset were organitrogen compound 
metabolic process, oxidative phosphorylation, neutrophil extracellular 
trap formation, xidative phosphorylation, defense response, 
osteoclast differentiation, and leukocyte transendothelial migration 
(Figures 3C,D). Both diseases had high enrichment of DEGs in the 

propionate metabolism and redox pathways, so we inferred that the 
two diseases may be linked in the propionate metabolism and redox 
pathways. We then performed enrichment analysis on 254 common 
co-driver genes between SD and IS. We again found that propanoate 
metabolism and cellular respiration were highly significantly enriched, 
further validating our hypothesis (Figures 3E,F).

3.4 Weighted gene coexpression network 
analysis of SD and stroke

We conducted Weighted Gene Co-expression Network Analysis 
(WGCNA) on two datasets: GSE208668 for SD and GSE16561 for stroke, 
aiming to investigate the relationship between clinical characteristics and 
gene expression. After clustering modules based on their similarity, 
we identified 6 modules in the SD dataset and 11 in the stroke dataset 
(Figures 4A,D). Correlations between the modules and clinical traits 
were calculated, revealing that the red module exhibited the strongest 
positive correlation with SD (r = 0.99) (Figure 4C), while the brown 
module showed the highest correlation with stroke (r = 0.56) (Figure 4F). 
Additionally, gene significance (GS) within the modules was strongly 
correlated with module membership (MM), with correlations of 0.99 for 
SD and 0.43 for stroke. This further supports the significant relationship 
between the module genes and the respective diseases. In total, 

FIGURE 1

Workflow for the identification and validation of ARL2 as a common diagnostic biomarker. Schematic overview of the multi-step process, integrating 
transcriptomic data from sleep disorder (GSE208668) and ischemic stroke (GSE16561) datasets, machine learning, and in vivo and clinical validation to 
nominate ARL2 as a shared circulatory biomarker.
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we identified 61 overlapping genes that may play a pivotal role in the 
pathogenesis of SD and stroke, as determined by WGCNA. Subsequently, 
we further took the intersection of these 61 intersecting genes with the 
254 common differentially expressed genes obtained previously, and 
finally identified these 37 high-confidence candidate genes (Figure 5B).

3.5 Identification and validation of ARL2 as 
a key diagnostic gene for SD and stroke 
using machine learning

To further identify key genes with maximal diagnostic utility, 
we  performed sequential feature selection using three distinct 
machine learning algorithms: Lasso regression, XGBoost, and 
Random Forest (Figures 5C,D). This tri-modal approach was applied 

to the 37 candidate genes, with the Benjamini-Hochberg false 
discovery rate (FDR) correction implemented during screening to 
control for multiplicity across all candidate features. The analyses 
were conducted on two datasets: GSE208668 and GSE16561. Each 
dataset presents the importance of different genes using the three 
machine learning models (RandomForest, Lasso, and XGBoost). 
Lasso regression, which tends to shrink less important feature 
coefficients to zero, identified a more specific set of genes compared 
to RandomForest. It provided a more focused list of relevant genes, 
showing that only a few variables (such as ARL2 and others in both 
datasets) were significant, with most genes showing low importance. 
XGBoost also pointed to ARL2 as a key gene, but unlike Lasso, it 
integrated both linear and non-linear relationships between features, 
thus identifying additional genes with varying importance, some 
showing moderate influence in both datasets. For both datasets, 

FIGURE 2

Differential gene expression and pathway enrichment overview in SD and IS models. (A,B) Volcano plots of differentially expressed genes (DEGs) from 
the (A) GSE208668 (SD) and (B) GSE16561 (IS) datasets. Significantly up-regulated (red) and down-regulated (blue) genes are shown (thresholds: 
|log2FC| > 0.5, p < 0.05). (C,D) Heatmaps of enriched Hallmark pathways for the (C) GSE208668 (SD) and (D) GSE16561 (IS) datasets. Each row 
represents a gene set, and each column represents a sample or group. Color intensity reflects the normalized enrichment score (NES) or activity of the 
pathway (red: activated; blue: suppressed).
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RandomForest clearly identified a few top genes as most important, 
with a strong emphasis on ARL2, as seen in the dataset importance 
plots. This method highlighted several genes with varying levels of 

importance, with some showing high relevance to the prediction of 
sleep disorders or stroke. The AUC (Area Under the Curve) values 
for ARL2 were reported to be 0.91 in both datasets. This suggests 

FIGURE 3

Functional characterization and coregulated pathway analysis. (A–D) Bar plots showing the top significantly enriched terms for the DEGs of each 
dataset. (A,B) GO biological processes (A) and KEGG pathways (B) for the SD dataset. (C,D) GO biological processes (C) and KEGG pathways (D) for the 
IS datasets. (E,F) Enrichment analysis of the 254 common co-driver genes between SD and IS. (E) Enriched KEGG pathways. (F) Enriched GO biological 
processes.
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that ARL2 is a highly predictive gene for the conditions studied, with 
a strong balance between sensitivity (true positive rate) and 
specificity (true negative rate) based on the ROC curve analyses. To 
prospectively validate its clinical utility, we  performed external 
validation in two independent cohorts. In the GSE22255 cohort 
(Control vs. IS), ARL2 achieved an AUC of 0.80 (95% CI: 0.647–
0.956; DeLong method). Replication in the GSE98566 cohort 
(Control vs. SD) yielded stronger discrimination with an AUC of 
0.92 (95% CI: 0.8009–1; DeLong method). These results demonstrate 

the robust and generalizable diagnostic utility of ARL2 across 
diverse populations (Figures 5E,F).

3.6 Expected results of animal experimental 
models

First, we confirmed that the expression of the internal reference 
gene β-actin was stable (M < 0.5) in all experimental groups by 

FIGURE 4

WCGNA analysis of stroke and sleep disorders. (A,C,D,F) Heatmap of correlation analysis between genes characterizing the module and clinical 
phenotypes in patients with stroke and sleep disorders. Red color indicates positive correlation and blue color indicates negative correlation. (B,E) 
Heatmap of Stroke and Sleep Disorder Genes. (G) GO enrichment analysis for stroke and sleep disorders. (H) KEGG enrichment analysis for stroke and 
sleep disorders.
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geNorm analysis, as detailed in the Methods section. The relative 
quantitative results calculated using the 2^(-ΔΔCt) method are shown 
in Figure 6D. The expression level of 1 gene in the tissue was detected 
by RT-qPCR. The mRNA expression of ARL2 gene in groups 2, 3 and 
4 was significantly higher than that in the normal group. Group 1 
(control): baseline expression of ARL2 gene. Group 2 (sleep disorder): 
ARL2 gene expression was significantly higher than the normal group 
(Figure 6B). Group 3 (Stroke): Increased expression of the ARL2 gene 
(Figure  6A). Group  4 (SD + IS): ARL2 expression was increased 
compared to both groups 2 and 3 (Figure 6D). This may be due to the 
combined effect of the two conditions. In this case, Group  1 and 

Group 2, Group 1 and Group 4, and Group 2 and Group 4 were all 
more significant, while Group  1 and Group  3, and Group  3 and 
Group 4 were less significant than the former. The brain changes of the 
four groups of mice are shown in Figure 6C.

