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in neurocognitive function. Indeed, for some neurocognitive pro-
cesses, time may be as important, or possibly more important, than 
space in terms of the underlying neurocomputational mechanisms.

Functional localization: the standard approach
The way we as cognitive neuroscientists typically link dynamics 
of the brain to dynamics of behavior is by correlating increases or 
decreases of some measure of brain activity with the cognitive or 
emotional state we hope the subject is experiencing at the time. 
The primary dependent measure in the majority of these studies is 
whether the average amount of activity – measured through spik-
ing, event-related-potential or -field component amplitude, blood 
flow response, light scatter, etc. – in a region of the brain goes up 
or down. In this approach, the aim is to reduce this complex and 
enigmatic neural information processing system to two dimensions: 
Space and activation (up/down). The implicit assumption is that 
cognitive processes can be localized to specific regions of the brain, 
can be measured by an increase in average activity levels, and in 
different experimental conditions, either operate or do not.

It is naïve to think that these two dimensions are sufficient for 
characterizing neurocognitive function. The range and flexibility 
of cognitive, emotional, perceptual, and other mental processes is 
huge, and the scale of typical functional localization claims – on 
the order of several cubic centimeters – is large compared to the 
number of cells with unique physiological, neurochemical, mor-
phological, and connectional properties contained in each MRI 
voxel. Further, there are no one-to-one mappings between cognitive 
processes and brain regions: Different cognitive processes can acti-
vate the same brain region, and activation of several brain regions 
can be associated with single cognitive processes. In the analogy of 
Plato’s cave, our current approach to understanding the biological 
foundations of cognition is like looking at shadows cast on a region 
of the wall of the cave without observing how they change dynami-
cally over time. This makes it difficult to disentangle shadows cast 
by different but overlapping shapes (Figure 1).

are cognitive processes localizable in space?
Yes and no, depending on the spatial resolution and the cognitive 
process in question. At a gross level (e.g., several cubic centimeters), 
some cognitive functions appear to be localized to specific brain 
regions when using specific statistical thresholding: The hippoc-
ampus seems to be the locus of some aspects of long-term memory 
formation and retrieval; decoding the visual world occurs largely 
in occipito-temporal regions, volitional control of the body occurs 
in cortical motor areas and basal ganglia nuclei.

The fusiform gyrus has received considerable attention for the 
issue of functional localization. There is a region of the fusiform 
gyrus that increases in activation for a wide range of visual object 
categories, but that activates preferentially for faces relative to other 

shadows in a cave
As cognitive neuroscientists, we want to understand how the dynam-
ics of the brain lead to dynamics in cognition and behavior. But the 
brain is perhaps the most complex, mysterious, and enigmatic infor-
mation processing system that we know of, and cognitive processes 
remain debated in terms of how they should be defined, categorized, 
and tested. Thus, the problems cognitive neuroscientists try to solve 
are poorly defined on both the cognitive and neuroscience sides.

In some sense, we have come a long way: Specific cognitive/per-
ceptual/emotional/motor functions have been linked to activity in 
specific brain regions or circuits of brain regions; neurochemicals 
have been identified as necessary or relevant for certain aspects of 
emotion, learning, memory, and action; white matter pathways 
linking different brain regions have been implicated in specific 
diseases and behavioral characteristics. Compared to a century ago, 
when Overton (1897) suggested that thinking is done by “forehead 
cells,” our understanding of the brain has increased tremendously. 
But even “simple” processes like categorizing a visual stimulus as 
animal or automobile, maintaining a specific amount of force on 
a grip, or slowing response time after errors, turn out to have com-
plex neural correlates that remain debated and poorly understood.

In his famous cave allegory, Plato describes prisoners who spend 
their lives chained to the side of a bridge in the middle of a cave. The 
bridge is a passageway, and people, animals, and vehicles traverse 
the bridge to get through the cave. The cave is lit from behind the 
bridge by a fire. But the prisoners are chained such that they cannot 
see what is behind them; they see only the flickering shadows cast 
in front of them on the cave wall. The prisoners do not know what 
shapes produce the shadows, and, because they spent their entire 
lives looking at shadows, these shadows – and not the shapes that 
produce them – are their view of reality.

We are like the prisoners in the cave. There are platonic “biologi-
cal bases of behavior” that we want to discover (the figures walking 
on the pathway behind the prisoners), but all we can observe are the 
shadows cast on the wall (empirical data) by the flame in the back 
of the cave (methods and technologies); our concept of the nature 
and shape of the figures (theories) are shaped by past experience, 
intuition, and, perhaps most importantly, how the light of the flame 
defines the shadows (Figure 1).

