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Background and objectives: Sleep disorders (SD) and stroke have long been
health concerns. Sleep disorders are known to be a risk factor for stroke, and
in recent years it has also been shown that the prevalence of sleep disorders is
increased in stroke patients. We inferred that there is some inevitable connection
between the two. This study aims to identify common molecular biomarkers and
pathways connecting SD and stroke by integrating bioinformatics and machine
learning approaches.

Methods: We analyzed transcriptome data from the GEO dataset to identify
differentially expressed genes (DEGs). Key biological processes, as well as
metabolic pathways, were highlighted by GO and KGEE enrichment analyses.
Co-expression modules were then identified in the SD and stroke datasets
by weighted gene co-expression network analysis (WGCNA), respectively,
and machine learning algorithms (RandomForest, LASSO, and XGBoost) were
performed to identify ARL2 as a key diagnostic biomarker with high predictive
value (AUC = 0.91). This was finally complemented by animal experiments to
verify that ARL2 was upregulated in the experimental group.

Results: In GO and KEGG enrichment analyses, key biological processes
such as ‘response to external stimuli’ and ‘organic metabolic processes’ as
well as metabolic pathways such as ‘propionate metabolism’ and ‘oxidative
phosphorylation” were significantly enriched, suggesting their potential roles
in the pathogenesis of the two disorders. With WGCNA and machine-learning
algorithms analyses, we found that ARL2 is an important common marker for
both diseases.

Discussion: This study provides insightsinto the common molecular mechanisms
of SD and stroke, highlighting the potential of ARL2 as a diagnostic marker and
therapeutic target. Unlike previous studies, we used circulating markers rather
than tissue markers, improving the clinical translation in terms of non-invasive,
rapid identification of patients at risk for sleep disorders. We need to further
investigate the functional role of these genes and their potential in developing
targeted therapies for SD and stroke patients.
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1 Introduction

Sleep disorders (SD) are chronic, recurrent disorders characterized
by disturbances in the sleep cycle. According to ICSD-3, SD is
classified into seven categories: insomnia, sleep-related breathing
disorders, central sleepiness disorders, circadian rhythm sleep-wake
disorders, sleep abnormalities, sleep-related movement disorders, and
other sleep disorders (1). The most common clinical manifestations
of sleep disorders include difficulty falling asleep, incomplete sleep,
and excessive daytime sleepiness (2). At the same time, sleep disorders
not only reduce quality of life and productivity, but also increase
medical and psychiatric problems (3). It is considered a risk factor for
many diseases, including cardiovascular events, hypertension (4) and
type 2 diabetes mellitus (5). Currently, SD is mainly considered to be a
combination of mental disorders (6), environmental factors (7), and
circadian rhythm disorders (8) that lead to functional abnormalities
in areas of the brain such as the anterior cingulate cortex, the
amygdala, and the thalamus (9), but the exact pathogenesis remains
unclear. In this study, we focused on common circulating diagnostic
markers between insomnia and stroke.

Stroke is a clinical syndrome presenting as an acute, focal
neurological deficit, usually caused by vascular injury (e.g., infarction
or hemorrhage) to the central nervous system, and is divided into two
main categories: ischaemic stroke and haemorrhagic stroke (10).
Stroke begins at age 35, with an increased incidence of overall stroke,
is common in older adults, and can lead to long-term disability or
death (11). Risk factors for stroke include modifiable risk factors such
as high blood pressure, atherosclerosis, and arrhythmia, and
non-modifiable risk factors such as age, gender, race-ethnicity, and
genetics (12). The pathogenesis of stroke is complex, involving
excitotoxic mechanisms, inflammatory pathways, oxidative damage,
ionic imbalances, apoptosis, angiogenesis and neuroprotection. The
end result of the ischaemic cascade triggered by acute stroke is
neuronal death and irreversible loss of neuronal function (13). Strokes
may occur alone or in conjunction with SD (14).

A systematic review and meta-analysis found that insomnia after
stroke is extremely common, with approximately 38.2% of stroke
survivors suffering from insomnia or insomnia symptoms, and the
prevalence is significantly higher than that of the general population (15).
In a prospective cohort, insomnia symptoms were associated with a
1.6-fold increased risk of stroke, and short sleep duration (<6 h) further
amplified the risk (16). This suggests that insomnia and stroke may share
a common pathological mechanism. Although neurological and
cerebrovascular disorders are recognized as distinct entities, their
overlapping pathophysiology suggests shared pathways and therapeutic
strategies. Patients with both SD and stroke have been shown to exhibit
altered inflammatory markers, impaired autonomic regulation and
disruptions in circadian rhythms (17-19). Research into the relationship
between insomnia and stroke is the most common, with the risk of
stroke doubling in people with insomnia. In addition to this, other types
of sleep disorders have progressively been shown to be risk factors for
stroke (20), and they are also consequences of stroke, according to a
meta-analysis of sleep quality after stroke, which showed that poor sleep
quality affects 53 per cent of stroke patients (21). There is a close and
bidirectional interaction between sleep and blood glucose regulation, a
relationship regulated by both sleep-wake homeostasis and circadian
rhythms. Insufficient sleep interferes with insulin signaling through
multiple pathways, including activation of the sympathetic nervous
system, elevated nocturnal cortisol and growth hormone levels, and
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promotion of lipolysis and free fatty acid release. This is not limited to
insufficient sleep; the “chronic hyperarousal” state characteristic of
insomnia also exerts independent adverse effects on blood glucose
metabolism through persistent activation of the hypothalamic-pituitary-
adrenal axis and the sympathetic nervous system (22). In addition,
insomnia is commonly associated with metabolic syndrome (23).
We found that both metabolic syndrome and type 2 diabetes are risk
factors for stroke. Among the 2097 subjects in the Framingham Offspring
study, a higher incidence of stroke was obtained in patients with
metabolic syndrome than in those with diabetes (24). The hypothalamic-
pituitary—adrenal (HPA) axis is a key component of the body’s stress
response system. Research consistently demonstrates a bidirectional
relationship between HPA axis dysregulation and insomnia: chronic
stress activates the HPA axis, leading to hyperarousal and disrupting
sleep, while insufficient sleep, in turn, exacerbates HPA hyperactivity. A
review of 20 studies revealed that patients with insomnia had moderately
elevated cortisol levels, and that there was a positive, but non-significant,
correlation between the degree of objective sleep deprivation and group
differences in cortisol levels (25). A meta-analysis of 23 prospective
cohort studies systematically evaluated the bidirectional association
between hypertension and insomnia. The results showed a significant
bidirectional positive correlation between the two: insomnia increased
the risk of hypertension by 11% (OR = 1.11), while hypertension also
increased the risk of insomnia by 20% (OR = 1.20) (26). Hypertension is
also a risk factor for stroke (27). We hypothesize that there may be a
metabolic association between sleep disorders and stroke. Identifying
new diagnostic markers and therapeutic targets for these conditions is
crucial to improving patient outcomes. Machine learning to recognize
GEO large expression profiles is an advanced and reliable method (28).
In this study, we used circulating markers rather than tissue markers,
which facilitates ease and speed of testing, clinical translatability, and
rapid identification of patients at risk for sleep disorders.

