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“present” or “absent” will employ a decision criterion that reflects 
the relative probability that the stimulus is drawn from the distri-
bution of evidence levels associated with (1) noise alone or (2) a 
combination of signal and noise. Signal detection theory also offers 
a formal account of how the decision criterion should be adjusted 
in order to maximize outcome when perceptual alternatives incur 
asymmetric loss. Empirical evidence reveals that observers will 
indeed shift their criterion in order to improve their payoff, and, 
under repeated testing, humans (Trommershauser et al., 2008; 
Whiteley and Sahani, 2008) and other primates (Feng et al., 2009; 
Rorie et al., 2010) may even integrate information about signal 
strength and value in a near-optimal fashion.

However, although signal detection theory offers a simple and 
elegant account of an observer’s perceptual choices, it provides no 
framework for understanding how long the observer will delib-
erate before committing to one choice or another. A related but 
more elaborate class of model, of which one successful variant 
is called the “drift-diffusion model,” proposes that noisy sensory 
input (“momentary” evidence) is sampled in a sequential fash-
ion, accumulating stochastically over successive cycles of decision 
time (Link and Heath, 1975; Ratcliff, 1978), to form a running 
tally known as the “decision variable” [DV] (Gold and Shadlen, 
2007). This class of model allows predictions about both choices 
and decision latencies, because deliberation is terminated when the 
DV exceeds a fixed threshold or “bound.” Under the framework of 

IntroductIon
An extensive literature has considered how humans and other 
primates make decisions about uncertain perceptual information. 
In laboratory tasks, participants will often be asked to judge the 
presence of absence of a sensory signal embedded in random noise. 
Observers might receive feedback signaling whether their response 
was correct or not, and may even receive extra remuneration for 
good performance. However, they are rarely motivated to consider 
the relative value of the different perceptual alternatives (Swets 
et al., 1964; McCarthy and Davison, 1984). This contrasts sharply 
with the situation in the wild, where choices made to noisy or 
ambiguous stimuli must invariably be weighted by the costs and 
benefits associated with each perceptual alternative. Consider, for 
example, an animal judging whether an ambiguous noise is caused 
by the approach of a predator, or simply the innocuous rustling of 
the wind. Unnecessary flight (a “false alarm”) may incur a minor 
cost, but far more serious negative consequences may follow from 
ignoring the threat of a real attack (a “miss”). When perceptual 
judgments incur asymmetric outcomes, subjects must integrate two 
distinct sources of information – (1) an estimate of the strength of 
the sensory signal, and (2) information about the likely economic 
value of the perceptual alternatives.

Signal detection theory has characterized perceptual judg-
ments of this nature as a statistical decision problem (Swets et al., 
1964). For example, subjects judging whether a sensory signal was 
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the diffusion model, there are at least two mechanisms by which 
perceptual decisions may be biased by a rewarding or penalizing 
outcome. (1) Under the drift model (Figure 1A), a constant value 
is added to or subtracted from the DV on each successive cycle, 
such that evidence accumulates faster in favor of the more valuable 
alternative. Thus, even when momentary evidence for the presence 
of a sensory signal is weak or ambiguous, the DV may still be driven 
across the bound for the more valuable option. Under this model, 
sensory information will be the main determinant of choices when 
signal levels are high, but economic information will bias choices 
when sensation is a weak or ambiguous indicator of how to respond. 
(2) Under the prior model (Figure 1B), the origin of the dynamic 
evidence accumulation process is shifted toward the boundary for 
the favored option; in other words, prior evidence in favor of the 
stimulus being present is increased. Under this model, observers 
are thus biased to report the more valuable alternative early in the 
trial, or even before it is presented (Bogacz et al., 2006).

Recent behavioral studies that have considered the question of 
whether economic value biases prior or drift parameters during 
perceptual decisions have yielded contradictory results. Two recent 
papers by Newsome and colleagues support the prior model, show-
ing that non-human primates discriminating the net direction of 
randomly moving dots will adjust their prior in order to maximize 
payoff; indeed, the monkeys seem to do so in a near-optimal fashion 
(Feng et al., 2009; Rorie et al., 2010). However, a psychophysical 
study involving human observers provides additional support for 
the drift account, reporting that economic concerns bias both stages 
of a two-step motor [two-alternative forced-choice saccadic deci-
sion] and “perceptual” [two-interval forced-choice decision, made 
with a button press] task. These data imply that monetary incentives 
act both early (before the addition of performance-limiting noise, 
i.e., as predicted by the prior model) and later (at a subsequent 
motor stage, as predicted by the drift model) (Liston and Stone, 
2008). Finally, an alternative account, in which attention is switched 
from the payoff to the signal information in turn, has been invoked 

to account for psychophysical data from a same/different judgment 
task (Diederich and Busemeyer, 2006; Diederich, 2008). Consensus 
is lacking, thus, in the question of how perceptual decisions are 
biased by asymmetric rewards.

A related question concerns the neural mechanisms by which 
economic information intervenes in the sensorimotor processing 
stream. It could be, for example, that stimulus value is combined 
with signal strength early, for example in extrastriate regions such 
as area MT (during motion discrimination); or the two could be 
integrated later, at motor output stages. However, recent single-
cell recordings in the non-human primate have demonstrated that 
neurons at an intermediate stage – the lateral intraparietal cortex 
(LIP) – respond additively to sensory evidence and relative reward 
value (Rorie et al., 2010). This finding builds upon earlier evidence 
that LIP firing rates are influenced by reward value when the per-
ceptual component of the decision is trivial (Platt and Glimcher, 
1999), and makes the parietal cortex an excellent candidate for 
integrating sensory and reward information during perceptual 
decision-making. Nevertheless, it remains unknown (1) whether 
this finding extends to human observers, and (2) whether other 
brain regions, such as the prefrontal cortex, might contribute to 
the integration of sensory and economic information. Here, using 
a combination of psychophysical measurements, computational 
modeling, and functional magnetic resonance imaging (fMRI), 
we ask whether (1) economic value biases perceptual decisions in 
humans by changing the prior or the drift of accumulation; and 
(2) which brain regions are involved in combining signal strength 
and value during perceptual decisions.

