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a central task (Pashler, 1998). In this context, the degree to which 
processing resources are consumed by the attentional manipula-
tion is at times described as the attentional load of the task (Lavie, 
1995). For  further discussion of conceptual issues and shortcom-
ings surrounding the notion of automaticity, please see Pessoa 
et al. (submitted).

Techniques that provide fast temporal information at the mil-
lisecond level have been used to probe the timing of affective 
processing in humans. In the context of the relationship between 
emotional perception and attention, two recent studies are par-
ticularly noteworthy because they explicitly manipulated attention 
and emotion while brain signals were measured with magnetoen-
cephalography (MEG) or intracranial recordings in an attempt to 
evaluate responses evoked in the amygdala – which is often con-
sidered to be a “signature” of affective processing. These studies 
are also important because a possible concern with fMRI studies, 
which have investigated this question in some depth, is that the 
technique may be relatively blind to fast effects. In other words, 
rapid effects of emotional items that are independent of attention 
may have been missed by fMRI, which only provides a low-pass 
version of the associated neural events. The goal of the present 
contribution is to briefly discuss these two studies (for a more 
comprehensive review of the relationship between emotion and 
attention, see Pessoa et al. (submitted).

In the first study, MEG was employed to investigate responses 
in the amygdala while participants viewed task-irrelevant fearful 
and neutral faces (Luo et al., 2010). On each trial, the observer’s 
task consisted in discriminating the orientation of peripher-
ally located bars (same or different?). As in previous studies, 
attention was manipulated by varying task difficulty. During 
the low-load condition, the bar orientation difference was high 
(90°), making the task very easy. During the high-load condi-
tion, the bar orientation difference was low (15°), making the 
task relatively hard.

The relationship between emotion and cognition has been the 
target of a large conceptual and empirical literature. One par-
ticular facet of this question pertains to the link between emotion 
and attention (emotion here understood in the sense of affective 
processing). Is the perception of emotion-laden stimuli “auto-
matic”? This question has received considerable interest because 
specific answers (“yes” or “no”) suggest potentially different rela-
tionships between emotion and cognition (more or less independ-
ence between the two, respectively). Evidence both for and against 
automaticity has been presented. For instance, emotional faces 
evoke responses in the amygdala when attention is diverted to 
other stimuli (Vuilleumier et al., 2001; Anderson et al., 2003). 
These and many related findings suggest that at least some types 
of emotional perception occur outside of top-down directed atten-
tion. Other findings have suggested, however, that the perception 
of emotion-laden items requires attention, as revealed by atten-
tional manipulations that were designed to more strongly consume 
processing resources, leaving relatively few for the processing of 
unattended emotional items (Pessoa et al., 2002, 2005; Bishop 
et al., 2004, 2007; Hsu and Pessoa, 2007; Silvert et al., 2007; Lim 
et al., 2008). Overall, the automaticity debate, as it relates to the 
role of attention in affective processing, remains unresolved and 
controversial (Pessoa et al., 2010, submitted).

Although the scope of the present piece precludes a more in-
depth discussion of automaticity, some comments are in order 
here. Broadly speaking, although automaticity is a concept that 
is operationalized in quite different ways across studies, it can be 
characterized as involving processing occurring independently of 
the availability of processing resources, not affected by intentions 
and strategies, and not necessarily tied to conscious processing 
(Posner and Snyder, 1975; Jonides, 1981; Tzelgov, 1997). A fre-
quent strategy to probe potential automaticity is thus to manipu-
late the focus of attention, for instance, by evaluating the extent 
to which task-irrelevant information influences performance of 
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Magnetoencephalography responses revealed a significant main 
effect of facial expression in the left amygdala. Specifically, increased 
gamma-band activity was observed in response to fearful relative 
to neutral expressions very soon after stimulus onset (30–60 ms). 
Consistent with the notion of automaticity, no main effect of 
attentional load or load-by-expression interaction was detected 
during this early time window. In contrast, such an interaction 
was observed in the right amygdala at a later time (280–340 ms). 
Specifically, under the low-load condition, increased gamma-band 
activity was observed for fearful relative to neutral expressions; 
but, under high-load conditions, there was no effect of emotional 
expression on amygdala responses during this later time window. 
Taken together, the authors propose that “emotional automaticity 
is a matter of timing”, and suggest that fMRI may simply miss the 
fast, first pass of emotional information, which presumably would 
be automatic.