2 Methods
2.1 Bulk transcriptome data preprocessing

Based on the selection strategy of previous literature, we retrieved
SD-related datasets and their corresponding transcriptome profiles of
control and IS patients from the Gene Expression Omnibus (GEO)
database,' which contains messenger RNA (mRNA) expression
profiles and clinical information. Four relatively large transcriptome
datasets were identified: GSE208668, GSE16561, GSE22255 and
GSE98566. For sleep disorders, we obtained RNA expression data
from 17 SD patients and 25 healthy controls from the GSE208668
dataset on the GPL10904 platform (29). For stroke, we obtained 39
control samples and 24 ischemic stroke patients from the GSE16561
dataset as a training set. As each analysis is confined to a single dataset,
the issue of inter-dataset batch effects is circumvented. For the
transcriptome data mentioned above, we performed gene symbol
mapping according to the respective platforms (30). Finally, GSE22255
(31) and GSE98566 (32) were used as independent datasets as
retrospective validation, respectively. In case of multiple matches,
we took the median and the final expression matrix was obtained by

1 http://www.ncbi.nlm.nih.gov/geo
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normalization using the log2(X + 1) method. During preprocessing,
after an initial quality control check, quantile normalization is
performed using the “normalizeBetweenArrays” function in the
“limma” package. This method adjusts the expression values so that
each sample has the same empirical distribution of expression values,
effectively reducing the technical differences between sample.

2.2 Preselection of diagnostic biomarkers

The limma package was utilized for differential gene expression
(DEG) analysis on the GSE208668 and GSE16561 datasets, following
the guidelines for RNA sequencing and microarray studies. DEGs
were identified using a stringent cutoff criterion of an adjusted p-value
(Benjamini-Hochberg false discovery rate, FDR) < 0.05 and an
absolute log2 fold change (|LogFC]|) > 0.5. To identify common signals
across datasets, the final list of common DEGs was defined as the
intersection of the DEGs from both GSE208668 and GSE16561.

2.3 GO and KEGG enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted for common
driver genes using the clusterProfiler package, an R tool for comparing
biological themes across gene clusters. GO analysis was employed to
annotate the biological processes, molecular functions, and cellular
components associated with the genes, while KEGG was used to
annotate the gene pathways. Statistical significance for the enrichment
analyses was defined as p < 0.05.

2.4 WGCNA

Weighted gene co-expression network analysis (WGCNA) was
further applied to identify gene modules co-expressed in SD and stroke,
revealing their possible shared mechanisms in biological processes such
as inflammation, oxidative stress and circadian regulation. Within this
analysis, gene significance (GS) was defined as the absolute value of the
correlation between an individual gene and the trait of interest. Module
membership (MM) was defined as the correlation between the gene
expression profile and the module eigengene. To identify highly
connected and biologically relevant hub genes, we applied thresholds
of GS > 0.2 and [MM] > 0.8. The final list of high-confidence candidate
genes was obtained by extracting the intersection of common DEGs
(from differential expression analysis) and hub genes (from WGCNA
analysis). This multi-step filtering approach ensured that the selected
genes were both statistically significant and biologically relevant to the
trait under study.and then this genes are subjected to machine learning
analysis. We will then analyze these genes by machine learning.

2.5 Machine learning selection of
diagnostic biomarkers

RandomForest, LASSO and Xgboost were utilized as machine

learning methods to identify core genes. RandomForest is an integrated
learning method that performs classification and regression analysis
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by constructing multiple decision trees. It can efficiently process high-
dimensional data (e.g., gene expression data) and perform feature
selection (33). By calculating the feature importance of 37 genes, it can
identify those genes that contribute the most to disease correlation.
LASSO is a linear regression model that achieves variable selection and
model compression by applying L1 regularization to the regression
coefficients. LASSO can simplify the model by penalizing unimportant
features (by making their coeflicients zero) when dealing with a large
number of features, and retaining those genes that are most influential
genes (34). XGBoost can accurately model gene expression data to
identify key genes associated with diseases and construct accurate
prediction models based on these genes (35).