MaterIals and Methods
subjects
Twenty-one neurologically normal individuals with normal or 
 corrected-to-normal vision were recruited on campus at the 
Université Pierre et Marie Curie in Paris, France. Subjects all gave 
informed consent during an interview with our on-site physician, 

FIguRe 1 | Schematic representation of the drift and prior models. (A) In 
the drift model, decisions are biased toward the more valuable option (here, 
“present”) by increasing the rate of evidence accumulation. Values inside the 
red circles show representative gain values; blue trace and red dashed trace 
show evidence accumulation with and without noise. Evidence toward 
“present” or “absent” is represented on the vertical axis, and time (RT or 
cycles) on the horizontal axis. The bound is represented with dashed gray 

lines top and bottom; another dashed line signals the equilibrium point 
between choices. RT for the slower of the two scenarios is shown with a 
cyan vertical line. (B) In the prior model, the initial estimates of evidence in 
favor of the more valuable option are increased, even before the onset of 
accumulation. Values in the red circles denote possible prior values in units of 
probability (i.e., p = 0.5 reflects equilibrium between the two choices). 
Otherwise as (A).
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intervals of 0.78%. Subjects indicated whether the Gabor patch was 
present or absent with a button press (deadline 1500 ms). A bonus 
screen, indicating winnings or losses, was shown for 2 s at the end 
of the block, followed by a blank screen for 3 s (Figure 2A).

Gabor patches carried a colored tint (red, green, or blue) denot-
ing the relevant payoff matrix for that block (Figure 2B). We oper-
ated a token economy in which correct responses were rewarded 
and errors penalized with explicit feedback under asymmetric pay-
off conditions: liberal blocks favored “yes” responses, with hits more 
highly rewarded (+5 points) than CRs (+1), and misses more heavily 
penalized (−5) than FAs (−1). The payoff matrix was inverted on 
conservative blocks to favor “no” over “yes” responses; on neu-
tral blocks all rewards and penalties were ±3 points (Figure 2B). 
Auditory feedback (a train of ascending [correct] or descending 
[incorrect] beeps corresponding to the number of points won) 
followed trial offset. In the first two sessions only, a virtual “piggy 

and were paid 240€ for their participation in three behavioral 
sessions and one fMRI session which took place on different 
days (yielding about 2,300 trials over approximately 180 min 
of testing).

Stimuli and procedure: behavioral sessions (1–3)
All stimuli were generated and presented using PsychToolBox 
(Brainard, 1997), and appeared on a uniform gray background. 
Each of 36 blocks was initiated with a white, square frame subtend-
ing 3.8° visual arc, followed 2 s later by the train of 16 imperative 
stimuli (Figure 2A). On each trial, a randomly oriented Gabor patch 
(a sinusoidal grating of 1.6 cycles/degree enclosed within a Gaussian 
envelope) embedded in 25% white noise (signal present trials, 
n = 288/session) or a phase-scrambled version of the Gabor patch 
embedded in 25% white noise (signal absent trials, n = 288/session) 
was presented within the frame. Gabor patch contrast varied in four 

FIguRe 2 | Task and behavioral data. (A) Experimental paradigm. Each 
block consisted of 8 (or 16 in behavioral sessions) successive presentations 
of low-contrast Gabor patches in visual noise. A colored frame and tint to the 
stimulus denoted bias condition (here, blue). Subjects received auditory 
feedback at the offset of each trial, and each block closed with a bonus screen 
informing the subject of their winnings/losses. In behavioral sessions on days 
1 and 2, subjects additionally received visual feedback in the form of an 
advancing or receding “payment bar” immediately underneath the stimulus. 
(B) Payoff matrices for each condition. Subjects received the indicated values 

for hits, misses, false alarms (FA) and correct rejections (CR). (C) Estimates of 
criterion (c) for each individual subject in liberal (red dots), neutral (green 
dots), and conservative (blue dots) blocks. Black dashed line represents c = 0, 
i.e., no bias. (D) False alarm rate plotted as a function of reaction time 
quantile for liberal (red lines), neutral (green lines) and conservative (blue 
lines) blocks. Bars are standard error of the mean (SEM). (e). Criterion (c) 
plotted as a function of reaction time quantile for liberal (red lines), neutral 
(green lines), and conservative (blue lines) blocks. Bars are standard error of 
the mean (SEM).



Frontiers in Human Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 208 | 4

Summerfield and Koechlin Economic value biases perceptual choices

lead to attractor states, i.e., evidence will accumulate faster in favor 
of hypotheses which are already partially confirmed. Using two 
parameters to model the rate of accumulation (A and δ) provides 
a simple means of separately modeling the influence of sensory 
input from the stimulus (A) and other factors that might bias the 
rate of accumulation (δ) (e.g., economic value).

Decisions occur when I crosses one of two thresholds Z
1
 and 

Z
2
 such that:

Z I Zn1 1 2 2> >, ...  
(5)

Setting bounds Z
1
 and Z

2
 to 2.944 and −2.944 (log odds ratio values 

for p = 0.05 and p = 0.95 respectively) allowed us to easily convert 
any value of I to a p-value falling within the typical (two-tailed) 
bounds for rejecting the null hypothesis. Trial length was fixed at 
1500 cycles, such that each cycle n corresponded to 1 ms of decision 
time in our task (see Figure 4B).