However, we have one important advantage over the prisoners 
in Plato’s cave: We can, to some extent, control the flame. We can 
develop new technologies and methodologies, and we can combine 
methodologies in interesting, novel, and insightful ways. We can 
compare the shadows cast on the wall using different materials to 
fuel the fire.

Here I will argue that too much attention has been focused on 
investigating neurocognitive function based on attempts to localize 
processes in space (i.e., functional localization). Instead, fruitful 
insights might arise from considering time to be an important factor 
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comparable visual stimuli (Sergent et al., 1992; Haxby et al., 1994; 
Puce et al., 1996). For this reason, the “fusiform face area” is argued 
to be a modular region in the brain that specializes in processing 
faces (Kanwisher et al., 1997; Kanwisher, 2000). It seems clear that 
some computations related to face perception can be localized to 
this particular brain area (Kanwisher, 2010). Even in the case of 
face recognition, however, which is one of the strongest examples 
of a localized “module” of cognitive processes, it remains unclear 
what this localization of function entails – alternative accounts 
suggest that this area is specialized not for faces per se, but instead 
for categories of expertise (Gauthier et al., 2000a,b; Tarr and 
Gauthier, 2000) or individuation (Gauthier et al., 2000b; Rhodes 
et al., 2004). Further, distributed and overlapping representations 
of faces and objects may exist in larger regions of ventral temporal 
cortex (Haxby et al., 2001).

There are many spatial scales in the brain that differ in size by 
several orders of magnitude, ranging from single neurons to corti-
cal columns to meso- and macroscopic populations. It is unclear 
what the appropriate spatial scale is for functional localization, 
or whether different neurocognitive processes can or should be 
localized at different spatial scales. Dynamics at some spatial scales 
may or may not be relevant for dynamics at other spatial scales 
(Kiebel et al., 2008).

It is tempting to argue that lesion studies provide the most 
compelling evidence for functional localization: The necessity of 
a region in a particular cognitive process. However, lesion studies 
must be interpreted with caution. First, there may be functional 
and anatomical reorganization/compensation, even within hours 
or days of damage (Sanes et al., 1988). Second, lesions may cause 
impairments indirectly by destroying a “way-point” for information 
flow or fibers-of-passage (Goulet et al., 1998). Third, it is uncertain 
how the functioning of a damaged (human or non-human animal) 
brain can be generalized to functioning of a healthy human brain.

Since the emergence of functional neuroimaging, most studies 
are based on the principle of functional localization –  searching 
for a one-to-one mapping between region of the brain and psy-
chological process. It is no exaggeration to state that standard 
preprocessing and analysis protocols (mass-univariate statistics 
and cluster-based thresholding) are specifically designed to find 
relationships between particular brain locations and particular 
cognitive functions. The underlying assumptions are that a mass 

of brain tissue uniformly increases in activity in response to an 
experiment event, and that this region must be “big enough” to be 
considered significant. Typically, however, in these studies there 
is not a single region that is activated, but rather many regions, 
producing long tables of activated areas. These long tables are dif-
ficult to reconcile with the assumptions of the functional localiza-
tion approach. This lack of one-to-one mappings between brain 
region and function (Price and Friston, 2005) may in fact be an 
accurate reflection of the physically separated but functionally 
linked networks that underlie neurocognitive function (Varela 
et al., 2001; Guye et al., 2008; Bassett and Bullmore, 2009; Bullmore 
and Sporns, 2009).

At a spatial scale finer than possible with fMRI, cognitive proc-
esses appear even less localizable and more dependent on sparse 
spatial patterns (Fujisawa et al., 2008; Quian Quiroga and Panzeri, 
2009). For example, the homuncular mapping of the body on 
primary motor area M1 is considerably more distributed and 
with considerably more overlap among regions than tradition-
ally thought (Schieber, 2001). Even the concept of a cortical 
“column” – a small-scale functionally homologous unit of cor-
tex – upon close inspection turns out to be a mysterious and fluid 
idea that oversimplifies the complex mesoscopic organization of 
the brain; columns are less functionally and anatomically homo-
geneous, and more dynamic over time and space, than previously 
thought (Rockland, 2010).

It should be noted that some physiological functions appear 
to be more reliably localized in the brain, for example the super-
chiasmatic nucleus may be the “location” of our circadian rhythm. 
Clearly, these areas influence cognitive function, but the cognitive 
processes typically under investigation in cognitive neuroscience 
studies do not appear to be precisely localizable.