3.7 Validation of ARL2 expression in an 
independent human cohort

To advance the translational potential of our findings, we validated 
the diagnostic value of ARL2 as a circulating biomarker in an 

FIGURE 5

Screening of key candidate genes and validation of their diagnostic efficacy. (A) Bar plot showing the number of differentially expressed genes (DEGs) 
identified from the sleep disorder (SD, GSE208668) and ischemic stroke (IS, GSE16561) datasets. (B) Venn diagram illustrating the intersection of four 
gene sets: GSE208668-DEGs, GSE16561-DEGs, GSE208668_ME1 genes, and GSE16561_ME2 genes, yielding 37 high-confidence candidate genes. 
(C,D) Feature importance analysis of candidate genes using machine learning algorithms. (C) Results from the SD dataset (GSE208668). (D) Results 
from the IS dataset (GSE16561). The ARL2 gene was consistently identified as the top-ranked feature by all three algorithms (RandomForest, LASSO, 
and XGBoost). (E,F) Validation of the diagnostic performance of ARL2 using ROC curve analysis. (E) ROC curve for ARL2 in classifying SD samples from 
controls in the GSE208668 cohort (AUC = 0.91, 95% CI: 0.8166–1). (F) ROC curve for ARL2 in classifying IS samples from controls in the GSE16561 
cohort (AUC = 0.91, 95% CI: 0.8467–0.9824).
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independent retrospective human cohort. As shown in Figure  6E, 
qRT-PCR analysis revealed that the relative expression levels of ARL2 
were significantly up-regulated in the Stroke group and the SD group 
compared to the Control group (p = 0.0000198 and p = 0.00121, 
respectively). Most importantly, the expression level of ARL2 in the 
SD + Stroke group exhibited the most pronounced increase, showing 
statistically significant differences compared to all other three groups (all 
p < 0.001). These results not only successfully validate our core findings 
from animal models in human patient samples but also strongly suggest 
that circulating ARL2 levels could serve as a novel, non-invasive blood-
based diagnostic biomarker for distinguishing these disease states.

3.8 Exploratory analysis of ARL2-related 
pathways

To further assess the biological plausibility of ARL2 as a circulating 
diagnostic biomarker and to explore its potential functional significance 
in the comorbidity of SD and IS, we performed exploratory co-expression 

analyses. We investigated the correlation between ARL2 expression and 
genes comprising two of the important KEGG-shared pathways 
previously identified (propionate metabolism and oxidative 
phosphorylation). Interestingly, in the SD dataset GSE208668, we found 
that ARL2 expression was significantly correlated (FDR < 0.05) with a 
significant proportion of genes in both pathways, with ARL2 being 
significantly correlated with 43.8% (28 of 64 genes) in the propionate 
metabolism pathway, while in the oxidative phosphorylation pathway, it 
was significantly correlated with 42% (116 of 276 genes) (see 
Supplementary Table  3 for details). This not only strengthens the 
credibility of ARL2 as a circulating diagnostic biomarker, but also 
suggests that its role in SD-IS comorbidities may be functionally linked 
to dysregulation of these key metabolic processes.

4 Discussion

Sleep disturbances are frequently observed in stroke patients 
and may contribute to an increased risk of stroke, suggesting a 

FIGURE 6

(A) ROC curve analysis of ARL2 gene in dataset GSE22255 and expression in control and stroke groups [AUC = 0.80, 95% CI: 0.647–0.956 (DeLong)]. 
(B) ROC curve analysis of ARL2 gene expression in dataset GSE98566 and in control and SD groups [AUC = 0.92, 95% CI: 0.8009–1 (DeLong)]. 
(C) Brain tissue changes in mice in 4 groups. (D) Expression of ARL2 gene in mouse brain tissue in group 4. Data are presented as mean ± SD (Standard 
Deviation). (E) Relative expression of ARL2 in peripheral blood from Control, Stroke, SD, and SD + Stroke groups (n = 18 per group). Data are expressed 
as mean ± SD. p < 0.05, **p < 0.01, ***p < 0.001 versus the Control group; ###p < 0.001 compared to all other groups (one-way ANOVA followed by 
Tukey’s post hoc test).
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bidirectional relationship. Sleep disorders are generally recognized 
as an independent risk factor for stroke (40). This suggests that one 
disease may co-exist with another. Shared biomarkers and genetic 
susceptibility may be  a common pathogenic mechanism for 
haemorrhagic stroke and sleep disorders. Reductions in the risk 
alleles for sleep disorders PER1 and NR1D1 were found to have a 
significant impact on the risk of haemorrhagic stroke in one study 
(41). Our study adds to this body of evidence by identifying 
common molecular pathways. In addition, the differential diagnosis 
of sleep disorders combined with idiopathic haemorrhagic stroke 
is challenging because the clinical manifestations of the two 
disorders intersect. Patients with haemorrhagic stroke are often 
associated with severe malaise, excessive daytime sleepiness, and 
sleep disorders, which may be  due to the coexistence of sleep 
disorders in the patient; However, it is necessary to exclude 
brainstem injury due to haemorrhagic stroke, sleep apnoea or 
central nervous system depression (42). Neurocognitive symptoms 
are also commonly associated with sleep disorders, such as memory 
loss and attention deficits, which can complicate the clinical 
differential diagnosis. Therefore, identifying common biomarkers 
and pathogenic mechanisms is essential for the diagnosis and 
treatment of these disorders.

Firstly, 254 overlapping differentially expressed genes (DEGs) 
were identified between the SD and IS datasets, highlighting common 
genetic factors that may influence both diseases. This set of genes 
highlights the importance of exploring common molecular pathways 
to better understand the pathogenesis of SD and IS. By applying 
WGCNA, six co-expression modules were identified in the SD dataset 
and 11 co-expression modules in the IS dataset, some of which were 
strongly correlated with clinical features. The overlapping genes 
identified in the two datasets are particularly interesting as they 
suggest a possible common molecular basis between SD and IS. These 
genes deserve further investigation as potential biomarkers or 
therapeutic targets for the complications of both diseases. We then put 
GSE208668 DEGs, GSE208668 ME2, GSE16561 DEGs and GSE16561 
ME2 together in a series of machine learning to obtain their common 
genes, demonstrating how these genes are not only common markers 
for both sleep disorders and stroke, but may also have a role in both 
diseases (Figure 3D).