2.6 Establishment of animal models

We used a controlled experimental setup. We divided 24 rats
randomly (n = 4) into four groups (n = 6 for each group): normal
control group (group 1), sleep disorder group (group 2), stroke group
(group 3), and group with both sleep disorder and stroke (group 4).
All groups were modeled on 10-month-old male rats. The triggers for
sleep disorders in Group 2 and Group 4 mice were sleep deprivation,
chronic mild stress, or placing the animals in a disturbed light/dark
cycle. Sleep deprivation is achieved primarily by a mild stimulus such
as a standardized process of hitting the cage, slightly shaking the cage,
or disrupting the sleeping nest when this is not enough to keep the
animal awake (36). Middle cerebral artery occlusion (MCAO) was
performed on Group 3 and Group 4 rats to simulate stroke. The
occlusion model of the middle cerebral artery strictly adopts a
permanent MCAO model, induced by intraluminal filament method,
i.e., anesthetized rats with chloral hydrous (400 mg/kg, ip) and 3-0
nylon sutures, whose tip is heated near the flame that advances from
the external carotid artery to the internal carotid artery, making its tip
round until it blocks the origin of the middle cerebral artery (MCA)
and leaves the surgical filaments in situ 24 mice. Transcranial laser
Doppler blood flow method (PeriFlux 5,000; Perimed AB). Blood flow
drops to 80% of baseline, indicating successful occlusion of the middle
cerebral artery (37). No sleep disturbance or stroke was induced in the
control mice. Meanwhile, the feeding and living environments of the
4 groups of rats should be consistent. 4 groups of rats were placed in
a comfortable environment with a 12-h light-dark cycle and
unrestricted access to water and food. All rats were fed a standard
pellet diet, and the amount of food consumed per day was consistent
across all groups (38). This experiment passed the ethical review of
animal experiments in the First Affiliated Hospital of Henan
University of Traditional Chinese Medicine (YFYDW2019035).

2.7 RT-gPCR

Total RNA was extracted from the cortex of four groups of mice
using the TransZol Up Plus RNA kit (TransGEN, Beijing, China) (38).
RNA concentration and quality were then assessed using a nanodrop
spectrophotometer (Termo Scientifc, Waltham, MA, USA).
Subsequently, reverse transcription was performed using
TransScript®OneStep gDNA Removal and cDNA Synthesis SuperMix
(AT311, TransGEN, Beijing, China). Amplification was monitored
using ChamQ Universal SYBR qPCR Master Mix (Novozymes Q711)
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and QuantStudio™5 Real-Time PCR System (Thermo Fisher
Scientific). Prior to the start of the experiment, we evaluated the
expression stability of the candidate internal reference gene f-actin in
different treatment groups (control, SD, Stroke, SD + Stroke) using the
geNorm algorithm. geNorm analysis identifies the most stable internal
reference gene by calculating the gene expression stability metric
value, M. A lower M value indicates a more stable gene expression.
The results of the analysis showed that f-actin, with an M value of less
than 0.5 (0.335), exhibited a high degree of stability under all
experimental conditions and was therefore selected as the data-
normalized endogenous gene for this study. Relative gene expression
was then determined using the 2A(-AACT) method. We assessed the
statistical significance of the differences in ARL2 expression between
the four experimental groups (Control, SD, Stroke, SD + Stroke) using
one-way ANOVA analysis. And Tukey’s HSD (Honest Significant
Difference) post hoc test was used for two-by-two comparison of
means between groups. Raw Ct values for each group with their mean,
standard deviation (SD) and more specific information are detailed in
Supplementary Table 2. Detailed primer sequences are shown in
Table 1.

2.8 Independent clinical validation cohort

2.8.1 Data source and study participants

To confirm the clinical relevance of our findings, we conducted an
independent retrospective cohort study, which was approved by the
Ethics Committee of The First Affiliated Hospital of Henan University
of Chinese Medicine (Approval No. 2025HL-389).

We retrospectively enrolled 72 participants admitted between
2024 and 2025, dividing them into four groups of 18 each. The Control
group included healthy individuals with no history of stroke or sleep
disorders, confirmed by a Pittsburgh Sleep Quality Index (PSQI) score
below 5. The Stroke group comprised patients diagnosed with acute
ischemic stroke through neuroimaging (CT or MRI), without
significant sleep disorder (PSQI score < 7). The Sleep Disorder (SD)
group consisted of individuals without a diagnosis of stroke but with
significant sleep disturbances, as defined by a PSQI global score
greater than 10. Lastly, the SD + Stroke group included patients who
met the criteria for both conditions. The Chinese version of the PSQI
has been validated and shown to have good reliability and validity in
the Chinese population (39).

All participants provided written informed consent upon
admission for biospecimen banking, allowing the use of their
anonymized clinical data and residual samples for future research.
Personal identifiers were removed to protect privacy.

Inclusion criteria for patients were: (1) age > 40 years; (2) hospital
admission and collection of baseline blood samples within 24 h of stroke
onset or initial clinical assessment; and (3) availability of complete PSQI
assessment data. Exclusion criteria were: (1) severe aphasia, impaired
consciousness, or cognitive dysfunction (MMSE score < 10); (2)

TABLE 1 Primer sequences used for RT-qPCR.

Gene Reverse

Primer sequence 5’-3'

Forward

ARL2 CAGTCTGGCAGAGAACTGG | GTCAGAGGGAGTGAGAGGA
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comorbid severe hepatic or renal insufficiency or advanced malignant
tumors; and (3) incomplete clinical or biospecimen data.

2.8.2 Experimental procedures: RNA extraction,
qRT-PCR and statistical analysis

Peripheral blood samples were collected from all participants using
PAXgene Blood RNA tubes. Total RNA was extracted using the PAXgene
Blood RNA Kit (Qiagen, Germany) according to the manufacturer’s
instructions. RNA concentration and purity were assessed using a
NanoDrop spectrophotometer. GAPDH was chosen as the reference
gene due to its well-documented stability in human blood transcriptomics
studies (geNorm analysis yielded an M-value of less than 0.5 (0.330)). Its
stable expression across all groups was confirmed by one-way ANOVA,
which showed no significant differences in Cq values (p > 0.05). Reverse
transcription was performed using the PrimeScript RT Reagent Kit
(TaKaRa, Japan). The relative expression levels of ARL2 mRNA were
quantified by qRT-PCR using the SYBR Green Premix Pro Taq HS gPCR
Kit (Accurate Biology, China), with GAPDH as the internal control.
Relative expression was calculated using the 2A(—AACt) method.

Statistical comparisons of ARL2 expression levels among the four
groups were performed using one-way analysis of variance (ANOVA),
followed by Tukey’s post hoc test for pairwise comparisons. Data are
presented as mean + standard deviation. A *p*-value < 0.05 was
considered statistically significant.