Localizing sources with EEG and/or MEG data is a complex 
problem, and it is not entirely clear that signals from deep struc-
tures in the brain, such as the amygdala, can be localized with 
certainty at this point in time (see below). An approach that 
bypasses this problem is to record directly from the amygdala 
in humans (e.g., during presurgical preparation). That was the 
strategy adopted by Pourtois et al. (2010), who employed the same 
paradigm of an earlier fMRI study (Vuilleumier et al., 2001), in 
which two houses (e.g., to the left and right of fixation) and two 
faces (e.g., below and above fixation) were employed. The subject’s 
task was to determine if the horizontal or vertical stimulus pair 
was identical or not. Recordings from face-sensitive sites in the 
lateral amygdala showed an early and systematic differential neural 
response between fearful and neutral faces, regardless of atten-
tion. Differences were observed from 140 to 290 ms. Furthermore, 
comparing trials with task-relevant versus task-irrelevant faces 
(regardless of emotion expression) revealed a sustained atten-
tional effect in the left amygdala, but starting only at 710 ms post 
stimulus onset.

The two studies above provide important advances in our 
attempt to understand the interactions between emotion and atten-
tion. Specifically, by employing techniques that offer millisecond 
temporal resolution, the studies attempted to determine the tem-
poral evolution of affective processing and how it is influenced by 
attention. However, the two studies also pose important questions, 
as discussed in what follows.

Let us consider the MEG study first. The amygdala is a deep 
structure in the brain and, accordingly, one that is challenging to 
probe with techniques such as electroencephalography (EEG) and 
MEG. Some investigators have suggested that advanced source anal-
ysis techniques are capable of estimating signals from this structure 
(Ioannides et al., 1995; Streit et al., 2003); for a recent evaluation, 
see also (Cornwell et al., 2008). In particular, Luo et al. (2010) 
suggest that synthetic aperture magnetometry is well suited in this 
case. These so-called adaptive beamformer techniques reconstruct 
the source activity on a predefined three dimensional grid using 
a weighted sum of sensor data (Vrba and Robinson, 2001; Barnes 
and Hillebrand, 2003). Others studies suggest, however, that local-
izing signals to structures deep in the brain may be problematic. 
For instance, in one investigation, simultaneous MEG and invasive 

EEG recordings indicated that epileptic activity restricted to medial 
temporal structures cannot reliably be detected by MEG and that 
an extended cortical area of at least 6–8 cm2 involving the basal 
temporal lobe is necessary to generate a reproducible MEG signal 
(Baumgartner et al., 2000); see also (Mikuni et al., 1997). It is thus 
unclear whether amygdala responses can be reliably estimated with 
MEG at the moment.

The results by Luo et al. (2010) further indicated that responses in 
the amygdala are modulated by affective content within 30–40 ms, 
possibly via a fast pathway. Yet, the timing is puzzling in light of 
known response latencies in the visual system. For instance, the 
earliest responses in the lateral geniculate nucleus (LGN) of the 
thalamus, which receives direct retinal input, are observed at 
approximately 30 ms, and on average they are around 33 ms (for 
the magno system) and 50 ms (for the parvo system) (Lamme and 
Roelfsema, 2000). When considering neuronal response latencies, 
other issues are important, too. In addition to the latency itself, one 
needs to consider “computation time”. It has been suggested (Tovee 
and Rolls, 1995) that most of the information encoded by visual 
neurons may be available in segments of activity 100 ms long, and 
that a fair amount of information is available in 50-ms segments, 
and even some with 20–30 ms segments (note that these segments 
take into account response latency, namely they consider neuronal 
spikes after a certain delay). Although these figures demonstrate the 
remarkable speed of neuronal computation (at least under some 
conditions), they add precious milliseconds to the time required 
to, for instance, discriminate between stimuli (e.g., hypothetical 
differential responses in the LGN, for example, would be expected 
to appear no earlier than 60 ms or longer post stimulus onset). An 
additional consideration is that responses in humans are possibly 
slower than in monkeys, further adding time. For instance, in one 
human study (Yoshor et al., 2007), the fastest recording sites had 
latencies just under 60 ms, and were probably located in V1 (or 
possibly V2). In monkey, the fastest responses in V1 can be observed 
under 40 ms (Lamme and Roelfsema, 2000).