Enrichment analyses revealed several key biological processes 
and metabolic pathways involved in the common pathogenesis of 
SD and IS. The enrichment of biological processes such as ‘response 
to external stimuli’ and ‘organic metabolic processes’ emphasized 
the impact of external factors, including stress, environmental 
factors and circadian rhythm disruption, on SD and IS. In addition, 
metabolic pathways, particularly ‘propionate metabolism’ and 
‘oxidative phosphorylation’, were also significantly enriched, 
suggesting that they may be involved in regulating the sleep–wake 
cycle and cerebral haemodynamics. In addition, in terms of 
metabolic pathways and cellular behavior, especially “propionate 
metabolism” and “oxidative phosphorylation,” suggesting that they 
may be  involved in regulating sleep–wake cycles and cerebral 
hemodynamics. These findings suggest that metabolic abnormalities 
and cellular energy dysregulation may be key contributors to both 
conditions, providing potential avenues for therapeutic 
intervention. Statistics show that about 50% of IS patients may face 
gastrointestinal complications (43). Recent studies have shown that 

ischemic brain injury is related to systemic stress responses 
associated with activation of ANS sympathetic branches, leading to 
the release of catecholamines, and long-term stress responses may 
lead to problems such as gastrointestinal dyskinesia (44). In 
addition, the microbiota in the intestinal tract of patients with 
ischemic brain injury has also undergone tremendous changes (45). 
The study found that the intestinal microorganisms 
phosphatidylcholine and L-carnitine were converted to 
trimethylamine, which was further converted into trimethylamine-
N-oxide (TAMO) that promotes atherosclerosis by promoting the 
formation of foam cells by macrophages (46, 47). Intestinal 
microorganisms produce a series of metabolites including short-
chain fatty acids (butyrate, propionate), where propionate is 
produced mainly by Bacteroidetes, Firmicutes and Ackermanns are 
produced through the propylene glycol pathway and the acrylate 
pathway (48, 49). Strokes can lead to homeostasis of intestinal flora 
and altered short-chain fatty acid metabolism (50). We found that 
upregulating microbiota diversity and intestinal probiotic 
abundance, accelerating short-chain fatty acid metabolism, 
regulating amino acid and energy metabolism, thereby significantly 
inhibiting the inflammatory cascade and alleviating ischemic brain 
damage (51). Studies have shown that the increased concentration 
of short-chain fatty acids (SCFAs) in the feces of elderly patients 
with insomnia mainly reflects intestinal absorption dysfunction 
rather than simply increased production. These unabsorbed SCFAs 
worsen sleep through multiple pathways along the gut-brain axis: 
First, propionate and other substances activate FFAR3 receptors in 
the portal vein system, promoting the release of norepinephrine, 
directly exacerbating physiological hyperarousal and leading to 
difficulty falling asleep; second, malabsorption leads to insufficient 
energy in colon cells, damages the intestinal barrier, and triggers 
systemic low-grade inflammation, which in turn interferes with the 
sleep center; third, SCFAs further disrupt the sleep–wake rhythm 
by affecting serotonin synthesis and GABA/glutamate balance. At 
the same time, a higher BMI, malabsorption of SCFAs, and chronic 
inflammation form a vicious cycle, which together explain the 
worse sleep continuity in the short-sleep insomnia phenotype (52). 
Moreover, people with insomnia tend to have lower gut microbial 
diversity, a higher ratio of Firmicutes to Bacteroidetes, and lower 
levels of bacteria that produce short-chain fatty acids (SCFAs) (53). 
In addition to the gut flora, propionate is also associated with 
inflammation and oxidative stress, which has anti-inflammatory 
properties that may reduce the risk of stroke by reducing vascular 
inflammation. A report pointed out that short-chain fatty acids, 
including propionate, may regulate recovery after stroke by affecting 
microglia activation and neuroplasticity (54). Furthermore, studies 
have found that stroke and insomnia can be  linked through the 
brain-gut axis. Due to brain damage to areas that control circadian 
rhythms, stroke disrupts sleep regulation, leading to insomnia, 
which affects up to 40% of stroke survivors. In turn, insomnia 
exacerbates stroke recovery by increasing inflammation and 
impairing neuroplasticity. The brain-gut axis plays a crucial role, as 
stroke-induced dysbiosis in the gut microbiome alters the 
production of neurotransmitters, such as serotonin, which regulate 
sleep and mood, further exacerbating insomnia. Conversely, sleep 
deprivation disrupts the composition of the gut microbiome, 
increasing systemic inflammation and potentially worsening stroke 
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outcomes, highlighting a vicious cycle in which each condition 
amplifies the other through neuroinflammatory and microbial 
pathways (55). Cell respiration is the process by which cells generate 
energy through mitochondrial oxidation and phosphorylation. 
During ischemic stroke, reduced blood flow limits oxygen 
availability, impairs mitochondrial function and turns cells to 
anaerobic respiration. This produces lactic acid, leading to acidosis 
and further cellular damage. Reperfusion paradoxically increases 
the production of reactive oxygen species (ROS), leading to 
mitochondrial dysfunction and neuronal apoptosis. Studies have 
shown that excessive ROS caused by impaired cellular respiration 
can lead to damage to the blood–brain barrier and worsen stroke 
results (56). Insomnia, characterized by difficulty falling or staying 
asleep, is associated with disruptions in oxidative phosphorylation, 
a cellular process in mitochondria that produces ATP. Research has 
shown that sleep deprivation caused by insomnia impairs 
mitochondrial function, reduces oxidative phosphorylation 
efficiency, and leads to reduced ATP production. This disruption 
increases oxidative stress due to the accumulation of reactive 
oxygen species (ROS), which damages cellular components and 
exacerbates sleep disturbances, creating a vicious cycle. Conversely, 
inefficient oxidative phosphorylation, commonly seen in conditions 
such as chronic fatigue syndrome and neurodegenerative diseases, 
may alter energy metabolism in brain regions that regulate sleep, 
leading to insomnia. Therefore, the interplay between insomnia and 
oxidative phosphorylation highlights a bidirectional relationship in 
which sleep diorders and mitochondrial dysfunction reinforce each 
other, impacting overall health (57, 58).

In our study, we analyzed these DEG genes by GO and KEGG 
enrichment with modular genes. We  found that propionate 
metabolism and metabolic pathways featured prominently in the 
analysis of common drivers of sleep disorders and stroke, with 
‘propionate metabolism’ being significantly enriched. Then through 
machine learning we identified ARL2 as a prominent gene with high 
diagnostic value, and its robustness as a predictive biomarker further 
emphasizes its role in the pathophysiology of SD and IS. By integrating 
single-cell transcriptomic data, a more nuanced understanding of how 
specific neuronal subtypes and immune cells contribute to the shared 
pathophysiology of SD and IS is possible. This is particularly important 
as it highlights the importance of cellular stress responses, 
inflammation and circadian rhythms, which are common in 
both diseases.