3 Results

3.1 An integrative workflow for identifying
common circulatory biomarkers

To identify circulating biomarkers common to both sleep
disorders and ischemic stroke (IS), we implemented a multi-stage
discovery and validation pipeline, summarized in Figure 1. Our
strategy was predicated on the hypothesis that shared pathological
mechanisms between SD and IS would be reflected by common
alterations in gene expression. We first defined distinct gene
signatures from SD (GSE208668) and IS (GSE16561) transcriptomic
datasets independently through differential expression analysis and
weighted gene co-expression network analysis (WGCNA). We then
integrated these signatures using a consensus approach, prioritizing
genes at their intersection. This candidate set was further refined
using machine learning feature selection, which converged on
ARL2. Subsequently, the diagnostic relevance and specificity of
ARL2 were further evaluated through experimental validation of
animal models and independent validation datasets (GSE2225,
GSE98566).

3.2 ldentification of differentially expressed
genes in SD and stroke

Based on the SD dataset (GSE208668), a total of 5,137 differential
genes were identified, and the volcano plot showed that the identified
differential genes included 2,948 down-regulated and 2,189 up-regulated
genes. In addition, based on the stroke dataset (GSE16561), a total of
886 differential genes were identified, including a total of 394 down-
regulated and 492 up-regulated genes. The heat map showed the top 50
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GSE208668 (SD Dataset) GSE16561 (IS Dataset)
SD DEGs WGCNA Analysis IS DEGs WGCNA Analysis
UP: 2189 | DOWN: 2948 (GSE208668) UP: 492 | DOWN: 394 (GSE16561)
1 : 1
ME1 Module ME2 Module
Highest Corr: 0.993, p=5.55e-30 Highest Corr: 0.561, p=1.70e-06
] ]
Common DEGs Module Intersection
Intersection = 254 genes 61 genes
Y Y
High-confidence Candidate Genes
Intersection = 37 genes
!
Machine Learning Models
+ Lasso
+ XGBoost
+ RandomForest
!
Feature Importance Analysis
1
Key Gene Identified
ARL2
Y 1
Experimental Validation Retrospective Validation
(Animal Model) Independent datasets:
ARL2 expression in + GSE2225
4 mouse brain groups + GSE98566
FIGURE 1
Workflow for the identification and validation of ARL2 as a common diagnostic biomarker. Schematic overview of the multi-step process, integrating
transcriptomic data from sleep disorder (GSE208668) and ischemic stroke (GSE16561) datasets, machine learning, and in vivo and clinical validation to
nominate ARL2 as a shared circulatory biomarker.

most significantly up- and down-regulated genes (Figures 1 A,B). Finally,
a total of 254 overlapping deg. were created in the SD and stroke datasets.

3.3 GO and KEGG enrichment analysis of
genes

The SD and stroke modules share 121 overlapping genes, while the
DEG module contains 254 shared genes. Given that the modules
identified through WGCNA represent groups of genes with similar
expression patterns, they may not encompass the full spectrum of
DEG genes. In fact, these DEG genes may even diverge significantly
from those critical for disease progression. To prevent potential
omissions, we integrated DEG genes with the module genes for a more
comprehensive analysis (Figure 2).

We first analyzed these genes for GO and KEGG enrichment.
First, The most significantly enriched DEGs in the SD dataset were
organitrogen compound metabolic process and oxidative
phosphorylation (Figures 3A,B). Secondly, the most significantly
enriched DEGs in the IS dataset were organitrogen compound
metabolic process, oxidative phosphorylation, neutrophil extracellular
trap formation, xidative phosphorylation, defense response,
osteoclast differentiation, and leukocyte transendothelial migration

(Figures 3C,D). Both diseases had high enrichment of DEGs in the
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propionate metabolism and redox pathways, so we inferred that the
two diseases may be linked in the propionate metabolism and redox
pathways. We then performed enrichment analysis on 254 common
co-driver genes between SD and IS. We again found that propanoate
metabolism and cellular respiration were highly significantly enriched,
further validating our hypothesis (Figures 3E,F).

3.4 Weighted gene coexpression network
analysis of SD and stroke

We conducted Weighted Gene Co-expression Network Analysis
(WGCNA) on two datasets: GSE208668 for SD and GSE16561 for stroke,
aiming to investigate the relationship between clinical characteristics and
gene expression. After clustering modules based on their similarity,
we identified 6 modules in the SD dataset and 11 in the stroke dataset
(Figures 4A,D). Correlations between the modules and clinical traits
were calculated, revealing that the red module exhibited the strongest
positive correlation with SD (r=0.99) (Figure 4C), while the brown
module showed the highest correlation with stroke (r = 0.56) (Figure 4F).
Additionally, gene significance (GS) within the modules was strongly
correlated with module membership (MM), with correlations of 0.99 for
SD and 0.43 for stroke. This further supports the significant relationship
between the module genes and the respective diseases. In total,
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represents a gene set, and each column represents a sample or group. Color intensity reflects the normalized enrichment score (NES) or activity of the
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we identified 61 overlapping genes that may play a pivotal role in the
pathogenesis of SD and stroke, as determined by WGCNA. Subsequently,
we further took the intersection of these 61 intersecting genes with the
254 common differentially expressed genes obtained previously, and
finally identified these 37 high-confidence candidate genes (Figure 5B).

3.5 Identification and validation of ARL2 as
a key diagnostic gene for SD and stroke
using machine learning

To further identify key genes with maximal diagnostic utility,
we performed sequential feature selection using three distinct
machine learning algorithms: Lasso regression, XGBoost, and
Random Forest (Figures 5C,D). This tri-modal approach was applied
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to the 37 candidate genes, with the Benjamini-Hochberg false
discovery rate (FDR) correction implemented during screening to
control for multiplicity across all candidate features. The analyses
were conducted on two datasets: GSE208668 and GSE16561. Each
dataset presents the importance of different genes using the three
machine learning models (RandomForest, Lasso, and XGBoost).
Lasso regression, which tends to shrink less important feature
coefficients to zero, identified a more specific set of genes compared
to RandomForest. It provided a more focused list of relevant genes,
showing that only a few variables (such as ARL2 and others in both
datasets) were significant, with most genes showing low importance.
XGBoost also pointed to ARL2 as a key gene, but unlike Lasso, it
integrated both linear and non-linear relationships between features,
thus identifying additional genes with varying importance, some
showing moderate influence in both datasets. For both datasets,
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FIGURE 3

Functional characterization and coregulated pathway analysis. (A—D) Bar plots showing the top significantly enriched terms for the DEGs of each
dataset. (A,B) GO biological processes (A) and KEGG pathways (B) for the SD dataset. (C,D) GO biological processes (C) and KEGG pathways (D) for the
IS datasets. (E,F) Enrichment analysis of the 254 common co-driver genes between SD and IS. (E) Enriched KEGG pathways. (F) Enriched GO biological
processes.