What are the response latencies of neurons in the amygdala? 
In the monkey, amygdala responses typically range from 100 to 
200 ms (Leonard et al., 1985; Nakamura et al., 1992; Gothard 
et al., 2007; Kuraoka and Nakamura, 2007) – although shorter 
response latencies to unspecific stimuli (e.g., fixation spots) have 
at times been reported (Gothard et al., 2007). Differences in evoked 
responses between threat and neutral or appeasing facial expres-
sions in the monkey amygdala have been reported in the range of 
120–250 ms (Gothard et al., 2007). Intracranial studies in humans 
generally find the earliest single-unit responses around 200 ms 
(Oya et al., 2002; Mormann et al., 2008). And in a patient study, 
affective modulation of amygdala responses was also observed 
starting at 200 ms (Krolak-Salmon et al., 2004); see also (Oya 
et al., 2002).

Recently, we have advocated that bypass systems involving the 
cortex may rapidly convey affective information throughout the 
brain (Pessoa and Adolphs, Submitted). This “parallel processing” 
architecture would allow fast affective responses around 100–
150 ms post stimulus onset. Interestingly, this potential time course 
matches the one observed in the intracranial study by Pourtois 
et al. (2010), in which affective influences were observed starting 
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at 140 ms. A potential concern with that study, however, is that the 
task employed was not challenging. Specifically, the patient was 
correct 95% of the time during face trials, and 97% of the time dur-
ing house trials. Whereas this made for balanced task performance 
for faces and houses (and was probably determined by the testing 
of a patient in the context of neurosurgery), in all likelihood, the 
task was not sufficiently demanding. As demonstrated in the past, 
processing resources “spill over” when the central task is not suf-
ficiently taxing (Lavie, 1995, 2005), and therefore effects of valence 
under these conditions are not entirely surprising. Although the 
effect of valence can be referred to as “automatic” in the sense of 
implicit processing of task-irrelevant information, the task does 
not allow for a stricter test of automaticity in terms of obligatory 
processing (Pessoa et al., submitted).

In light of these remarks on capacity limitations, it is worth 
considering that even in the MEG study, the attentional manipu-
lation may not have been sufficiently strong given that observers 
performed at 83% correct in the high-load condition. In contrast, 
in a similar bar-orientation task, performance was at 64% cor-
rect during the most demanding condition (Pessoa et al., 2002); 
notably, in another bar-orientation study, we did observe valence 
effects on reaction time when performance was 79% correct, but 
these disappeared when performance was at  approximately 60% 
correct (Erthal et al., 2005). In  general,  attentional  manipulations 
that more completely exhaust processing capacity must be sought, 
as in similar questions of the need for attention during scene per-
ception in which a clearer demonstration of the impact of the 
attentional manipulation is provided (Li et al., 2002).

A second important issue with the intracranial study refers to 
the timing of the attention effect, which was reported to start at 
around 700 ms. As noted by the authors, this timing is  considerably 
later than effects of attention on sensory processing, which can be 
observed around 100 ms or earlier (Luck et al., 2000). As the authors 

Figure 1 | fMri responses to brief stimuli. Original results by Savoy et al. (1995) illustrating the fact that a clear signal change is observed for very brief events. 
Data from Savoy et al. (1995). Figure reproduced from (Rosen et al., 1998).

Figure 2 | Simulated fMri responses and timing. During the hard condition 
in the study by Luo et al. (2010), fast responses varied as a function of valence, 
whereas later responses did not – i.e., attention affected the latter, but not the 
former. However, fast responses are not inherently invisible to fMRI, and are 
expected to generate differential fMRI responses, as suggested by the simulated 
responses labeled “fast”. The “slow” component was also simulated and no 
differential responses would be expected (the slight displacement was used for 
display only). A typical fMRI study would pick up the “total” signal containing the 
contributions of both fast and slow components and, in theory, should be 
sensitive to the differences that were present only in the first time window (see 
also Figure 1). Simulated responses were generated by convolving an initial input 
function with a canonical hemodynamic response (Cohen, 1997). The input 
function can be viewed as a boxcar with “fast events” occurring between 
30–60 ms and “slow events” occurring between 280–340 ms (a virtual temporal 
resolution of 10 ms was used in the definition of the boxcar events and in the 
convolution operation). The “fast” effect of emotional content was simulated by 
assuming a boxcar of intensity 0.2 versus 0.25 for affective and neutral 
conditions, respectively. Finally, it was assumed that fMRI signals were sampled 
every 2 s. Red lines: affective conditions; blue lines: neutral conditions; dashed 
lines: fast and slow components; solid lines: total signal; A.U.: arbitrary units.
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