ARL2 is a member of the ARF family and the RAS superfamily of 
regulatory GTPases (59), which are highly conserved and commonly 
expressed in eukaryotes (60). It plays a role in the regulation of 
microtubule protein folding and microtubule disruption (61, 62) and 
is present in cytoplasmic lysates tightly bound to the microtubule 
protein-specific co-chaperone cofactor D, which shares these activities. 
Numerous studies have shown that cerebral ischemia leads to 
mitochondrial dysfunction, ATP depletion, cytoskeletal destruction, 
and ultimately necrosis or apoptosis (63). Whereas, Arl2 is implicated 
in mitochondrial function, such as mitochondrial morphology, 
motility, and maintenance of ATP levels (64). And in a similar study 
of cardiomyocytes, miR-15b downregulates and regulates cellular ATP 
levels via Arl2 (65). In the prevention of cerebral ischemia–reperfusion 
injury, miR-15b has also been shown to inhibit the expression of ADP 
ribosylation factor-like 2 and reduce the level of adenosine 
triphosphate in mice treated with mild hypothermia in mice with 

middle cerebral artery occlusion (66). These findings underscore an 
association between ARL2 and stroke. Because ARL2 regulates 
mitochondrial morphology, motility, and ATP levels, it can indirectly 
affect metabolic pathways occurring in mitochondria, such as 
propionate metabolism. We infer that disruption of mitochondrial 
integrity may affect the efficiency of enzymes involved in propionate 
metabolism. On the other hand, the related protein ADP-ribosylation 
factor-associated protein 1 (ARFRP1) is involved in lipid droplet (LD) 
growth and lipolysis, and is associated with lipid metabolism during 
the transmission of hepatitis C virus. Although ARFRP1 and ARL2 are 
different, their shared membership in the ARF family suggests that 
ARL2 may also interact with lipid-related pathways, and propionate is 
a short-chain fatty acid (67). We further infer that ARL2 is associated 
with propionate metabolism. The circadian rhythm has a complex 
bidirectional relationship with mitochondrial function. The chromatin 
immunoprecipitation (ChIP) sequencing data set of Bmal1, Clock and 
Cry shows that various functions of mitochondria are under the 
control of circadian rhythm (68, 69). In addition, post-transcriptional 
mechanisms (e.g., protein acetylation) are also involved in the 
circadian rhythm of mitochondria (70). The clock controls the 
expression/activity of fission proteins (such as Drp1, Fis1) and 
autophagy-related proteins (such as Bnip3, Pink1), driving the diurnal 
cycle of mitochondrial fusion and cleavage. Deletion of clock genes 
can also disrupt morphological rhythms and functions. Mitochondrial 
feedback also regulates the circadian rhythm through the NAD + -SIRT 
pathway and the AMPK energy sensing pathway. Clock-driven 
NAD + oscillation not only affects mitochondria (SIRT3), but also 
affects the activity of SIRT1 in the nuclear nucleus. SIRT1 rhythmically 
binds to the CLOCK: BMAL1 complex, deacetylation and promotes 
PER2 degradation, and enhances clock gene transcription amplitude. 
SIRT1 also acts as a histone deacetylase, interacts with CLOCK to 
participate in chromatin remodeling and regulates clock gene 
expression (71). In addition, the ATP rhythm generated by Drp1-
mediated changes in mitochondrial morphology itself can directly 
feedback affecting the core clock oscillator (72). In this study, 
we  quantified ARL2 mRNA expression using RT-qPCR. Results 
revealed that the expression of these genes was significantly altered in 
the experimental group compared to the control group. Specifically, 
genes associated with inflammatory responses and cellular stress, such 
as ARL2, showed increased expression in the SD, IS, and SD + IS 
groups, with the most pronounced changes in the SD + IS group. This 
suggests that the combination of sleep disorders and ischaemic stroke 
may have a superimposed or synergistic effect on gene expression, 
especially genes associated with inflammation, oxidative stress and 
neuronal damage. ARL2 was significantly upregulated in all cases, 
especially in the SD + IS group, suggesting that ARL2 may be  a 
potential biomarker for SD and IS. These findings support the 
hypothesis that common molecular pathways, including inflammation 
and metabolism, underlie both conditions, thus providing insights into 
their common pathophysiology.

Furthermore, we validated the differential expression of ARL2 in 
an independent retrospective human cohort. The consistent 
upregulation of ARL2  in the blood of patients with stroke, sleep 
disorder, and most notably in those with both conditions, strongly 
corroborates our pre-clinical findings and underscores the translational 
relevance of ARL2 as a peripheral biomarker. Notably, this clinical 
validation aligns with the previously discussed involvement of ARL2 in 
mitochondrial function and neuroinflammatory pathways, providing 
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a mechanistic basis for its upregulation under conditions of hypoxic 
and inflammatory stress, such as those characterizing OSA and stroke 
comorbidity. Although the comprehensive assessment and diagnosis 
of clinical sleep disorders typically involve a multi-faceted approach, 
our study utilized the well-validated Pittsburgh Sleep Quality Index 
(PSQI, provided in Supplementary Table 5) to define sleep disorder, 
thereby ensuring standardized and reproducible cohort criteria.

While this study provides compelling evidence, future prospective 
studies with larger sample sizes and more detailed clinical profiles are 
warranted to further establish the diagnostic and prognostic utility of 
ARL2. Nevertheless, our data identify circulating ARL2 as a promising 
and readily measurable biomarker that could facilitate risk 
stratification and early detection of stroke, especially among 
individuals with pre-existing sleep disturbances. The RT-qPCR results 
reinforce the concept that SD and IS share overlapping molecular 
mechanisms, particularly in the regulation of inflammation and 
stress-response genes. These insights may guide future therapeutic 
strategies targeting common pathways to concurrently treat both 
conditions. Additional studies are needed to validate these findings 
and explore the functional roles of these genes in disease progression.

Building upon these clinical findings, it is important to understand 
the molecular context of ARL2. From the above, we know that ARL2 
is part of the broader ADP-ribosylation factor (ARF) family, which 
acts as a cofactor in the ADP-ribosylation process. ADP-ribosylation, 
catalyzed by enzymes such as PARP1 and tankyrases, regulates 
inflammatory responses through pathways involved in tumor necrosis 
factor (TNF)-induced cell death and immune signaling (73). While 
Aβ peptides of 39–42 amino acids are the primary component of 
protein aggregates found in senile plaques of Alzheimer’s disease and 
impaired mitochondrial electron transport along with exposure to 
metal ions can lead to Aβ aggregation and subsequent activation of 
PARP1, which is closely linked to several neurological diseases (74), 
our focus remains on ARL2’s potential influence on 
neuroinflammatory processes in brain regions such as the cerebral 
cortex and hippocampus in the context of sleep disorders and stroke.