RandomForest clearly identified a few top genes as most important,  importance, with some showing high relevance to the prediction of
with a strong emphasis on ARL2, as seen in the dataset importance  sleep disorders or stroke. The AUC (Area Under the Curve) values
plots. This method highlighted several genes with varying levels of ~ for ARL2 were reported to be 0.91 in both datasets. This suggests
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that ARL2 is a highly predictive gene for the conditions studied, with
a strong balance between sensitivity (true positive rate) and
specificity (true negative rate) based on the ROC curve analyses. To
prospectively validate its clinical utility, we performed external
validation in two independent cohorts. In the GSE22255 cohort
(Control vs. IS), ARL2 achieved an AUC of 0.80 (95% CI: 0.647-
0.956; DeLong method). Replication in the GSE98566 cohort
(Control vs. SD) yielded stronger discrimination with an AUC of
0.92 (95% CI: 0.8009-1; DeLong method). These results demonstrate
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the robust and generalizable diagnostic utility of ARL2 across
diverse populations (Figures 5E,F).

3.6 Expected results of animal experimental
models

First, we confirmed that the expression of the internal reference
gene f-actin was stable (M < 0.5) in all experimental groups by
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FIGURE 5
Screening of key candidate genes and validation of their diagnostic efficacy. (A) Bar plot showing the number of differentially expressed genes (DEGs)
identified from the sleep disorder (SD, GSE208668) and ischemic stroke (IS, GSE16561) datasets. (B) Venn diagram illustrating the intersection of four
gene sets: GSE208668-DEGs, GSE16561-DEGs, GSE208668_ME1 genes, and GSE16561_ME?2 genes, yielding 37 high-confidence candidate genes.
(C.D) Feature importance analysis of candidate genes using machine learning algorithms. (C) Results from the SD dataset (GSE208668). (D) Results
from the IS dataset (GSE16561). The ARL2 gene was consistently identified as the top-ranked feature by all three algorithms (RandomForest, LASSO,
and XGBoost). (E,F) Validation of the diagnostic performance of ARL2 using ROC curve analysis. (E) ROC curve for ARL2 in classifying SD samples from
controls in the GSE208668 cohort (AUC = 0.91, 95% ClI: 0.8166-1). (F) ROC curve for ARL2 in classifying IS samples from controls in the GSE16561
cohort (AUC = 0.91, 95% CI: 0.8467-0.9824).

geNorm analysis, as detailed in the Methods section. The relative
quantitative results calculated using the 2A(-AACt) method are shown
in Figure 6D. The expression level of 1 gene in the tissue was detected
by RT-qPCR. The mRNA expression of ARL2 gene in groups 2, 3 and
4 was significantly higher than that in the normal group. Group 1
(control): baseline expression of ARL2 gene. Group 2 (sleep disorder):
ARL2 gene expression was significantly higher than the normal group
(Figure 6B). Group 3 (Stroke): Increased expression of the ARL2 gene
(Figure 6A). Group 4 (SD +IS): ARL2 expression was increased
compared to both groups 2 and 3 (Figure 6D). This may be due to the
combined effect of the two conditions. In this case, Group 1 and
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Group 2, Group 1 and Group 4, and Group 2 and Group 4 were all
more significant, while Group 1 and Group 3, and Group 3 and
Group 4 were less significant than the former. The brain changes of the
four groups of mice are shown in Figure 6C.

3.7 Validation of ARL2 expression in an
independent human cohort

To advance the translational potential of our findings, we validated
the diagnostic value of ARL2 as a circulating biomarker in an
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Tukey's post hoc test).

(A) ROC curve analysis of ARL2 gene in dataset GSE22255 and expression in control and stroke groups [AUC = 0.80, 95% CI: 0.647-0.956 (DelLong)l.
(B) ROC curve analysis of ARL2 gene expression in dataset GSE98566 and in control and SD groups [AUC = 0.92, 95% Cl: 0.8009-1 (DelLong)].

(C) Brain tissue changes in mice in 4 groups. (D) Expression of ARL2 gene in mouse brain tissue in group 4. Data are presented as mean + SD (Standard
Deviation). (E) Relative expression of ARL2 in peripheral blood from Control, Stroke, SD, and SD + Stroke groups (n = 18 per group). Data are expressed
as mean + SD. p < 0.05, **p < 0.01, ***p < 0.001 versus the Control group; ###p < 0.001 compared to all other groups (one-way ANOVA followed by
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independent retrospective human cohort. As shown in Figure 6E,
qRT-PCR analysis revealed that the relative expression levels of ARL2
were significantly up-regulated in the Stroke group and the SD group
compared to the Control group (p=0.0000198 and p=0.00121,
respectively). Most importantly, the expression level of ARL2 in the
SD + Stroke group exhibited the most pronounced increase, showing
statistically significant differences compared to all other three groups (all
p <0.001). These results not only successfully validate our core findings
from animal models in human patient samples but also strongly suggest
that circulating ARL2 levels could serve as a novel, non-invasive blood-
based diagnostic biomarker for distinguishing these disease states.

