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In the absence of clear phylogenetic data on the neurobiological basis of the evolution
of language, comparative studies across species and across ontogenetic stages within
humans may inform us about the possible neural prerequisites of language. In the adult
human brain, language-relevant regions located in the frontal and temporal cortex are con-
nected via different fiber tracts: ventral and dorsal pathways. Ontogenetically, it has been
shown that newborns display an adult-like ventral pathway at birth. The dorsal pathway,
however, seems to display two subparts which mature at different rates: one part, con-
necting the temporal cortex to the premotor cortex, is present at birth, whereas the other
part, connecting the temporal cortex to Broca’s area, develops much later and is still not fully
matured at the age of seven. At this age, typically developing children still have problems
in processing syntactically complex sentences. We therefore suggest that the mastery
of complex syntax, which is at the core of human language, crucially depends on the full
maturation of the fiber connection between the temporal cortex and Broca’s area.
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The neural basis of language evolution must remain speculative,
since clear phylogenetic data are unavailable. However, there are
two alternative, though more indirect ways, to approach this issue.
One approach is to compare different species in their ability to
learn language, in particular, syntax or rule-based sequences. A
second is to consult ontogenetic data on language development
and brain maturation, under the assumption that ontogeny to
some extent reflects phylogeny. In this article, data from both
approaches, with a strong focus on rule-based and syntactic
sequence learning, will be discussed.

Central to the discussion is not only whether such sequences
can be learned, but more crucially, what type of syntactic sequence
can be learned. A fundamental distinction has been made between
two grammar types, namely finite state grammars (FSG) follow-
ing an (AB)n rule and phrase structure grammar (PSG) following
an AnBn rule (Hauser et al., 2002; Fitch and Hauser, 2004; see
Figure 1).

There are at least three possible mechanisms through which
grammatical sequence learning can take place: (1) adjacent depen-
dencies, as in (AB)n grammars, and also non-adjacent depen-
dencies, which do not involve higher-order hierarchies, could be
learned by extracting phonological regularities from the audi-
tory input and memorizing these for further use; (2) adja-
cent dependencies between A and B in (AB)n grammars or
between a determiner, e.g., the and a noun, e.g., man in nat-
ural grammars could be learned through the same mechanism
described in (1), but without the buildup of a minimal hier-
archy or (3) through the computation “Merge” that binds two
elements into a minimal hierarchical structure (Chomsky, 1995)
the basic mechanism to learn a natural grammar with its asym-
metric higher-order hierarchical structure. This requires a com-
putational system that goes beyond the mechanisms described

in (1) and (2), and requires the computation Merge more than
once.

In the following section, we will review the success of gram-
mar learning in different species, discuss the possible underlying
processing mechanisms, and debate their neural basis. The data
from these studies examining this suggest that the three gram-
mar learning mechanisms described above can be related to three
different neural circuits: (1) an input-to-output circuit present in
vocal learning animals, (2) a circuit subserving the learning of
(AB)n structures, and (3) a circuit involving the learning of AnBn

structures.

GRAMMAR LEARNING ACROSS SPECIES
There are several studies that have taken a species-comparative
approach. Some have compared artificial grammar learning
between human and non-human primates, or have used similar
grammar types to investigate songbirds’ ability to learn grammat-
ical sequences. Others have additionally discussed the neural basis
of these learning abilities.

Fitch and Hauser (2004) were the first to investigate grammar
learning in human and non-human primates using FSG and PSG
grammars (Figure 1). Testing cotton-top tamarins and human
adults in a behavioral grammar learning study, they found that
humans could learn both grammar types easily, whereas the mon-
keys were only able to learn the FSG. The neural basis for this ability
in cotton-top tamarins is unknown, since there are no functional
or structural brain studies on this type of monkey. There are,
however, a number of structural imaging studies on macaques,
chimpanzees, and humans (Catani et al., 2002; Anwander et al.,
2007; Rilling et al., 2008; Saur et al., 2008; Makris and Pandya,
2009; Petrides and Pandya, 2009). These studies indicate that the
frontal and temporal regions which are known to be involved
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FIGURE 1 | Artificial grammar used in Fitch and Hauser (2004). (A)

Structure of sequences. (B) Category A syllables and Category B syllables
used in the sequences as well as examples of an (AB)n sequence (left panel)

and an AnBn sequence (right panel). Category A syllables were produced by a
female speaker, Category B syllables by a male speaker. Category
membership was thus coded by the pitch of voice.

in language processing in humans are connected via ventral and
dorsal fiber bundles in both humans and non-human primates. A
direct comparison, however, revealed differences between humans
and non-human primates; macaques and chimpanzees display
a strong ventral and a weak dorsal pathway, whereas humans
display a strong dorsal pathway and a well-developed ventral
pathway. The dorsal pathway was, therefore, discussed as the cru-
cial pathway for the language ability in humans (Rilling et al.,
2008).