In summary, this study explored and identified for the first time 
the pivotal genes of sleep disorders and stroke, and analyzed the 
possible pathogenesis. Unlike many studies that focus on tissue-
specific biomarkers or single pathological pathways, we purposely 
utilized circulating transcriptome data as well as an integrated 
computational biology approach combining WGCNA and multiple 
machine learning algorithms. Through this strategy, we  identified 
ARL2 as a novel circulating biomarker for the detection of the 
comorbidity of SD and IS, which gives our study a significant clinical 
advantage for non-invasive, rapid screening, identification of people 
at high risk for sleep disorders, and prevention of stroke. Besides, 
going beyond single-disease inflammatory biomarker studies, our 
data-driven approach uniquely reveals the relationship between ARL2 
and dysregulation of mitochondrial metabolic pathways (propionate 
metabolism and oxidative phosphorylation) in both SD and IS, which 
reveals a previously underappreciated pathogenic axis and opens up 
the possibility of new treatments beyond common anti-inflammatory 
and antioxidant strategies. However, this paper also has some 
limitations. Further functional studies are needed to validate the 
specific role of the ARL2 gene in SD and stroke and to explore its 
functional mechanisms in disease progression.

Despite the encouraging findings, this study has several 
limitations. First, while our integrated bioinformatics and machine 

learning approach strongly identified ARL2 as a common diagnostic 
biomarker, the precise causal relationship between ARL2 
dysregulation and the pathogenesis of sleep disorders (SD) and 
ischemic stroke (IS) remains to be fully elucidated. The observed 
association, while strong, does not confirm causality. Second, our 
analysis relied primarily on publicly available transcriptomic 
datasets and a single validation cohort. The relatively small sample 
size, particularly in the SD dataset, and the retrospective nature of 
the clinical validation warrant confirmation in larger, prospective, 
multicenter studies to increase the generalizability of our findings. 
Finally, while we validated ARL2 expression in animal models and 
human blood samples, the underlying functional role of ARL2 in the 
coexisting mechanisms of SD and IS has not been experimentally 
validated. Future studies employing gene knockout or overexpression 
in relevant animal models will be crucial to uncover the underlying 
molecular pathways.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author/s.

Ethics statement

The studies involving humans were approved by Ethics Committee 
of The First Affiliated Hospital of Henan University of Chinese 
Medicine (Approval no. 2025HL-389). The studies were conducted in 
accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study. The animal study was approved by First 
Affiliated Hospital of Henan University of Traditional Chinese 
Medicine (YFYDW2019035). The study was conducted in accordance 
with the local legislation and institutional requirements.

Author contributions

HY: Writing – original draft. ZW: Writing – original draft. SC: 
Writing – original draft. YZ: Writing – original draft. XL: Writing – 
review & editing, Project administration, Writing – original draft, 
Resources.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research 
project was supported by grants 242102311277, “Exploring the 
Effective Components and Mechanisms of the Jianpi Bushen Huoxue 
Recipe for the Treatment of Ischemic Stroke Based on the PI3K/Akt/
HIF-1α Signaling Pathway”; 2024ZXZX1017, “Exploring the key 
substances and mechanisms of action of the Jianpi Bushen Huoxue 
prescription in the treatment of ischemic stroke based on liquid 
chromatography-mass spectrometry and transcriptome sequencing”; 
and Henan Province Traditional Chinese Medicine Inheritance and 

https://doi.org/10.3389/fneur.2025.1599135
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yu et al.� 10.3389/fneur.2025.1599135

Frontiers in Neurology 14 frontiersin.org

Innovation Talent Project (Zhongjing Project), Leading Talent in 
Traditional Chinese Medicine [Yuwei Zhongyi Letter (2021) No. 8].

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 

including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2025.1599135/
full#supplementary-material

References
	1.	Sateia MJ. International classification of sleep disorders-third edition. Chest. (2014) 

146:1387–94. doi: 10.1378/chest.14-0970

	2.	Rémi J, Pollmächer T, Spiegelhalder K, Trenkwalder C, Young P. Sleep-related 
disorders in neurology and psychiatry. Deutsch Ärztebl Int. (2019) 116:681–8. doi: 
10.3238/arztebl.2019.0681

	3.	Léger D, Bayon V. Societal costs of insomnia. Sleep Med Rev. (2010) 14:379–89. doi: 
10.1016/j.smrv.2010.01.003

	4.	Gangwisch JE. A review of evidence for the link between sleep duration and 
hypertension. Am J Hypertens. (2014) 27:1235–42. doi: 10.1093/ajh/hpu071

	5.	Antza C, Kostopoulos G, Mostafa S, Nirantharakumar K, Tahrani A. The links 
between sleep duration, obesity and type 2 diabetes mellitus. J Endocrinol. (2022) 
252:125–41. doi: 10.1530/JOE-21-0155

	6.	Chance Nicholson W, Pfeiffer K. Sleep disorders and mood, anxiety, and post-
traumatic stress disorders. Nurs Clin North Am. (2021) 56:229–47. doi: 
10.1016/j.cnur.2021.02.003

	7.	Billings ME, Hale L, Johnson DA. Physical and social environment relationship 
with sleep health and disorders. Chest. (2020) 157:1304–12. doi: 
10.1016/j.chest.2019.12.002

	8.	Sun S-Y, Chen G-H. Treatment of circadian rhythm sleep–wake disorders. Curr 
Neuropharmacol. (2022) 20:1022–34. doi: 10.2174/1570159X19666210907122933

	9.	Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and 
consequences. Physiol Rev. (2021) 101:995–1046. doi: 10.1152/physrev.00046.2019

	10.	Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine. (2020) 
48:561–6. doi: 10.1016/j.mpmed.2020.06.002

	11.	Potter TBH, Tannous J, Vahidy FS. A contemporary review of epidemiology, risk 
factors, etiology, and outcomes of premature stroke. Curr Atheroscler Rep. (2022) 
24:939–48. doi: 10.1007/s11883-022-01067-x

	12.	Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. 
Circ Res. (2017) 120:472–95. doi: 10.1161/CIRCRESAHA.116.308398

	13.	Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of 
acute ischemic stroke: an overview with emphasis on therapeutic significance beyond 
thrombolysis. Pathophysiology. (2010) 17:197–218. doi: 10.1016/j.pathophys.2009. 
12.001

	14.	Bassetti CLA. Sleep and stroke: a bidirectional relationship with clinical 
implications. Sleep Med Rev. (2019) 45:127–8. doi: 10.1016/j.smrv.2019.04.005

	15.	Baylan S, Griffiths S, Grant N, Broomfield NM, Evans JJ, Gardani M. Incidence 
and prevalence of post-stroke insomnia: a systematic review and meta-analysis. Sleep 
Med Rev. (2020) 49:101222. doi: 10.1016/j.smrv.2019.101222