Model fitting
We searched exhaustively for combinations of α, A, δ, c, w, and λ 
that best described subjects’ behavioral data on liberal, neutral, 
and conservative blocks. Because our experiment included both 
signal present and signal absent trials, we generated simulated RT 
distributions with each combination of parameters twice: once with 
sensory gain A set to its current value (i.e., signal present trials, hits, 
and misses), and once with A = 0 (i.e., signal absent trials, FAs and 
CRs). Both simulations were conducted with 5000 diffusion traces 
(i.e., simulated trials).

We tested the hypotheses that differences in bias between lib-
eral, neutral, and conservative conditions were due to (1) vari-
ations in prior evidence, i.e., α (prior model) (2) variations in 
drift rate, i.e., δ (drift model); or (3) variations in both α and δ 
(hybrid model). To compare among these hypotheses, we first 
set the remaining parameters w, c, A, and λ to those values that 
provided the overall best fit when held constant across conditions 
(w = 300 ms, c = 0.01, and A = 0.003, λ = 0.05). We then tested 
each model in turn by allowing the key parameter(s) under test 
(e.g., α, δ, or both α and δ) to vary freely across the three condi-
tions, whilst fixing the remaining test parameters at a constant 
value. For example, when testing the prior model, we fixed δ to 
the single, best-fitting value that maximized the fit across all 
conditions, whilst searched for the three values of α that maxi-
mized the fit for each bias condition separately. We repeated this 
process for each of the three models. To ensure independence, 
best-fitting parameters were estimated using odd trials, and sta-
tistics comparing the fit between models were estimated using 
even trials.

fMRI data acquisition
Magnetic resonance images were acquired with a Siemens 
(Erlangen, Germany) Allegra 3.0T scanner to acquire gradient 
echo T2*-weighted echo-planar images with blood oxygenation 
level-dependent (BOLD) contrast as an index of local increases in 
synaptic activity. The image parameters used were as follows: matrix 
size, 64 × 64; voxel size, 3 × 3 mm; echo time, 40 ms; repetition time, 
2000 ms. A functional image volume comprised 32 contiguous slices 
of 3 mm thickness (with a 1-mm interslice gap), which ensured 
that the whole brain was within the field of view.

bank” appeared below the Gabor patch and frame, filled with five 
horizontally arranged gray circles which were gradually effaced to 
reveal gold coins (or fractions thereof), returning to gray as points 
were lost. Colors and the response button were fully counterbal-
anced across subjects.

Stimuli and procedure: fMRI session (4)
The fMRI session comprised 72 blocks of eight stimuli spread 
over six runs of ∼8 min, with points-per-trial doubled to main-
tain reward probability within block. Each run began and ended 
with a gray screen for 10 s; jitter was introduced between the initial 
frame and the onset of imperative stimuli (∼3 s, range 2–4 s), the 
interval among stimuli (∼2.5 s, range 1.5–3.5), and the interval 
between blocks (∼5 s, interval 3–7 s). No visual feedback was given 
in the fMRI session.

behavIoral analyses
Data from all four sessions were pooled for behavioral analyses. 
RT distributions were analyzed by sorting all trials collapsed 
across conditions into four bins (quartiles). These quartiles cap-
tured choices that were made with latencies 0 < RT < 580 ms 
(25%), 580 < RT < 660 ms (50%), 660 < RT < 760 ms (75%), and 
1500 > RT > 760 ms (100%). Trials with RT > 1500 were excluded 
from the analysis (<3%). Accuracy and RT were compared with 
ANOVAs and t-tests, and one-tailed alpha of 0.05 was used for all 
statistical analyses. Where H and F are hit rate and false alarm rate 
respectively, sensitivity (d prime or d′) values were calculated as

d′ = z(H) – z(F) (1)

and criterion (c) values are derived from the following 
equation:

c = −0.5 × [z(H) + z(F)] (2)

such that c values < 0 signaled a bias toward “yes” responses.

Model parameterization
We simulated detection judgments using a standard two-choice 
decision model based on the Ornstein–Uhlenbeck (OU) process 
(Busemeyer and Townsend, 1993). In this model, prior to the first 
cycle (n = 0), perceptual evidence I on each simulated trial is initi-
ated at a value α

t
, drawn from a distribution of origin values with 

mean α and variance 0.01, corresponding to the prior level of evi-
dence in favor of stimulus presence (in the unbiased case, α = 0). 
Evidence accumulation begins in earnest following an “initial wait” 
period w, during which evidence remained at its initial value, so 
that for any cycle n < w:

In t= α  (3)

Subsequently, I is updated at each successive cycle t as follows:

I I A I cWn n n= + + ×( ) + ∂ +− −1 1λ
 

(4)

In Eq. 2, A represents the average increase in evidence per unit 
time due to incoming stimulus energy (momentary evidence), cW 
represents Gaussian noise with mean 0 and variance c2, δ is an 
independent drift term, and λ scales the extent to which the rate 
of change depends on its current value. Positive values of λ will 
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encoding (2) momentary evidence, i.e., each event scaled by its contrast 
(3) RT and (4) reward obtained (number of points per trial) Each of 
these was a parametric regressor that modeled each trial as an event 
of duration 0s convolved with the canonical hemodynamic response, 
and scaled by the relevant trial-by-trial values. Additionally, we entered 
several nuisance regressors aimed at capturing variance in the BOLD 
response associated with events that were not of interest to us, such as 
(1) onset of the frame for each block and (2) the bonus screen signaling 
total reward obtained in a block, as well as further nuisance regres-
sors (3) derived from the fMRI signal averaged across 1000 randomly 
selected voxels from outside the brain, and (4–9) realignment param-
eters from motion correction. No orthogonalization of regressors was 
employed. The DV regressor was not reliably correlated with any of the 
other parameters of interest (all r-values < 0.35, p-values > 0.05). The 
statistical significance of each regressor at each voxel was assessed at the 
second (between-subjects) level with mass t-tests. The resulting SPMs 
were all corrected for multiple comparisons using the False Discovery 
Rate method (Genovese et al., 2002) or uncorrected p < 0.001, which-
ever was the more conservative threshold.