This difference in the structure of these pathways between
humans and non-human primates is of particular interest in the
light of a functional and structural imaging study in humans
(Friederici et al., 2006), which applied the same artificial gram-
mar types as used in the behavioral study by Fitch and Hauser
(2004). In humans, the (AB)n grammar, with its adjacent depen-
dencies, activated the frontal operculum, which is connected via
the ventral pathway to the temporal cortex. Interestingly, the AnBn

grammar additionally recruited Broca’s area, which is connected
to the temporal cortex via the dorsal pathway (Friederici et al.,
2006). These data were taken to suggest that Broca’s area and its
dorsal connection to the temporal cortex, in particular, supports
the processing of higher-order hierarchically structured sequences
relevant to language.

This conclusion, however, was challenged on both theoretical
and empirical grounds. It has been argued that the processing
of AnBn grammar does not necessarily require the buildup of
a hierarchical structure, but could be based on a simpler com-
putation involving a counting mechanism plus some memory
abilities (Perruchet and Rey, 2005; de Vries et al., 2008). The
empirical challenge comes from studies reporting that songbirds
are able to process AnBn grammars (Gentner et al., 2006; Abe
and Watanabe, 2011). However, although the grammar used by
Abe and Watanabe (2011) can be described as being asymmet-
ric, similar to natural languages, the detection of the incor-
rect sequences in the experiment could, in principle, be per-
formed based on the following computation: process the incoming
sequence of (adjacent) elements and, upon detection of the cen-
ter element, reverse-and-match the following sequence to the

FIGURE 2 | Artificial grammar used in Abe and Watanabe (2011). (A) Left
panel: description of the grammar as a center-embedded structure and
members of categories A, C, and F; Right panel: examples of test strings.
(B) Symmetrical description of center-embedded structure (CES) and
violating test string (AES). The center element is represented in gray.

initial sequence (Figure 2). The underlying mechanisms used
to process symmetrical AnBn grammars thus remain specula-
tive, both for the songbird studies (Gentner et al., 2006; Abe
and Watanabe, 2011) and for the human study (Friederici et al.,
2006).

For humans, however, the argument can be made that the
computation they apply to process symmetrical AnBn gram-
mars does indeed involve hierarchy building. The argument is

Frontiers in Evolutionary Neuroscience www.frontiersin.org February 2012 | Volume 4 | Article 3 | 2

http://www.frontiersin.org/Evolutionary_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_Neuroscience/archive


Friederici Ontogeny of dorsal pathway

based on two findings. Humans process symmetrical grammat-
ical structures lacking functional categories (Friederici et al.,
2006; Bahlmann et al., 2008) and also asymmetrical natural
grammars, which require the buildup of a multi-level hierar-
chy, using the same brain area; namely Broca’s area (Maku-
uchi et al., 2009; see Figure 3). This brain region is part of
the neural network which is dorsally connected to the temporal

cortex via the superior longitudinal fascile and the arcuate fas-
cile (Friederici et al., 2006). The finding that humans process
symmetrical structures of artificial AnBn grammars within the
same brain region used to process hierarchical asymmetrical
structures in natural language leads to the conclusion that
the underlying mechanism for both is that of building hierar-
chies.

FIGURE 3 | Structure and examples of German sentences used in

Makuuchi et al. (2009). (A) Schematic view of non-embedded and embedded
structures described symmetrically. (B) Example sentence of embedded
structure. (C) Tree structure (asymmetric) for example sentence displayed in

(B). Note that although the structure of the sentence displayed in Figure 3C

could be described schematically as a symmetrical one (Figures 3A,B), this is
not an adequate description since natural grammars contain functional
categories requiring an asymmetrical description (Figure 3C).
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For songbirds, the argument concerning the mechanism under-
lying grammar learning is different. In songbirds, the ability to
learn grammatical sequences is based on a brain system mediating
auditory input-to-vocal output (Fujimoto et al., 2011, for a review,
see Bolhuis et al., 2010). This auditory-to-motor circuit, which
probably acts in concert with a memory component, may underlie
songbirds’ ability to learn symmetric hierarchies (Bloomfield et al.,
2011). In humans, the dorsal fiber bundle that connects the sensory
auditory cortex to the premotor cortex can be viewed as a candi-
date neural structure of a functionally parallel auditory-to-motor
circuit. This structure appears to play a crucial role in phonology-
based language learning in humans during early infancy (Berwick
et al., 2011).