In summary, functional localization has been a useful approach 
and was critical for the development of cognitive neuroscience the-
ories, experiments, and statistical measures. However, its simplicity 
may be its greatest limitation. It is likely that the brain uses more 
dimensions for information processing than just space and activa-
tion magnitude. This is not meant to imply that space is irrelevant 
for information coding/processing, or that functional localization is 
inappropriate or invalid. Rather, after this initial period of studying 
functional localization and learning about its merits and limita-
tions, it is perhaps useful to consider time as an important factor 

Figure 1 | Like prisoners in Plato’s cave, our view of the brain is shaped by how we measure it (i.e., the shadows cast by the flame). Drawing by Dr. Sanne de Wit.
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bands, there is considerable bandwidth for information pro-
cessing. For example, it has been suggested that multiple alpha 
sub-bands can be functionally dissociated in their roles in 
memory processes (Klimesch et al., 2007). Thus, if different 
neurons are “tuned” to different frequency bands (Jacobs et al., 
2007), multiple functionally distinct neural networks can spa-
tially coexist and be dissociated according to frequency band 
or spatiotemporal patterns (Akam and Kullmann, 2010).

Even from the activity recorded from a single electrode, 
there are already multiple domains of information, including 
frequency (the speed of the oscillation), power (the amount of 
the energy in a frequency band at a point in time), and phase 
angle (the position of the oscillation along the sine wave, driven 
by the state of excitation of the population of neurons; Figure 2; 
see also Makeig et al., 2004). And because these dimensions are 
largely independent of each other, a single electrode in a single 
location in the brain can measure multi-dimensional local neu-
ral dynamics. Interactions can occur across these dimensions 
(e.g., phase–amplitude cross-frequency coupling), suggesting 
that information may be embedded not only in the dynamics 
of one of these dimensions, but also in the interactions among 
dimensions. And because they all occur in the neural popula-
tion contributing to one electrode, analyses based on spatial 
localization of average activity levels might be blind to some 
of these dynamics. Indeed, space is another dimension that 
increases the potential for information processing and complex-
ity: Interactions can occur across physically separated networks 
over different frequency bands, and among power and phase.

What this means is that information processing schemes that 
take advantage of time can utilize many dimensions (informa-
tion processing possibilities) simultaneously. This is in contrast 
with the standard functional localization approach, which, as 
discussed earlier, is limited to two dimensions: Functions occur 
in specific regions or are indexed by specific ERP components, 
and are either operating or are not.

(3) There is arguably selection pressure for individuals and spe-
cies carrying neural systems that can decode the sensory world, 
make decisions, and adapt behavior faster and more efficien-
tly. The fastest known behavioral response that is mediated 
by a neural connection is the snap closure of the mandible 
of the Odontomachus ant. It takes 8 ms for a hair to trigger 
receptor cells in the jaw, the message to be sent via the largest 
axons in insects or vertebrates to the brain, and then another 
signal to be sent back to the muscles to snap the jaw closed 
(Holldobler and Wilson, 1998). This mechanism provides 
the Odontomachus an unparalleled ability to attack and to 
escape (by snapping the jaws against a hard surface, the ant 
can fly backward over 40 cm). Although this neurally media-
ted response is rigid, its speed and efficiency give this ant a 
significant advantage during battle.

As neural systems and the environments in which they oper-
ate become more complex and less predictable, flexibility, and 
adaptability become critical. However, speed of processing has 
not entirely been compromised. Relatively simple perceptual 
decisions such as gradient orientation or color discrimination 
can be done with high accuracy with as little as 10 ms presenta-
tion time (Bodelon et al., 2007). Indeed, the macaque brain may 

for neural information processing. Time will help forge new brain-
behavior links and may provide insights into human neurocognitive 
function beyond what can be learned from focusing on space.

it’s about time
Time is a factor that is often though not always ignored in human 
cognitive neuroscience, and yet several considerations suggest 
that neural systems may use time as a factor for information 
coding, processing, and transmission. Indeed, time may be as  
important – if not more important – than space for information 
processing, particularly at the level of small populations of cells 
(spatial scale of millimeters to a few centimeters). As described 
below, “time” refers to rapid dynamics in electrochemical signals 
that are often but not necessarily oscillatory. Time as latency in 
functional MRI (e.g., the hemodynamic response peaks about 6–8 s 
after a stimulus) or an event-related component (e.g., the average 
voltage deflection 300–600 ms after a stimulus) is not taking into 
account the rich information that appears to be embedded in the 
temporal dynamics of neural activity.

There are several empirical and theoretical reasons why time may 
be in important factor in neural information processing.