In order to explore further how the brain regions identified by 
these parametric regressors responded during the task, we conducted 
more conventional factorial ANOVA analyses on the data averaged 
across those voxels significantly activated by the prior evidence 
regressor, with bias condition (liberal, neutral, conservative), and 
trial type (hit, miss, FA, CR) as orthogonal factors (Figures 5B,C). 
Importantly, because these ANOVA analyses are reported for the 
peak voxel selected from the parametric analyses described above, 
they are not independent from these analyses, and as such, were 
not intended to support new statistical claims concerning the rel-
evant clusters (Kriegeskorte et al., 2009). The likelihood that the 
identification of these clusters reflects a type-1 error has already 
been assessed by the earlier analyses in conjunction with a strin-
gent method for correcting for multiple comparisons (Genovese 
et al., 2002). Rather, the point of these subsequent analyses is to 
determine why the regressors were responding to the DV regressor 
generated above. This type of analysis is particularly important 
when brain regions are identified by their correspondence with a 
regressor derived from a computational model, which might be 
correlated with other experimental factors. For example, in our 
experiment, cortical activation in concert with the DV regressor 
could reflect a preference for liberal over conservative conditions, 
or a preference for “yes” over “no” responses, or a combination 
of these factors. For these ANOVA analyses, a new design matrix 
was constructed with 12 regressors, corresponding to hit, miss, FA, 
and CR trials in liberal, neutral and conservative conditions. The 
nuisance regressors described above were also included. Parameter 
estimates were calculated for each of the 12 regressors of interest 
for each subject; and factorial ANOVAs were performed to assess 
statistical reliability of bias condition or trial type.

results
behavIoral data
Human sensitivity (d′) and criterion (c) measures were derived in 
a standard fashion from normalized hit and FA rates (Macmillan 
and Creelman, 1991) (see methods). For a d′ of 1.06 ± 0.14 overall, 
c values were −0.2 ± 0.29, 0.28 ± 0.17, and 0.51 ± 0.18 for liberal, 
neutral and conservative blocks respectively (F = 62.7, p < 1 × 10−7), 

fMRI data preprocessing
Data were preprocessed using SPM2 (Wellcome Department of 
Cognitive Neurology, London). Following correction for head 
motion and slice acquisition timing, functional data were spatially 
normalized to a standard template brain. Images were resampled to 
3-mm cubic voxels and spatially smoothed with a 8-mm full-width 
at half maximum isotropic Gaussian kernel. A 256-s temporal high-
pass filter was applied in order to exclude low-frequency artifacts. 
Temporal correlations were estimated using restricted maximum 
likelihood estimates of variance components using a first-order 
autoregressive model. The resulting non-sphericity was used to 
form maximum likelihood estimates of the activations.

fMRI data: regressors for momentary evidence and the DV
We introduce a new technique that uses the output of the drift-diffu-
sion model to identify brain regions responding to momentary evi-
dence (i.e., sensory input to the decision system) and to the decision 
variable (DV; integrated evidence over time). In our task, momentary 
evidence is simply reflected by the level contrast in the stimulus. We 
thus identified voxels responding to momentary evidence by creating a 
parametric regressor that encoded stimulus contrast. Identifying brain 
voxels responding to the DV, however, is more complicated. Drawing 
upon previous research (Ratcliff and McKoon, 2008), we assume that 
the DV is composed of (1) momentary evidence A, (2) Gaussian noise 
(cW), and (3) an additional component, comprising information that 
biases the tally of accumulated evidence. In our model (c.f. Eq. 4), these 
biases could arise at the origin of integration (i.e., α), or reflect drift (δ) 
or attraction (λ) processes that evolve during evidence accumulation. 
Our DV regressor is intended to identify voxels whose activity levels 
vary in concert with this additional bias component (3). Given that our 
behavioral and modeling analyses strong suggest that we can account 
for subjects’ decisions in the current task by biasing α toward the more 
rewarding option (Figure 3), in what follows we do this by varying 
α in our simulations. Importantly however, a similar regressor would 
be obtained if the bias were introduced at a point later than t = 0, or 
introduced gradually (e.g., if the δ model were superior).

Our technique for building the DV regressor comprised five steps. 
(1) we carried out repeated simulations with our O–U model, with 
parameters A, c, δ, w, and λ set to the values that best described 
observers’ overall performance (Figure 4A), but α varying between 
0.1 and 0.9. (2) Across simulations, we plotted the relationship 
between α and RT independently for each trial type (hits, misses, 
FAs, and CRs). These plots are shown in Figure 4C. (3) We found 
the function that best described the relationship between α and 
simulated RT for each trial type (a third order polynomial provided 
the best fit in each case). These functions are represented by the black 
lines in Figure 4C. (4) We used these functions to estimate values of 
α for each choice made by human observers in the fMRI experiment, 
on the basis of whether the trial was classified a hit, miss, FA or CR, 
and its decision latency (RT). (5) We used these values to generate 
a parametric regressor in which the height of the BOLD response 
on each trial was scaled by the relevant value of α.

fMRI data: statistical analyses
This DV regressor was then entered into the design matrix along-
side four other parameters of interest: (1) the main effect of stimulus 
(a regressor encoding every trial); and further parametric regressors 
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Model fitting
An exhaustive search of parameter space revealed that the best-fitting 
solution in which c, w, A, and λ were held constant across conditions 
was w = 300, c = 0.01, A = 0.0003, and λ = 0.05). These correspond 
to non-decision time of 300 ms, and an accumulation process that 
proceeds in steps that have a mean of log odds = 0.003 and a standard 
deviation of log odds = 0.01 (per millisecond of simulated decision 
time), and an additional increment of 5% of current evidence added 
or subtracted from the total on each step, according to whether the 
trace was currently closer to the upper or lower bound.