LANGUAGE DEVELOPMENT AND BRAIN MATURATION IN
HUMANS
In the past, the dorsal pathway that connects the temporal cortex
to the frontal cortex, as observed in adults (Catani et al., 2002), has
been proposed to not only support auditory-to-motor mapping
(Hickok and Poeppel, 2007; Saur et al., 2008) but also to subserve
the processing of syntactically complex sentences (Friederici et al.,
2006; Friederici, 2009). Both views are evidenced by data from
patient studies. On the one hand, lesions of the dorsal pathway
result in conduction aphasia which is characterized by the inability
to repeat speech (Geschwind, 1965a,b). On the other hand, lesions
of the dorsal pathway correlate with deficits in syntactic processing
(Wilson et al., 2011). Unfortunately, however, these patient stud-
ies do not allow a functional segregation of different parts of the
dorsal pathway. Therefore, ontogenetic data may provide relevant
information.

Newborns and infants show impressive language learning abil-
ities. Newborns learn simple grammatical rules from auditory

input after brief exposure (Gervain et al., 2008; Teinonen et al.,
2009). By the age of 4 months, infants can learn the rule-based
dependency of non-adjacent elements in a novel natural lan-
guage, again after brief exposure to correct sentences (Friederici
et al., 2011). During production, very young infants demonstrate
a language-specific prosody in their cry patterns, long before
they start to babble (Mampe et al., 2009), and during the bab-
bling phase, they continuously tune their production toward the
phonology of their target language (de Boysson-Bardies et al.,
1984). This early phonology-based learning stage should require
a circuit allowing auditory-to-motor mapping. Structural imag-
ing data shows that newborns display such an auditory-to-motor
circuit in the form of a dorsal pathway which links the temporal
cortex to the premotor cortex (Perani et al., 2011). This dorsal
pathway connecting to the premotor cortex must be separated
from an additional dorsal pathway that connects the temporal cor-
tex to Broca’s area which is present in adults but not myelinized in
infants (see Figure 4).

Here, it is proposed that there are two functionally distinct parts
of the dorsal pathway (see Figure 4): one part connecting the
temporal cortex to the premotor cortex (hereafter called Dorsal
Pathway I) and a second, more medially located part, connect-
ing the temporal cortex to Broca’s area (hereafter called Dorsal
Pathway II).

Dorsal Pathway I, supporting sensory-to-motor mapping, is
present at birth, whereas Dorsal Pathway II is not (Perani et al.,
2011). Previous studies with infants between 1 and 4 months old
suggested that the dorsal pathway connecting to Broca’s area is
present early in life (Dubois et al., 2006, 2009), although the data
appear to indicate that only the part of the dorsal pathway which
connects to the premotor cortex (Dorsal Pathway I) is present. The
authors proposed this may be due to methodological problems

FIGURE 4 | Fiber tracking of diffusion tensor imaging data with

seed in Broca’s area and seed in the precentral gyrus/premotor

cortex in (A) adults and (B) newborns. Two parts of the dorsal
pathway are present in adults; one connecting the temporal cortex via
the fasciculus arcuatus (AF) and the superior longitudinal fasciculus
(SLF) to the inferior frontal gyrus, i.e., Broca’s area (blue), and one

connecting the temporal cortex via the AF/SLF to the precentral gyrus,
i.e., premotor cortex (yellow). In newborns, only the part connecting to
the precentral gyrus can be detected. The ventral pathway connecting
the ventral inferior frontal gyrus via the extreme capsule fiber to the
temporal cortex (green) is detectable in adults and newborns. LH, left
hemisphere.
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and base their argumentation on functional data showing that
Broca’s area is activated in response to speech at this age (Dehaene-
Lambertz et al., 2010). The study on newborns, however, indicates
that this argumentation must be challenged, since for newborns
although they show activation in Broca’s area, neither a functional
nor a structural connectivity between Broca’s area and the tempo-
ral cortex can be found (Perani et al., 2011). Thus, it remains to
be demonstrated whether the connection between the temporal
cortex and Broca’s area is fully present in infants between 1 and
4 months old, in particular, since another recent study reports that
the dorsal pathway is limited to the parietal and temporal sections
in early infancy (Leroy et al., 2011). At least, the data from Perani
et al. (2011) indicate that in newborns, only the dorsal pathway
that connects to the premotor cortex is myelinized. This connec-
tion may not only support tuning processes during babbling, but,
moreover, the observed early learning of rule-based dependen-
cies from auditory input in human infants (Gervain et al., 2008;
Friederici et al., 2011; Kudo et al., 2011).