3.8 Exploratory analysis of ARL2-related
pathways
To further assess the biological plausibility of ARL2 as a circulating

diagnostic biomarker and to explore its potential functional significance
in the comorbidity of SD and IS, we performed exploratory co-expression
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analyses. We investigated the correlation between ARL2 expression and
genes comprising two of the important KEGG-shared pathways
previously identified (propionate metabolism and oxidative
phosphorylation). Interestingly, in the SD dataset GSE208668, we found
that ARL2 expression was significantly correlated (FDR < 0.05) with a
significant proportion of genes in both pathways, with ARL2 being
significantly correlated with 43.8% (28 of 64 genes) in the propionate
metabolism pathway, while in the oxidative phosphorylation pathway, it
was significantly correlated with 42% (116 of 276 genes) (see
Supplementary Table 3 for details). This not only strengthens the
credibility of ARL2 as a circulating diagnostic biomarker, but also
suggests that its role in SD-IS comorbidities may be functionally linked
to dysregulation of these key metabolic processes.

4 Discussion

Sleep disturbances are frequently observed in stroke patients
and may contribute to an increased risk of stroke, suggesting a
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bidirectional relationship. Sleep disorders are generally recognized
as an independent risk factor for stroke (40). This suggests that one
disease may co-exist with another. Shared biomarkers and genetic
susceptibility may be a common pathogenic mechanism for
haemorrhagic stroke and sleep disorders. Reductions in the risk
alleles for sleep disorders PER1 and NR1D1 were found to have a
significant impact on the risk of haemorrhagic stroke in one study
(41). Our study adds to this body of evidence by identifying
common molecular pathways. In addition, the differential diagnosis
of sleep disorders combined with idiopathic haemorrhagic stroke
is challenging because the clinical manifestations of the two
disorders intersect. Patients with haemorrhagic stroke are often
associated with severe malaise, excessive daytime sleepiness, and
sleep disorders, which may be due to the coexistence of sleep
disorders in the patient; However, it is necessary to exclude
brainstem injury due to haemorrhagic stroke, sleep apnoea or
central nervous system depression (42). Neurocognitive symptoms
are also commonly associated with sleep disorders, such as memory
loss and attention deficits, which can complicate the clinical
differential diagnosis. Therefore, identifying common biomarkers
and pathogenic mechanisms is essential for the diagnosis and
treatment of these disorders.

Firstly, 254 overlapping differentially expressed genes (DEGs)
were identified between the SD and IS datasets, highlighting common
genetic factors that may influence both diseases. This set of genes
highlights the importance of exploring common molecular pathways
to better understand the pathogenesis of SD and IS. By applying
WGCNA, six co-expression modules were identified in the SD dataset
and 11 co-expression modules in the IS dataset, some of which were
strongly correlated with clinical features. The overlapping genes
identified in the two datasets are particularly interesting as they
suggest a possible common molecular basis between SD and IS. These
genes deserve further investigation as potential biomarkers or
therapeutic targets for the complications of both diseases. We then put
GSE208668 DEGs, GSE208668 ME2, GSE16561 DEGs and GSE16561
ME2 together in a series of machine learning to obtain their common
genes, demonstrating how these genes are not only common markers
for both sleep disorders and stroke, but may also have a role in both
diseases (Figure 3D).

Enrichment analyses revealed several key biological processes
and metabolic pathways involved in the common pathogenesis of
SD and IS. The enrichment of biological processes such as ‘response
to external stimuli’ and ‘organic metabolic processes’ emphasized
the impact of external factors, including stress, environmental
factors and circadian rhythm disruption, on SD and IS. In addition,
metabolic pathways, particularly ‘propionate metabolism’ and
‘oxidative phosphorylation, were also significantly enriched,
suggesting that they may be involved in regulating the sleep-wake
cycle and cerebral haemodynamics. In addition, in terms of
metabolic pathways and cellular behavior, especially “propionate
metabolism” and “oxidative phosphorylation,” suggesting that they
may be involved in regulating sleep-wake cycles and cerebral
hemodynamics. These findings suggest that metabolic abnormalities
and cellular energy dysregulation may be key contributors to both
conditions, providing potential avenues for therapeutic
intervention. Statistics show that about 50% of IS patients may face
gastrointestinal complications (43). Recent studies have shown that
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ischemic brain injury is related to systemic stress responses
associated with activation of ANS sympathetic branches, leading to
the release of catecholamines, and long-term stress responses may
lead to problems such as gastrointestinal dyskinesia (44). In
addition, the microbiota in the intestinal tract of patients with
ischemic brain injury has also undergone tremendous changes (45).
The that the
phosphatidylcholine and L-carnitine