Model comparison
The prior model, in which prior evidence (α) was free and drift (δ) 
was fixed, provided a good description of the data. α values that 
best fit the data were α = 0.58, liberal blocks, α = 0.32, in neutral 
blocks, and α = 0.28 in conservative blocks (these correspond to 
a priori probabilities of signal presence of 0.64, 0.58, and 0.56, 

indicating that the payoff manipulation successfully induced a bias 
toward “yes” responses on liberal blocks, and toward “no” responses 
on conservative blocks (Figure 2C). Bias was strongest for those 
trials with the shortest reaction times (RT). Dividing RTs for each 
block into quantiles, FA rates rose to about 60% for the fastest 
25% of trials (RT < 580 ms) on liberal blocks. Significant quar-
tile × condition interactions were observed for FA rate (F

(6,120)
 = 19, 

p < 1 × 10−9), hit rate (F
(6,120)

 = 18, p < 1 × 10−9) and criterion 
(F

(6,120)
 = 49, p < 1 × 10−9) (Figures 2D,E). These fast liberal “yes” 

responses were not particularly likely to be preceded by another 
“yes” response (p > 0.3), indicating that unlike “express” saccades 
(Carpenter and Williams, 1995), impulsive responses were not 
merely fast response repetitions (Anderson et al., 2008). Subjects’ 
overall perceptual sensitivity also varied across blocks, with subjects 
performing better in conservative (d′ = 1.28 ± 0.14) than in neutral 
(d′ = 1.15 ± 0.14) or liberal (d′ = 0.98 ± 0.14) blocks. No overall 
differences in RT were observed between conditions (p > 0.1).

FIguRe 3 | (A) Fits of the prior model to human hit rates (left panel) and false alarm (FA) rates (right panel), plotted for RT quartiles (fastest 25, 25–50, 50–75, 
and >75%) in liberal (red), neutral (green), and conservative (blue) conditions. Circles plot the mean of human subject data; lines plot the simulated data from each 
model variant. (B) Similarly, fits for the drift model (bottom panel) to hit rates and FA rates. Dashed red boxes highlight the fast, liberal false alarms, which are poorly 
fit by this model.
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FIguRe 4 | (A) Human subject (top panels) and simulated (bottom panels) RT 
distributions for hits (orange lines), misses (pink lines), false alarms (cyan lines), 
and correct rejections (brown lines) in liberal (left panels), neutral (middle panels), 
and conservative (right panels) conditions. RT distributions are normalized to 
reflect proportions of trials. (B) Example simulated evidence accumulation traces 
from the best-fitting model (signal-present trials only) in liberal (left panel), neutral 
(middle panel), and conservative (right panel) conditions. Each trace represents 
one simulated trial; the thicker trace is the median of all trials. Simulated time is 

shown on the x-axis and evidence (I) on the y-axis. Dashed lines indicate upper 
and lower bounds (for “yes” and “no” respectively) and the central dashed line 
represents equilibrium between the two choices. Traces bend toward either axis 
because the best-fitting model included an attractor value (λ) of 0.05. (C) Scatter 
plot of simulated α (y-axis) with RT under the parameters of the best-fitting 
model, for hits (top left panel), misses (top right panel), FA (bottom left), and CR 
(bottom right) trials. The black line shows the best fit of a 3rd order polynomial to 
the data for each trial type.

where 0.5 reflects an equilibrium between “yes” and “no”). This 
model accurately captured the pattern of early bias in the liberal 
condition, as well as providing a good account of the hit rates and 
d′ observed in the experiment (Figure 3A).

Moreover, the prior model performed favorably in comparison with 
the drift model, in which drift rate (δ) was allowed to vary freely, but 
α was fixed at its best value for all conditions. The drift model yielded 
drift parameters of δ = −0.002 (liberal blocks), δ = −0.003 (neutral 
blocks), and δ = −0.004 (conservative blocks). However, although this 
model captured the overall total false alarm rate in each condition, it 
was unable to account for the early, liberal false alarms observed in 
the human data (Figure 3B). Accordingly, log-likelihood values for 
the drift model totaled −84, whereas those for the prior model totaled 
−79.1, indicating that varying the prior offered a better description of 
the data than varying the drift (χ2 = 9.8, p < 0.009). Unsurprisingly, 
the hybrid model, in which both δ and α were free, also provided a 
good fit to the data (log likelihood = −78.7) but despite the extra-free 
parameter, this model did not outperform the prior model (p = 0.67). 
For completeness, in Figure S2 in Supplementary Material, we show 
fits to overall mean reaction times in each condition.