Dorsal Pathway II, connecting the temporal cortex to Broca’s
area, only develops as the brain matures, and is not even fully
myelinized at the age of seven (Brauer et al., 2011; see Figure 5).
It is argued that Dorsal Pathway II supports the processing of
multi-level hierarchically structured sentences. The argument is
based on two additional, independent findings. First, adults acti-
vate Broca’s area and the posterior portion of the superior tem-
poral gyrus and sulcus when processing syntactically complex
sentences (Bornkessel et al., 2005; Friederici et al., 2009). Second,
only adults with a mature Dorsal Pathway II are able to process
syntactically complex sentences correctly, whereas children under
the age of seven – an age at which the Dorsal Pathway II is not
yet fully matured – are not (Hahne et al., 2004; Dittmar et al.,
2008).

These findings in humans make it likely that grammatical rule
learning and processing in infants and in adults are partly based
on different brain structures. Learning and processing of auditory
structured sequences, as shown in infants, could be based on the

ability to identify phonological statistical relations of elements in
a sequence and some memory capacity. This ability may partly be
based on Dorsal Pathway I. In adults, this automatic way of learn-
ing from the auditory input is no longer at work, and strategic
processes take over (Mueller et al., 2010).

Finally, the question remains: What is the function of the ven-
tral pathway in language processing? The connection between the
anterior portion of the prefrontal cortex and the middle temporal
gyrus via the extreme capsule fiber system has been related func-
tionally to semantic processing and comprehension (Saur et al.,
2008; Tyler and Marslen-Wilson, 2008). There is accumulating
evidence in support of the view that this pathway is relevant for
semantic processes (for a review, see Weiller et al., 2011). However,
the ventral pathway also appears to be involved in the processing
of some aspects of syntax (Friederici et al., 2006; Tyler et al., 2011).
The data on this issue are sparse, but it seems that the processing
of simple sentences (e.g., The pilot is flying the plane) does not nec-
essarily recruit the posterior portion of Broca’s area, and thus the
dorsal pathway (Saur et al., 2008; Tyler and Marslen-Wilson, 2008).
The finding that the ventral pathway supports the computation of
semantic relations, as well as some syntactic dependencies, raises
the question of whether there is a general underlying mechanism
capturing both aspects, or whether one has to assume two ventral
pathways. Future studies will have to resolve this issue.

CONCLUSION
In light of these across species and within-human findings, we
can speculate that there is a parallel mechanism for sequence
learning across species, which is based on an auditory (input)-to-
motor (output) circuit. In songbirds, the causal relation between
the auditory input-to-vocal output and sequence learning is well
established (Scharff and Nottebohm, 1991; Fujimoto et al., 2011).
In humans, a respective neural circuit – Dorsal Pathway I connect-
ing the temporal cortex to the premotor cortex – is present at birth
and may be responsible for rule-based sequence learning observed
in young infants (Teinonen et al., 2009; Kudo et al., 2011). In adults,

FIGURE 5 | Fiber tracking of diffusion tensor imaging data with seeds in

Brodmann Area (BA) 44 and 45 in (A) adults and (B) 7-year-old children.

The dorsal pathway connects the posterior part of Broca’s area (BA 44) to the

temporal cortex via the AF/SLF. The ventral pathway connects the anterior part
of Broca’s area (BA 45) to the temporal cortex via the extreme capsule fiber
system.
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this neural network appears to support bottom-up processes such
as speech perception and repetition (Saur et al., 2008).

However, Dorsal Pathway II, connecting Broca’s area to the tem-
poral cortex, may specifically subserve the processing of language-
like hierarchical structures. The supporting evidence for this is
twofold: first, the dorsal pathway is generally stronger in human
adults than in non-human primates (Rilling et al., 2008), and sec-
ond, Dorsal Pathway II, in particular, is not myelinized at birth

and only fully develops at around the time children master syntac-
tically complex sentences (Brauer et al., 2011; Perani et al., 2011).
In adults, this pathway may be involved in fronto-to-temporal
top-down predictive processes during language comprehension.
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