	16.	Helbig AK, Stöckl D, Heier M, Ladwig KH, Meisinger C. Symptoms of insomnia 
and sleep duration and their association with incident strokes: findings from the 
population-based MONICA/KORA Augsburg cohort study. PLoS One. (2015) 
10:e0134480. doi: 10.1371/journal.pone.0134480

	17.	Saputro RE, Chou CC, Lin YY, Tarumi T, Liao YH. Exercise-mediated modulation 
of autonomic nervous system and inflammatory response in sleep-deprived individuals: 
a narrative reviews of implications for cardiovascular health. Auton Neurosci. (2025) 
259:103256. doi: 10.1016/j.autneu.2025.103256

	18.	Alsbrook DL, di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, et al. 
Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci 
Rep. (2023) 23:407–31. doi: 10.1007/s11910-023-01282-2

	19.	Hetman M, Slomnicki LP, Hodges ER, Saraswat Ohri S, Whittemore SR. Role of 
circadian rhythms in pathogenesis of acute CNS injuries: insights from experimental 
studies. Exp Neurol. (2022) 353:114080. doi: 10.1016/j.expneurol.2022.114080

	20.	Mayer-Suess L, Ibrahim A, Moelgg K, Cesari M, Knoflach M, Högl B, et al. Sleep 
disorders as both risk factors for, and a consequence of, stroke: a narrative review. Int J 
Stroke. (2024) 19:490–8. doi: 10.1177/17474930231212349

	21.	Luo Y, Yu G, Liu Y, Zhuge C, Zhu Y. Sleep quality after stroke: a systematic review 
and meta-analysis. Medicine (Baltimore). (2023) 102:e33777. doi: 
10.1097/MD.0000000000033777

	22.	Duan D, Kim LJ, Jun JC, Polotsky VY. Connecting insufficient sleep and insomnia 
with metabolic dysfunction. Ann N Y Acad Sci. (2023) 1519:94–117. doi: 
10.1111/nyas.14926

	23.	Chasens ER, Imes CC, Kariuki JK, Luyster FS, Morris JL, DiNardo MM, et al. Sleep 
and metabolic syndrome. Nurs Clin North Am. (2021) 56:203–17. doi: 
10.1016/j.cnur.2020.10.012

	24.	Najarian RM, Sullivan LM, Kannel WB, Wilson PW, D’Agostino RB, Wolf PA. 
Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: 
the Framingham offspring study. Arch Intern Med. (2006) 166:106–11. doi: 
10.1001/archinte.166.1.106

	25.	Dressle RJ, Feige B, Spiegelhalder K, Schmucker C, Benz F, Mey NC, et al. HPA 
axis activity in patients with chronic insomnia: a systematic review and meta-analysis 
of case-control studies. Sleep Med Rev. (2022) 62:101588. doi: 10.1016/j.smrv.2022.101588

	26.	Liu D, Yu C, Huang K, Thomas S, Yang W, Liu S, et al. The association between 
hypertension and insomnia: a bidirectional Meta-analysis of prospective cohort studies. 
Int J Hypertens. (2022) 2022:4476905. doi: 10.1155/2022/4476905

	27.	Buonacera A, Stancanelli B, Malatino L. Stroke and hypertension: an appraisal 
from pathophysiology to clinical practice. Curr Vasc Pharmacol. (2019) 17:72–84. doi: 
10.2174/1570161115666171116151051

	28.	Li Y, Gao S, Meng Y. Integrated analysis of endoplasmic reticulum stress regulators' 
expression identifies distinct subtypes of autism spectrum disorder. Front Psych. (2023) 
14:1136154. doi: 10.3389/fpsyt.2023.1136154

	29.	Lin J, Liu C, Hu E. Elucidating sleep disorders: a comprehensive bioinformatics 
analysis of functional gene sets and hub genes. Front Immunol. (2024) 15:1765. doi: 
10.3389/fimmu.2024.1381765

	30.	Zhang H, Sun J, Zou P, Huang Y, Yang Q, Zhang Z, et al. Identification of hypoxia- 
and immune-related biomarkers in patients with ischemic stroke. Heliyon. (2024) 
10:e25866. doi: 10.1016/j.heliyon.2024.e25866

	31.	Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, Fernandez-
Cadenas I, et al. TTC7B emerges as a novel risk factor for ischemic stroke through the 
convergence of several genome-wide approaches. J Cereb Blood Flow Metab. (2012) 
32:1061–72. doi: 10.1038/jcbfm.2012.24

	32.	Uyhelji HA, Kupfer DM, White VL, Jackson ML, van Dongen HPA, Burian DM. 
Exploring gene expression biomarker candidates for neurobehavioral impairment from 
total sleep deprivation. BMC Genomics. (2018) 19:341. doi: 10.1186/s12864-018-4664-3

https://doi.org/10.3389/fneur.2025.1599135
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2025.1599135/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2025.1599135/full#supplementary-material
https://doi.org/10.1378/chest.14-0970
https://doi.org/10.3238/arztebl.2019.0681
https://doi.org/10.1016/j.smrv.2010.01.003
https://doi.org/10.1093/ajh/hpu071
https://doi.org/10.1530/JOE-21-0155
https://doi.org/10.1016/j.cnur.2021.02.003
https://doi.org/10.1016/j.chest.2019.12.002
https://doi.org/10.2174/1570159X19666210907122933
https://doi.org/10.1152/physrev.00046.2019
https://doi.org/10.1016/j.mpmed.2020.06.002
https://doi.org/10.1007/s11883-022-01067-x
https://doi.org/10.1161/CIRCRESAHA.116.308398
https://doi.org/10.1016/j.pathophys.2009.12.001
https://doi.org/10.1016/j.pathophys.2009.12.001
https://doi.org/10.1016/j.smrv.2019.04.005
https://doi.org/10.1016/j.smrv.2019.101222
https://doi.org/10.1371/journal.pone.0134480
https://doi.org/10.1016/j.autneu.2025.103256
https://doi.org/10.1007/s11910-023-01282-2
https://doi.org/10.1016/j.expneurol.2022.114080
https://doi.org/10.1177/17474930231212349
https://doi.org/10.1097/MD.0000000000033777
https://doi.org/10.1111/nyas.14926
https://doi.org/10.1016/j.cnur.2020.10.012
https://doi.org/10.1001/archinte.166.1.106
https://doi.org/10.1016/j.smrv.2022.101588
https://doi.org/10.1155/2022/4476905
https://doi.org/10.2174/1570161115666171116151051
https://doi.org/10.3389/fpsyt.2023.1136154
https://doi.org/10.3389/fimmu.2024.1381765
https://doi.org/10.1016/j.heliyon.2024.e25866
https://doi.org/10.1038/jcbfm.2012.24
https://doi.org/10.1186/s12864-018-4664-3