Functional brain imaging
At what stage in the sensory processing stream might signal strength 
and value be combined to form a decision variable? We con-
ducted fMRI analyses geared to identifying brain regions involved 
in  representing (1) momentary evidence (i.e., level of sensory 
input), and (2) accumulated evidence (i.e., the decision variable; 
see Materials and Methods). In line with previous findings, we 
predicted that whereas momentary evidence would activate the 
extrastriate visual cortex, neural correlates of the DV would be 
found in the parietal cortex (Platt and Glimcher, 1999; Hanks et al., 
2006; Rorie et al., 2010).

Brain imaging analyses supported both of these predictions. 
Momentary evidence, corresponding to the contrast of the stimulus 
in our paradigm, correlated strongly with BOLD activity in the 
extrastriate visual cortex, falling on the middle/inferior occipital 
gyri (MOG) and peaking at coordinates −36, −87, −9 (T = 5.90, 
p < 0.00001) and 39, −81, −6 (T = 5.18, p < 0.0001) on the left and 
right respectively. A cluster was also found more anteriorly, on 
the fusiform/lingual gyrus bilaterally, with peaks at −36, −60, −15 
(T = 3.98, p < 0.001) and 27, −48, −21 (T = 5.51, p < 0.0001) on 
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the DV regressor could be accounted for by a response on any con-
dition requiring integration of perceptual and reward information 
(i.e., both liberal and conservative > neutral trials). Note that these 
analyses are not independent from the parametric analyses described 
above (see Materials and Methods for a fuller discussion of this 
point). Combined bar and line plots of fMRI responses averaged 
over activated voxels in the visual cortex, IPL, and PFC clusters are 
shown in Figure 5B. As can be seen, the IPL showed a pattern of 
liberal > neutral > conservative blocks (F

(2,40)
 = 6.28, p < 0.006) with 

individual contrasts for liberal > neutral (t
(20)

 = 2.39, p < 0.05) and 
neutral > conservative (t

(20)
 = 3.42, p < 0.01) reaching significance. 

Similar results were observed in the PFC (F
(2,40)

 = 18.6, p < 0.00001; 
liberal > neutral, n.s.; liberal > conservative (t

(20)
 = 2.97, p < 0.01; 

neutral > conservative, t
(20)

 = 2.99, p < 0.01). These factorial analy-
ses rule out the possibility that parietal correlation with the prior 
evidence regressor is a spurious artifact of its activation by both 
liberal and conservative blocks. Both IPL and PFC clusters addition-
ally showed an effect of yes > no (IPL: t

(20)
 = 4.24, p < 0.001; PFC 

t
(20)

 = 4.7, p < 0.0001). These results suggest that the involvement 
of the IPL and PFC regions in biased perceptual decision-making is 
driven both by a propensity to respond more on liberal than neutral 
or conservative blocks, and to respond more “yes” than “no” trials.

Adopting the same ANOVA approach for visual regions respond-
ing to the momentary evidence regressor, no differences between 
conditions (liberal vs. neutral vs. conservative) were observed. 

the left and right respectively. Only one cluster outside the visual 
cortex, on the left parahippocampal gyrus, survived thresholding at 
p < 0.001 uncorrected (peak: −24, −3, −21; T = 4.15, p < 0.001).

By contrast, the parametric regressor encoding estimates of 
the DV (see Materials and Methods) correlated with voxels in the 
parietal cortex (peak left: −48, −48, 45, T = 6.65, p < 0.00001; peak 
right: 48, −33, 45, T = 5.41, p < 0.0001). These clusters fell princi-
pally on the inferior parietal lobule (IPL) (76% of activated voxels) 
but distinct clusters in the superior parietal lobule (SPL) were also 
identified (left: −21, −72, 48, T = 4.69, p < 0.0001; right: 27, −69, 
48, T = 4.61, p < 0.0001). In the prefrontal cortex, the DV  regressor 
activated voxels falling on the border of the lateral frontopolar 
and orbitofrontal cortices (BA 10/11). Maxima for these clusters 
fell symmetrically at 45, 51, 0 (T = 4.15, p < 0.001) and −45, 51, 0 
(T = 4.60, p < 0.0001) respectively. Additional clusters were found 
in the bilateral anterior insular cortex at −30, 21, −6 (T = 4.69, 
p < 0.0001) and 42, 24, −6 (T = 4.57, p < 0.0001).

Factorial analyses of brain imaging data
As noted above, correlation with the DV regressor might be driven 
by a preference for yes > no trials, or for liberal > conservative trials, 
or a combination of these effects and others. We used ANOVA-based 
analyses to determine more clearly why voxels responding to the DV 
regressor did so, and in particular to rule out spurious explanations, 
such as the possibility that parietal cortex and PFC correlation with 

Figure 5 | Brain imaging results. (A) axial views of voxels responding to the 
DV rendered onto a standard brain in the space of the Montreal Neurological 
Institute (MNI), at an FDR-corrected threshold of p < 0.05. Slices are labeled 
with their coordinates in the z plane at the bottom left-hand corner. (B) A 
comparable plot for voxels responding to momentary evidence. (C) Parameter 
estimates (from factorial ANOVA analyses) for hits, misses, FA and CR trials in 

liberal, neutral and conservative blocks, averaged across voxels in each of the 
four clusters (prefrontal cortex – PFC; intraparietal lobule – IPL; middle occipital 
gyrus – MOG, and fusiform gyrus. Gray lines are for signal absent trials, black 
lines for signal present trials; full lines for “yes” responses, dashed lines for “no” 
responses. Underlying bars illustrate mean parameter estimates for liberal, 
neutral and conservative blocks.