(1) There appears to be information carried in the precise timing 
of activity within and across physically separated areas of the 
brain that cannot be measured by overall activity levels in any 
individual brain region. “Information” here can refer simply to 
quantifiable measures of brain activity that predict the cogni-
tive state or behavioral response of the subject. In some cases, 
temporal dynamics of neural activity are significantly related 
to the task events while the overall amount of activity avera-
ged over time is not. These kinds of results provide direct evi-
dence that information in the brain is embedded in the rich 
temporal landscape of electrophysiological activity, and is lost 
when averaging activity over larger periods of time. Examples 
will be outlined in a subsequent section.

(2) In an information-theoretic sense, time provides a large number 
of possibilities for information to be represented and processed 
continuously, rapidly, and simultaneously (in parallel) in multi-
ple functionally distinct networks that overlap in time and space. 
Time provides a rich source of complex multi-dimensional 
data in which information can be represented and processed. 
The large amount of information provided by the temporal 
dynamics of neural activity arises in part because electrophy-
siological activity of the brain is strongly oscillatory. These 
oscillations reflect rhythmic fluctuations in the excitability of 
populations of neurons (Tiesinga et al., 2008; Wang, 2010). 
Oscillations occur in multiple temporal and spatial scales, ran-
ging from ultra-slow oscillations with a periodicity of tens of 
seconds over much of the cortex during deep sleep (Steriade, 
2006) to ultra-fast oscillations with a periodicity of a few milli-
seconds within patches of somatosensory cortex (Curio, 2000). 
Oscillations that seem most relevant for cognitive processes 
range from delta (∼1–4 Hz) and theta (∼4–8 Hz) to gamma 
(∼30–100 Hz; for general reviews of neural oscillations, see 
Varela et al., 2001; Buzsaki and Draguhn, 2004; Traub et al., 
2004). Because activity in one frequency band may occur inde-
pendently of, and in parallel with, activity in other frequency 
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afforded by time may have been more likely to reproduce 
and pass on their genes (and neural processing power and 
coding schemes).

(4) Neural activity is inextricably linked to cognition and beha-
vior in time, but not in space. There is a direct relationship 
between the timeframe of brain processes and the time-
frame of the corresponding cognitive and behavioral pro-
cesses. A fast neural process implies a fast cognitive process, 
and this in turn determines the speed of initiating or adju-
sting behavior. Indeed, our cognitive and neural systems 
appear well equipped for estimating and attending to time 
(Ivry, 1996; Fuster, 2001; Coull, 2004; Coull et al., 2004; 
Nobre et al., 2007; Ivry and Schlerf, 2008). In contrast, the 
spatial organization of neural processes is arbitrarily rela-
ted to cognitive processes. Thus, whether a neural process 
is at one or another location, or distributed throughout 
the brain, has no implications for the corresponding 
(location of) behavior, except if physical location can con-
strain temporal dynamics. For example, would we be any 
different if our amygdalae were 3 cm more dorsal than 
they currently are? What about if they took 3,000 instead 
of 170 ms to respond to a threatening facial expression? 
The fact that brain activity is time-locked, rather than 
space-locked, to behavior implies that time will be highly 
informative about behaviorally relevant neurocognitive 
mechanisms. The brain does indeed exhibit some spatial 
relationships with the body (e.g., homuncular organiza-
tion of sensorimotor regions, retinotopic organization of 

require as little as 30 ms to make simple color discriminations 
(Stanford et al., 2010). Cortical responses to sensory deviancy 
occur within 100 ms of stimulus onset (e.g., the mismatch 
negativity; Garrido et al., 2009; Kujala and Naatanen, 2010). 
Seemingly complex processes in humans also occur rapidly. 
Electrical signals generated in the medial frontal cortex that 
reflect errors or response conflict (when multiple responses are 
activated but only one can be selected) begin shortly before the 
button press or stimulus onset, and peak about 80 ms after the 
button press (van Veen and Carter, 2002; Padilla et al., 2006). 
When subjects are given external performance feedback, elec-
trical activity over medial frontal cortex begins to distinguish 
positive from negative feedback as early as 200 ms after feed-
back presentation (Gehring and Willoughby, 2002; Holroyd 
and Coles, 2002). In some cases, these signals predict deci-
sions subjects make a few seconds later (Cohen and Ranganath, 
2007; Cavanagh et al., 2010). Some of these processes occur in 
absence of conscious awareness (van Gaal et al., 2008; Cohen 
et al., 2009d).