study found intestinal microorganisms

were converted to
trimethylamine, which was further converted into trimethylamine-
N-oxide (TAMO) that promotes atherosclerosis by promoting the
formation of foam cells by macrophages (46, 47). Intestinal
microorganisms produce a series of metabolites including short-
chain fatty acids (butyrate, propionate), where propionate is
produced mainly by Bacteroidetes, Firmicutes and Ackermanns are
produced through the propylene glycol pathway and the acrylate
pathway (48, 49). Strokes can lead to homeostasis of intestinal flora
and altered short-chain fatty acid metabolism (50). We found that
upregulating microbiota diversity and intestinal probiotic
abundance, accelerating short-chain fatty acid metabolism,
regulating amino acid and energy metabolism, thereby significantly
inhibiting the inflammatory cascade and alleviating ischemic brain
damage (51). Studies have shown that the increased concentration
of short-chain fatty acids (SCFAs) in the feces of elderly patients
with insomnia mainly reflects intestinal absorption dysfunction
rather than simply increased production. These unabsorbed SCFAs
worsen sleep through multiple pathways along the gut-brain axis:
First, propionate and other substances activate FFAR3 receptors in
the portal vein system, promoting the release of norepinephrine,
directly exacerbating physiological hyperarousal and leading to
difficulty falling asleep; second, malabsorption leads to insufficient
energy in colon cells, damages the intestinal barrier, and triggers
systemic low-grade inflammation, which in turn interferes with the
sleep center; third, SCFAs further disrupt the sleep-wake rhythm
by affecting serotonin synthesis and GABA/glutamate balance. At
the same time, a higher BMI, malabsorption of SCFAs, and chronic
inflammation form a vicious cycle, which together explain the
worse sleep continuity in the short-sleep insomnia phenotype (52).
Moreover, people with insomnia tend to have lower gut microbial
diversity, a higher ratio of Firmicutes to Bacteroidetes, and lower
levels of bacteria that produce short-chain fatty acids (SCFAs) (53).
In addition to the gut flora, propionate is also associated with
inflammation and oxidative stress, which has anti-inflammatory
properties that may reduce the risk of stroke by reducing vascular
inflammation. A report pointed out that short-chain fatty acids,
including propionate, may regulate recovery after stroke by affecting
microglia activation and neuroplasticity (54). Furthermore, studies
have found that stroke and insomnia can be linked through the
brain-gut axis. Due to brain damage to areas that control circadian
rhythms, stroke disrupts sleep regulation, leading to insomnia,
which affects up to 40% of stroke survivors. In turn, insomnia
exacerbates stroke recovery by increasing inflammation and
impairing neuroplasticity. The brain-gut axis plays a crucial role, as
stroke-induced dysbiosis in the gut microbiome alters the
production of neurotransmitters, such as serotonin, which regulate
sleep and mood, further exacerbating insomnia. Conversely, sleep
deprivation disrupts the composition of the gut microbiome,
increasing systemic inflammation and potentially worsening stroke
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outcomes, highlighting a vicious cycle in which each condition
amplifies the other through neuroinflammatory and microbial
pathways (55). Cell respiration is the process by which cells generate
energy through mitochondrial oxidation and phosphorylation.
During ischemic stroke, reduced blood flow limits oxygen
availability, impairs mitochondrial function and turns cells to
anaerobic respiration. This produces lactic acid, leading to acidosis
and further cellular damage. Reperfusion paradoxically increases
the production of reactive oxygen species (ROS), leading to
mitochondrial dysfunction and neuronal apoptosis. Studies have
shown that excessive ROS caused by impaired cellular respiration
can lead to damage to the blood-brain barrier and worsen stroke
results (56). Insomnia, characterized by difficulty falling or staying
asleep, is associated with disruptions in oxidative phosphorylation,
a cellular process in mitochondria that produces ATP. Research has
shown that sleep deprivation caused by insomnia impairs
mitochondrial function, reduces oxidative phosphorylation
efficiency, and leads to reduced ATP production. This disruption
increases oxidative stress due to the accumulation of reactive
oxygen species (ROS), which damages cellular components and
exacerbates sleep disturbances, creating a vicious cycle. Conversely,
inefficient oxidative phosphorylation, commonly seen in conditions
such as chronic fatigue syndrome and neurodegenerative diseases,
may alter energy metabolism in brain regions that regulate sleep,
leading to insomnia. Therefore, the interplay between insomnia and
oxidative phosphorylation highlights a bidirectional relationship in
which sleep diorders and mitochondrial dysfunction reinforce each
other, impacting overall health (57, 58).

In our study, we analyzed these DEG genes by GO and KEGG
enrichment with modular genes. We found that propionate
metabolism and metabolic pathways featured prominently in the
analysis of common drivers of sleep disorders and stroke, with
‘propionate metabolismy’ being significantly enriched. Then through
machine learning we identified ARL2 as a prominent gene with high
diagnostic value, and its robustness as a predictive biomarker further
emphasizes its role in the pathophysiology of SD and IS. By integrating
single-cell transcriptomic data, a more nuanced understanding of how
specific neuronal subtypes and immune cells contribute to the shared
pathophysiology of SD and IS is possible. This is particularly important
as it highlights the importance of cellular stress responses,
inflammation and circadian rhythms, which are common in
both diseases.

ARL2 is a member of the ARF family and the RAS superfamily of
regulatory GTPases (59), which are highly conserved and commonly
expressed in eukaryotes (60). It plays a role in the regulation of
microtubule protein folding and microtubule disruption (61, 62) and
is present in cytoplasmic lysates tightly bound to the microtubule
protein-specific co-chaperone cofactor D, which shares these activities.
Numerous studies have shown that cerebral ischemia leads to
mitochondrial dysfunction, ATP depletion, cytoskeletal destruction,
and ultimately necrosis or apoptosis (63). Whereas, Arl2 is implicated
in mitochondrial function, such as mitochondrial morphology,
motility, and maintenance of ATP levels (64). And in a similar study
of cardiomyocytes, miR-15b downregulates and regulates cellular ATP
levels via Arl2 (65). In the prevention of cerebral ischemia-reperfusion
injury, miR-15b has also been shown to inhibit the expression of ADP
ribosylation factor-like 2 and reduce the level of adenosine
triphosphate in mice treated with mild hypothermia in mice with
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middle cerebral artery occlusion (66). These findings underscore an
association between ARL2 and stroke. Because ARL2 regulates
mitochondrial morphology, motility, and ATP levels, it can indirectly
affect metabolic pathways occurring in mitochondria, such as
propionate metabolism. We infer that disruption of mitochondrial
integrity may affect the efficiency of enzymes involved in propionate
metabolism. On the other hand, the related protein ADP-ribosylation
factor-associated protein 1 (ARFRP1) is involved in lipid droplet (LD)
growth and lipolysis, and is associated with lipid metabolism during
the transmission of hepatitis C virus. Although ARFRP1 and ARL2 are
different, their shared membership in the ARF family suggests that
ARL2 may also interact with lipid-related pathways, and propionate is
a short-chain fatty acid (67). We further infer that ARL2 is associated
with propionate metabolism. The circadian rhythm has a complex
bidirectional relationship with mitochondrial function. The chromatin
immunoprecipitation (ChIP) sequencing data set of Bmall, Clock and
Cry shows that various functions of mitochondria are under the
control of circadian rhythm (68, 69). In addition, post-transcriptional
mechanisms (e.g., protein acetylation) are also involved in the
circadian rhythm of mitochondria (70). The clock controls the
expression/activity of fission proteins (such as Drpl, Fisl) and
autophagy-related proteins (such as Bnip3, Pinkl), driving the diurnal
cycle of mitochondrial fusion and cleavage. Deletion of clock genes
can also disrupt morphological rhythms and functions. Mitochondrial
feedback also regulates the circadian rhythm through the NAD + -SIRT
pathway and the AMPK energy sensing pathway. Clock-driven
NAD + oscillation not only affects mitochondria (SIRT3), but also
affects the activity of SIRT1 in the nuclear nucleus. SIRT1 rhythmically
binds to the CLOCK: BMALI complex, deacetylation and promotes
PER2 degradation, and enhances clock gene transcription amplitude.
SIRT1 also acts as a histone deacetylase, interacts with CLOCK to
participate in chromatin remodeling and regulates clock gene
expression (71). In addition, the ATP rhythm generated by Drpl-
mediated changes in mitochondrial morphology itself can directly
feedback affecting the core clock oscillator (72). In this study,
we quantified ARL2 mRNA expression using RT-qPCR. Results
revealed that the expression of these genes was significantly altered in
the experimental group compared to the control group. Specifically,
genes associated with inflammatory responses and cellular stress, such
as ARL2, showed increased expression in the SD, IS, and SD + IS
groups, with the most pronounced changes in the SD + IS group. This
suggests that the combination of sleep disorders and ischaemic stroke
may have a superimposed or synergistic effect on gene expression,
especially genes associated with inflammation, oxidative stress and
neuronal damage. ARL2 was significantly upregulated in all cases,
especially in the SD + IS group, suggesting that ARL2 may be a
potential biomarker for SD and IS. These findings support the
hypothesis that common molecular pathways, including inflammation
and metabolism, underlie both conditions, thus providing insights into
their common pathophysiology.