Frontiers in Human Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 208 | 9

Summerfield and Koechlin Economic value biases perceptual choices

uncertain, or breaching the deadline is more costly (Frazier and 
Yu, 2008). It is likely that the imposition of a penalizing deadline 
encouraged our subjects to respond more urgently, given tempo-
ral uncertainty about the time elapsed. A formal analysis of this 
problem is beyond the scope of this paper. However, although pre-
vious experiments did not impose an explicit deadline, in much 
primate research a comparable deliberation cost may be evident in 
the mounting likelihood that the animal will inadvertently break 
fixation and abort the trial. In the wild, too, deliberation carries 
with it an increasing likelihood that the available opportunities will 
be withdrawn, or the costs multiplied, if a decision is not reached 
quickly. For example, when driving down a winding road at night, 
failure to decide whether the road veers to the left or the right can be 
just as fatal as making an erroneous choice. Given that deliberation 
invariably carries a cost of its own, it may be that fast, early biasing 
mechanisms have evolved to meet the challenges of an unstable, 
unpredictable environment that favors intuitive or “snap” decisions 
during reward harvesting.

A second goal of our experiment was to establish where in the 
sensory processing hierarchy reward-induced biases are likely to 
intervene. One possibility is that the reward system biases early 
sensory processing via “top-down” cortico-cortical connectivity, 
engendering a biasing of baseline visual responding akin to that 
described during selective attention (Kastner et al., 1999; Serences 
and Boynton, 2007) or visual feature “matching” (Motter, 1994; 
Summerfield and Koechlin, 2008). However, the data reported here 
argue against this mechanism as the basis for reward-guided per-
ceptual biases, as we found no evidence that visual regions varied 
as a function of liberal, neutral, or conservative condition. This 
concurs with recent study that found weak or equivocal evidence 
that face- and scene-sensitive extrastriate regions respond more 
robustly when subjects are biased toward reporting that that cat-
egory was present (Fleming et al., 2010). Thus, although visual 
regions are sensitive to signal value (Serences, 2008), it is not clear 
whether economic information is combined with signal strength 
to form a DV in the sensory cortices. A second possibility is that 
reward merely biases the motor output signal. However, we also 
failed to observe an effect of bias in motor regions activated dur-
ing responding.

The alternative favored by the data described here is that the 
reward system biases decision-making at the intermediate stage, 
in parietal cortex. Neurons in parietal area LIP (overlapping with 
the parietal zone identified in our fMRI study) are proposed to 
integrate momentary evidence into a DV (Shadlen and Newsome, 
2001; Hanks et al., 2006; Gold and Shadlen, 2007) as signaled by 
a ramping of their firing rates with a slope that tracks the level of 
momentary evidence in the stimulus. Critically, these LIP responses 
arbitrate between two responses even when momentary evidence is 
absent (i.e., where there is no information in the stimulus), imply-
ing that they encode additional information that biases a perceptual 
choice over and above sensory input. The origin of this information 
in studies where observers are not biased toward one option over 
another is not clear. However, it is likely that subjects’ propensity to 
choose one alternative over another varies stochastically from trial 
to trial. In our modeling, this is reflected in the trial-to-trial vari-
ability in the quantity α that encodes the origin of the accumulation 
process. Indeed, previous modeling work has demonstrated that 

Rather, both the fusiform and MOG regions responded reliably to 
trial type, with greater responses observed for hits than for misses, 
FAs or CRs (all p-values < 0.01).

fMRI responses to reward and RT
Brain regions correlated positively with RT were found in the pre-
supplementary motor area and anterior insula bilaterally; and sig-
nal increases in the ventral striatum, ventromedial prefrontal cortex, 
and posterior cingulate cortex varied positively with the reward 
obtained. These results (which are described in detail in accompa-
nying Figure S1 in supplementary material) confirm established 
findings, and are not discussed here in further detail.

dIscussIon
Our behavioral data indicate that (1) asymmetric rewards princi-
pally bias the fastest, not the slowest, perceptual judgment trials; 
and that (2) this phenomenon is best explained by a prior decision 
model, in which reward biases the origin of evidence accumulation, 
rather than a (later) drift toward either bound. A general interpreta-
tion of the success of the prior model is that observers first consider 
the value of the perceptual alternatives (perhaps even before the 
stimulus has been presented) and that the accumulation of sensory 
evidence takes place in the context of the likely reward or punish-
ment associated with each choice. This finding runs contrary to 
established theories of detection and recognition proposing that 
response options are weighted by their probable outcome only once 
evidence accumulation is complete (Henderson and Hollingworth, 
1999; Lu and Dosher, 2008).

At first glance, it might appear curious that rewards bias the 
origin of diffusion, given that, under the OU model, this param-
eter can be interpreted as indicating the prior probability of occur-
rence of each perceptual alternative (which does not change as 
a function of choice economic outcome). However, it has been 
demonstrated that under the drift-diffusion model generally, 
and the OU model specifically, varying the prior is the optimal 
policy under asymmetric loss, even if additional variation of the 
drift parameter might be required to optimize reward harvest-
ing when the coherence levels are randomly intermixed within a 
block, as here (Bogacz et al., 2006). Notably, we found no evidence 
that the hybrid model, in which both prior and drift parameters 
were allowed to vary, provided a statistically better fit to the data 
than the prior model. Our results are thus consistent with recent 
reports indicating that the prior model offers the best explana-
tion of how rewards bias perceptual decisions (Feng et al., 2009; 
Rorie et al., 2010).