Yu et al.� 10.3389/fneur.2025.1599135

Frontiers in Neurology 15 frontiersin.org

	33.	Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, et al. 
Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection 
to 2040: a modelling study. Lancet Diabetes Endocrinol. (2022) 10:741–60. doi: 
10.1016/S2213-8587(22)00218-2

	34.	Yan M, Li W, Wei R, Li S, Liu Y, Huang Y, et al. Identification of pyroptosis-related 
genes and potential drugs in diabetic nephropathy. J Transl Med. (2023) 21:490. doi: 
10.1186/s12967-023-04350-w

	35.	Liu J, Zhang D, Cao Y, Zhang H, Li J, Xu J, et al. Screening of crosstalk and 
pyroptosis-related genes linking periodontitis and osteoporosis based on bioinformatics 
and machine learning. Front Immunol. (2022) 13:955441. doi: 10.3389/ 
fimmu.2022.955441

	36.	Hagewoud R, Havekes R, Novati A, Keijser JN, van der Zee E, Meerlo P. Sleep 
deprivation impairs spatial working memory and reduces hippocampal AMPA receptor 
phosphorylation. J Sleep Res. (2010) 19:280–8. doi: 10.1111/j.1365-2869.2009.00799.x

	37.	Duan J, Cui J, Yang Z, Guo C, Cao J, Xi M, et al. Neuroprotective effect of Apelin 
13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J Neuroinflammation. 
(2019) 16:24. doi: 10.1186/s12974-019-1406-7

	38.	Zunzunegui C, Bo G, Ertugrul C, Aleksandra H, Claudio LB. Sleep disturbance 
impairs stroke recovery in the rat. Sleep. (2011) 34:1261–9.

	39.	Tsai PS, Wang SY, Wang MY, Su CT, Yang TT, Huang CJ, et al. Psychometric 
evaluation of the Chinese version of the Pittsburgh sleep quality index (CPSQI) in 
primary insomnia and control subjects. Qual Life Res. (2005) 14:1943–52. doi: 
10.1007/s11136-005-4346-x

	40.	Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. 
Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. (2005) 
353:2034–41. doi: 10.1056/NEJMoa043104

	41.	Pajediene E, Paulekas E, Salteniene V, Skieceviciene J, Arstikyte J, Petrikonis K, et al. 
Diurnal variation of clock genes expression and other sleep-wake rhythm biomarkers among 
acute ischemic stroke patients. Sleep Med. (2022) 99:1–10. doi: 10.1016/j.sleep.2022.06.023

	42.	Li J, Wang D, Tao W, Dong W, Zhang J, Yang J, et al. Early consciousness disorder 
in acute ischemic stroke: incidence, risk factors and outcome. BMC Neurol. (2016) 
16:140. doi: 10.1186/s12883-016-0666-4

	43.	Kumar S, Selim MH, Caplan LR. Medical complications after stroke. Lancet 
Neurol. (2010) 9:105–18. doi: 10.1016/S1474-4422(09)70266-2

	44.	Lemke DM. Riding out the storm: sympathetic storming after traumatic brain 
injury. J Neurosci Nurs. (2004) 36:4–9. doi: 10.1097/01376517-200402000-00002

	45.	Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the 
pathogenesis of traumatic brain injury. J Clin Invest. (2021) 131:777. doi: 
10.1172/JCI143777

	46.	Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial 
metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. (2013) 
368:1575–84. doi: 10.1056/NEJMoa1109400

	47.	Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal 
microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. 
Nat Med. (2013) 19:576–85. doi: 10.1038/nm.3145

	48.	Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. Dysbiosis of gut microbiota 
with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic 
stroke or transient ischemic attack. J Am  Heart Assoc. (2015) 4:699. doi: 
10.1161/JAHA.115.002699

	49.	Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota 
composition and gut metabolism. Proc Nutr Soc. (2015) 74:13–22. doi: 
10.1017/S0029665114001463

	50.	Fang Z, Chen M, Qian J, Wang C, Zhang J. The bridge between ischemic stroke 
and gut microbes: short-chain fatty acids. Cell Mol Neurobiol. (2023) 43:543–59. doi: 
10.1007/s10571-022-01209-4

	51.	Ruan L, Wang Z, Zheng M, Zheng Q, Qing Q, Lin H, et al. Polygoni Multiflori 
Radix Praeparata polysaccharides enhance gut health and mitigate ischemic stroke by 
regulating SCFA and amino acid metabolism in gut microbiota. Front Pharmacol. (2025) 
16:1580055. doi: 10.3389/fphar.2025.1580055

	52.	Magzal F, Even C, Haimov I, Agmon M, Asraf K, Shochat T, et al. Associations 
between fecal short-chain fatty acids and sleep continuity in older adults with insomnia 
symptoms. Sci Rep. (2021) 11:4052. doi: 10.1038/s41598-021-83389-5

	53.	Smith RP, Easson C, Lyle SM, Kapoor R, Donnelly CP, Davidson EJ, et al. Gut 
microbiome diversity is associated with sleep physiology in humans. PLoS One. (2019) 
14:e0222394. doi: 10.1371/journal.pone.0222394

	54.	Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-
derived short chain fatty acids modulate microglia and promote aβ plaque deposition. 
eLife. (2021) 10:10. doi: 10.7554/eLife.59826

	55.	Wang Y, Pan L, Guan R. Mechanism of insomnia after stroke based on intestinal 
Flora. Int J Gen Med. (2024) 17:5493–502. doi: 10.2147/IJGM.S488714

	56.	Bassetti CL, Hermann DM. Sleep and stroke. Handb Clin Neurol. (2011) 
99:1051–72. doi: 10.1016/B978-0-444-52007-4.00021-7

	57.	Melhuish Beaupre LM, Brown GM, Braganza NA, Kennedy JL, Gonçalves VF. 
Mitochondria's role in sleep: novel insights from sleep deprivation and restriction 
studies. World J Biol Psychiatry. (2022) 23:1–13. doi: 10.1080/15622975.2021.1907723

	58.	Morris G, Stubbs B, Köhler CA, Walder K, Slyepchenko A, Berk M, et al. The 
putative role of oxidative stress and inflammation in the pathophysiology of sleep 
dysfunction across neuropsychiatric disorders: focus on chronic fatigue syndrome, 
bipolar disorder and multiple sclerosis. Sleep Med Rev. (2018) 41:255–65. doi: 
10.1016/j.smrv.2018.03.007

	59.	Newman LE, Zhou CJ, Mudigonda S, Mattheyses AL, Paradies E, Marobbio CM, 
et al. The ARL2 GTPase is required for mitochondrial morphology, motility, and 
maintenance of ATP levels. PLoS One. (2014) 9:e99270. doi: 10.1371/journal.pone. 
0099270