Furthermore, we validated the differential expression of ARL2 in
an independent retrospective human cohort. The consistent
upregulation of ARL2 in the blood of patients with stroke, sleep
disorder, and most notably in those with both conditions, strongly
corroborates our pre-clinical findings and underscores the translational
relevance of ARL2 as a peripheral biomarker. Notably, this clinical
validation aligns with the previously discussed involvement of ARL2 in
mitochondrial function and neuroinflammatory pathways, providing
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a mechanistic basis for its upregulation under conditions of hypoxic
and inflammatory stress, such as those characterizing OSA and stroke
comorbidity. Although the comprehensive assessment and diagnosis
of clinical sleep disorders typically involve a multi-faceted approach,
our study utilized the well-validated Pittsburgh Sleep Quality Index
(PSQ], provided in Supplementary Table 5) to define sleep disorder,
thereby ensuring standardized and reproducible cohort criteria.
While this study provides compelling evidence, future prospective
studies with larger sample sizes and more detailed clinical profiles are
warranted to further establish the diagnostic and prognostic utility of
ARL2. Nevertheless, our data identify circulating ARL2 as a promising
and readily measurable biomarker that could facilitate risk
stratification and early detection of stroke, especially among
individuals with pre-existing sleep disturbances. The RT-qPCR results
reinforce the concept that SD and IS share overlapping molecular
mechanisms, particularly in the regulation of inflammation and
stress-response genes. These insights may guide future therapeutic
strategies targeting common pathways to concurrently treat both
conditions. Additional studies are needed to validate these findings
and explore the functional roles of these genes in disease progression.
Building upon these clinical findings, it is important to understand
the molecular context of ARL2. From the above, we know that ARL2
is part of the broader ADP-ribosylation factor (ARF) family, which
acts as a cofactor in the ADP-ribosylation process. ADP-ribosylation,
catalyzed by enzymes such as PARP1 and tankyrases, regulates
inflammatory responses through pathways involved in tumor necrosis
factor (TNF)-induced cell death and immune signaling (73). While
AP peptides of 39-42 amino acids are the primary component of
protein aggregates found in senile plaques of Alzheimer’s disease and
impaired mitochondrial electron transport along with exposure to
metal ions can lead to AP aggregation and subsequent activation of
PARP1, which is closely linked to several neurological diseases (74),
ARL2’s
neuroinflammatory processes in brain regions such as the cerebral

our focus remains on potential influence on
cortex and hippocampus in the context of sleep disorders and stroke.

In summary, this study explored and identified for the first time
the pivotal genes of sleep disorders and stroke, and analyzed the
possible pathogenesis. Unlike many studies that focus on tissue-
specific biomarkers or single pathological pathways, we purposely
utilized circulating transcriptome data as well as an integrated
computational biology approach combining WGCNA and multiple
machine learning algorithms. Through this strategy, we identified
ARL2 as a novel circulating biomarker for the detection of the
comorbidity of SD and IS, which gives our study a significant clinical
advantage for non-invasive, rapid screening, identification of people
at high risk for sleep disorders, and prevention of stroke. Besides,
going beyond single-disease inflammatory biomarker studies, our
data-driven approach uniquely reveals the relationship between ARL2
and dysregulation of mitochondrial metabolic pathways (propionate
metabolism and oxidative phosphorylation) in both SD and IS, which
reveals a previously underappreciated pathogenic axis and opens up
the possibility of new treatments beyond common anti-inflammatory
and antioxidant strategies. However, this paper also has some
limitations. Further functional studies are needed to validate the
specific role of the ARL2 gene in SD and stroke and to explore its
functional mechanisms in disease progression.

Despite the encouraging findings, this study has several

limitations. First, while our integrated bioinformatics and machine
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learning approach strongly identified ARL2 as a common diagnostic
biomarker, the precise causal relationship between ARL2
dysregulation and the pathogenesis of sleep disorders (SD) and
ischemic stroke (IS) remains to be fully elucidated. The observed
association, while strong, does not confirm causality. Second, our
analysis relied primarily on publicly available transcriptomic
datasets and a single validation cohort. The relatively small sample
size, particularly in the SD dataset, and the retrospective nature of
the clinical validation warrant confirmation in larger, prospective,
multicenter studies to increase the generalizability of our findings.
Finally, while we validated ARL2 expression in animal models and
human blood samples, the underlying functional role of ARL2 in the
coexisting mechanisms of SD and IS has not been experimentally
validated. Future studies employing gene knockout or overexpression
in relevant animal models will be crucial to uncover the underlying
molecular pathways.
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