Admittedly, certain features of our task complicate the com-
parison between our data and previous research. For example, in 
our task, payoff remained constant only over short blocks of 8 or 
16 trials, requiring subjects to switch policy rapidly. This feature 
may have contributed to the finding that our subjects under-shifted 
rather than over-shifted (Rorie et al., 2010) their prior – i.e., they 
were “sluggish” to adapt their new policy to the demands of the 
current block. Additionally, we imposed trial deadline (at 1500 ms). 
Recent modeling work has calculated the optimal decision policy 
for decisions with finite but uncertain temporal horizons, revealing 
that subjects should decide sooner under conditions when more 
time has elapsed, or under conditions where the deadline is more 
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option offering maximal reward (Daw et al., 2006), in the represen-
tation of the value of the value of unchosen option (Boorman et al., 
2009), or in the learning of specific outcome-choice associations 
(Walton et al., 2010). In a different literature, the lateral OFC and 
frontal pole have been implicated in fast, top-down modulation 
of perceptual choices (Thorpe et al., 1996; Bar et al., 2001, 2006). 
Our results suggest that lateral OFC activity is highest under con-
ditions where subjects have the greatest degree of prior evidence 
that an anticipated percept will be present – and in particular, when 
observers make a false alarm in the liberal condition. This is in 
accord with the idea the OFC regions may be involved in generat-
ing a rapid “initial guess” about the identity of a percept (Kveraga 
et al., 2007). However, it may also be the case that the activation 
of this region reflects the need to arbitrate between competing 
multiple  concerns – i.e., both sensory and economic - during the 
decision, or the heightened lateral OFC activation may occur when 
the choice is more influenced by stimulus value than by sensory 
evidence (for example in liberal false alarms). Nevertheless, this 
account remains speculative, and the precise role of the lateral OFC 
in biased decision-making, and its potential interactions with the 
parietal cortex, remain to be more fully described.

In conclusion, we demonstrate that economic value biases 
uncertain perceptual choices early in the decision epoch, and does 
so by shifting initial estimates of evidence in favor of the more 
valuable perceptual alternative, perhaps before evidence integration 
has begun. Using fMRI, we report a correlate of the decision vari-
able (DV), comprising both momentary evidence and other factors 
that might bias the decision, in the parietal and prefrontal cortices. 
These findings complement key findings from single-cell record-
ings in the non-human primate, i.e., that parietal neurons integrate 
decision-related information (Shadlen and Newsome, 2001; Gold 
and Shadlen, 2007), and that rewards bias the firing rates of these 
cells early in the decision epoch (Rorie et al., 2010).
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variability in α is required to model the relative mean latency of 
correct and incorrect decisions under the framework of the drift-
diffusion model (Ratcliff and Rouder, 1998).

Single-neuron studies have also demonstrated that LIP neurons 
respond to expected payoff under asymmetric reward, both where 
the sensory signal is strong and clearly visible (Platt and Glimcher, 
1999) and where it is corrupted by noise (Rorie et al., 2010). In 
support of this view, we observed bilateral clusters of activity in 
parietal cortex that correlated with trial-by-trial estimates of the DV, 
a combined decision signal incorporating bias toward the percept 
with the higher payoff as well as accumulated sensory evidence. 
Given our behavioral findings, it may be that parietal integrator 
neurons are themselves are biased early on in the diffusion process, 
with their baseline firing rates brought closer to threshold before 
evidence accumulation has begun in earnest. This finding not only 
replicates previous work in the monkey (Rorie et al., 2010), but is 
also consisted with another report that across a subject cohort, pari-
etal activity correlates with the extent to which order of  presentation 
alters discrimination judgments in 2-interval forced choice vibro-
tactile judgments, an effect that depends on subjects’ prior estimates 
of mean signal strength (Preuschhof et al., 2009). Our findings in 
the parietal cortex thus agree with a corpus of primate electrophysi-
ology studies, conferring prima facie validity on our new methods 
for identifying decision-related signals with fMRI.

Finally, we also observed activity tracked the DV in symmetric 
bilateral clusters lying on the border between the anterior PFC and 
OFC, in lateral BA10/11. Whereas previous imaging studies have 
implicated the medial portion of the OFC in the representation 
of the value of goods and/or actions (Kable and Glimcher, 2007; 
Plassmann et al., 2007; Hare et al., 2008); for a review, see (Kable and 
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decisions involving the integration of multiple sources of evidence 
(Christoff et al., 2001), or in arbitrating between currently active 
task goals (Koechlin et al., 1999). Others have suggested that this 
region is involved in triggering the choice to explore away from an 
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FIguRe S2 | Correct (red dots) and incorrect (green dots) reaction times 
in liberal, neutral and conservative conditions. Lines show the best fits to 
these data from the prior model.

FIguRe S1 | (A) Voxels responding to reward. Responses that scaled with 
reward obtained (−5, −3, −1, 1, 3, or 5 points) were observed in (1) the posterior 
cingulate cortex (peak: −3, −45, 48, T(20) = 12.84), (2) the ventromedial prefrontal 
cortex (peak: 0, 45, −9, T = 7.39), and (3) the ventral striatum (peak right: 12, 6, 
−15, T(20) = 8.26; peak left: −12, 6, −15, T(20) = 7.13), as well as in the visual 
cuneus and lateral OFC. (B) Voxels responding to parametrically with increasing 
reaction time. These were found in (1) the SMA/preSMA (peak: −3, 6, 51, 
T(20) = 9.09), (2) the anterior insular cortex (peak right: 36, 21, 3, T(20) = 10.1; peak 
left: −48, 12, 0, T(20) = 9.45), (3) the parietal (peak: −45, −33, 54, T(20) = 12.98) and 
premotor (peak: −24, −6, 60; T(20) = 10.72) cortices predominantly on the left, 
and the (4) the thalamus (peak left: −9, −18, 6, T(20) = 5.84; peak right: 9, −18, 9, 
T(20) = 7.2) as well as in more dorsal prefrontal regions. All voxels reported in this 
figure survive an uncorrected threshold of at least p < 1 × 10−5).
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