	60.	Clark J, Moore L, Krasinskas A, Way J, Battey J, Tamkun J, et al. Selective 
amplification of additional members of the ADP-ribosylation factor (ARF) family: 
cloning of additional human and Drosophila ARF-like genes. Proc Natl Acad Sci. (1993) 
90:8952–6. doi: 10.1073/pnas.90.19.8952

	61.	Bhamidipati A, Lewis SA, Cowan NJ. Adp Ribosylation factor-like protein 2 (Arl2) 
regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol. 
(2000) 149:1087–96. doi: 10.1083/jcb.149.5.1087

	62.	Tian G, Thomas S, Cowan NJ. Effect of TBCD and its regulatory interactor Arl2 
on tubulin and microtubule integrity. Cytoskeleton. (2010) 67:706–14. doi: 
10.1002/cm.20480

	63.	Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J. The 
regulation of neuronal mitochondrial metabolism by calcium. J Physiol. (2015) 
593:3447–62. doi: 10.1113/JP270254

	64.	Sharer JD, Shern JF, van Valkenburgh H, Wallace DC, Kahn RA. ARL2 and BART 
enter mitochondria and bind the adenine nucleotide transporter. Mol Biol Cell. (2002) 
13:71–83. doi: 10.1091/mbc.01-05-0245

	65.	Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, et al. MicroRNA-15b 
modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat 
cardiac myocytes. J Biol Chem. (2010) 285:4920–30. doi: 10.1074/jbc.M109.082610

	66.	Ji X, Wu D, Wen S, Zhao S, Xia A, Li F, et al. Mild therapeutic hypothermia protects 
against cerebral ischemia/reperfusion injury by inhibiting miR-15b expression in rats. 
Brain Circ. (2017) 3:219–26. doi: 10.4103/bc.bc_15_17

	67.	Lim YS, Ngo HTT, Lee J, Son K, Park EM, Hwang SB. ADP-ribosylation factor-
related protein 1 interacts with NS5A and regulates hepatitis C virus propagation. Sci 
Rep. (2016) 6:31211. doi: 10.1038/srep31211

	68.	Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, et al. Transcriptional 
architecture and chromatin landscape of the core circadian clock in mammals. Science. 
(2012) 338:349–54. doi: 10.1126/science.1226339

	69.	Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, et al. Hepatic 
Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell 
Metab. (2015) 22:709–20. doi: 10.1016/j.cmet.2015.08.006

	70.	Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, 
et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and 
nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. (2016) 113:E1673–82. 
doi: 10.1073/pnas.1519650113

	71.	Kim J, Sun W. Circadian coordination: understanding interplay between circadian 
clock and mitochondria. Anim Cells Syst (Seoul). (2024) 28:228–36. doi: 
10.1080/19768354.2024.2347503

	72.	Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, et al. 
Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. 
Cell Metab. (2018) 27:657–666.e5. doi: 10.1016/j.cmet.2018.01.011

	73.	Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from 
molecular mechanisms to therapeutic implications. Cell. (2023) 186:4475–95. doi: 
10.1016/j.cell.2023.08.030

	74.	Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human 
disease. Open Biol. (2019) 9:190041. doi: 10.1098/rsob.190041

https://doi.org/10.3389/fneur.2025.1599135
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/S2213-8587(22)00218-2
https://doi.org/10.1186/s12967-023-04350-w
https://doi.org/10.3389/fimmu.2022.955441
https://doi.org/10.3389/fimmu.2022.955441
https://doi.org/10.1111/j.1365-2869.2009.00799.x
https://doi.org/10.1186/s12974-019-1406-7
https://doi.org/10.1007/s11136-005-4346-x
https://doi.org/10.1056/NEJMoa043104
https://doi.org/10.1016/j.sleep.2022.06.023
https://doi.org/10.1186/s12883-016-0666-4
https://doi.org/10.1016/S1474-4422(09)70266-2
https://doi.org/10.1097/01376517-200402000-00002
https://doi.org/10.1172/JCI143777
https://doi.org/10.1056/NEJMoa1109400
https://doi.org/10.1038/nm.3145
https://doi.org/10.1161/JAHA.115.002699
https://doi.org/10.1017/S0029665114001463
https://doi.org/10.1007/s10571-022-01209-4
https://doi.org/10.3389/fphar.2025.1580055
https://doi.org/10.1038/s41598-021-83389-5
https://doi.org/10.1371/journal.pone.0222394
https://doi.org/10.7554/eLife.59826
https://doi.org/10.2147/IJGM.S488714
https://doi.org/10.1016/B978-0-444-52007-4.00021-7
https://doi.org/10.1080/15622975.2021.1907723
https://doi.org/10.1016/j.smrv.2018.03.007
https://doi.org/10.1371/journal.pone.0099270
https://doi.org/10.1371/journal.pone.0099270
https://doi.org/10.1073/pnas.90.19.8952
https://doi.org/10.1083/jcb.149.5.1087
https://doi.org/10.1002/cm.20480
https://doi.org/10.1113/JP270254
https://doi.org/10.1091/mbc.01-05-0245
https://doi.org/10.1074/jbc.M109.082610
https://doi.org/10.4103/bc.bc_15_17
https://doi.org/10.1038/srep31211
https://doi.org/10.1126/science.1226339
https://doi.org/10.1016/j.cmet.2015.08.006
https://doi.org/10.1073/pnas.1519650113
https://doi.org/10.1080/19768354.2024.2347503
https://doi.org/10.1016/j.cmet.2018.01.011
https://doi.org/10.1016/j.cell.2023.08.030
https://doi.org/10.1098/rsob.190041

	Exploring common circulating diagnostic biomarkers for sleep disorders and stroke based on machine learning
	1 Introduction
	2 Methods
	2.1 Bulk transcriptome data preprocessing
	2.2 Preselection of diagnostic biomarkers
	2.3 GO and KEGG enrichment analysis
	2.4 WGCNA
	2.5 Machine learning selection of diagnostic biomarkers
	2.6 Establishment of animal models
	2.7 RT-qPCR
	2.8 Independent clinical validation cohort
	2.8.1 Data source and study participants
	2.8.2 Experimental procedures: RNA extraction, qRT-PCR and statistical analysis

	3 Results
	3.1 An integrative workflow for identifying common circulatory biomarkers
	3.2 Identification of differentially expressed genes in SD and stroke
	3.3 GO and KEGG enrichment analysis of genes
	3.4 Weighted gene coexpression network analysis of SD and stroke
	3.5 Identification and validation of ARL2 as a key diagnostic gene for SD and stroke using machine learning
	3.6 Expected results of animal experimental models
	3.7 Validation of ARL2 expression in an independent human cohort
	3.8 Exploratory analysis of ARL2-related pathways

	4 Discussion

	References