Though not conclusive in establishing that there must be 
information processing/transfer schemes based on temporal 
coding, these observations indicate that processing infor-
mation as rapidly as possible while maintaining flexibility 
and adaptability is ubiquitously needed and often observed. 
In other words, to the extent that speed and flexibility in 
responding to unpredictable changes in the environment 
provides an advantage for survival, animals containing neu-
ral systems that take advantage of the processing capabilities 

Figure 2 | Although eeg is traditionally conceptualized as two-dimensional [time and space (A)], EEG data contain more information, including frequency 
and power/phase (B,C).
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a lack of differences in event-related potentials between condi-
tions may be difficult to interpret because many aspects of neural 
dynamics that are not apparent in event-related potentials might 
differ between conditions, e.g., if the neurocognitive processes 
under investigation recruits non-phase-locked dynamics or high 
frequency oscillations.

Thus, event-related potentials are useful for providing a glimpse 
of the global neural processing, but may be of limited use for elu-
cidating complex electrophysiological dynamics.

examples oF time-embedded inFormation in human 
electrophysiological activity
Considerable work has been done in animals and in computational 
models regarding how time may be used to encode information. 
Examples include: The timing of the first post-stimulus action 
potential in auditory cortex encodes sound amplitude (Heil, 2004); 
the timing of hippocampal place cells with respect to simultaneous 
theta phase improves statistical localization of the rats’ position 
based on physiology data (Jensen and Lisman, 2000; Jensen, 2001) 
and the timing of those action potentials provides independent 
information compared to average firing rate (Huxter et al., 2003); 
the timing of specific neuron firing in early visual cortex encodes 
gradient phase (Aronov et al., 2003); synchronization of local field 
potentials has been suggested to link disparate sensory modalities 
to form unified representations (i.e., binding; Engel et al., 1997; 
Singer, 1999; Fries et al., 2007); computational simulations sug-
gest that the phase of neural activity may be sufficient for pattern 
completion (Knoblauch and Palm, 2001; Gutierrez-Galvez and 
Gutierrez-Osuna, 2003).

These and other findings in animals have laid important 
groundwork for understanding how the brain might use time to 
encode information, and have inspired many studies in human 
neuroscience. But because the spatial scale investigated in animals 
and model simulations is smaller than what is typically available 
in humans, and because it is not known to what extent human 
neurocognitive functions operate the same as those of other ani-
mals (though presumably some fundamental principles are con-
served across species), this section will focus on relevant work 
in humans.

Although the literature on time-based coding schemes and 
sophisticated analyses of electrophysiological data is overshad-
owed by the literature on fMRI-based localization studies, there 
are too many relevant and insightful findings to discuss all them 
all here. Instead, this section will highlight three examples of how 
mathematical analyses of the temporal dynamics of human elec-
trophysiological recordings have shed insight into neurocognitive 
function. These examples also illustrate cases in which standard 
localization- and hemodynamic-based analyses would be unlikely 
to reveal these brain dynamics (e.g., because no overall increase in 
space-averaged activity occurs).

(1) Cross-frequency coupling. Cross-frequency coupling refers to 
a relationship between activities in two different frequency 
bands. For example, the power of gamma (∼30–80 Hz) oscil-
lations may vary as a function of the phase of theta (∼4–8 Hz). 
Cross-frequency coupling may be used for information coding 
if the lower frequency oscillations coordinate the activity of sub-

visual areas), although these examples still exhibit some 
arbitrary relations to behavior, such as the left–right and 
up–down crossovers.

(5) Controversies develop in cognitive neuroscience over the precise 
functional role of a specific region, but some of these controver-
sies may be moot because multiple functionally distinct neural 
networks may coexist in the same space. Indeed, in these cases, 
empirical evidence may seem conflicting because different 
theories can be supported by different experiments. For exam-
ple, it is widely accepted that the anterior cingulate cortex and 
surrounding medial frontal cortex is involved in monitoring 
actions (Ridderinkhof et al., 2004). However, different theore-
tical accounts have argued over whether this region monitors 
conflict, errors, or error likelihood (Botvinick, 2007; Carter 
and van Veen, 2007); signals that behavioral adjustments 
are needed (Kerns et al., 2004) or implements them directly 
(Taylor et al., 2007); integrates information about reward 
history or uncertainty (Rudebeck et al., 2008; Rushworth and 
Behrens, 2008), and so on. Considering that there is empirical 
evidence for all of these propositions, it seems likely that fun-
ctionally different networks can emerge from the same popu-
lation of anterior cingulate cortex neurons, depending on task 
demands (Fujisawa et al., 2008). Indeed, event-related poten-
tial studies demonstrate that within ∼300 ms, medial frontal 
scalp potentials can code for several different behaviorally 
relevant experiment parameters including reward magni-
tude, probability, and significance for learning (Philiastides 
et al., 2010).

In other words, rather than attempting to resolve a grand-
unified-theory for the function of a region of the brain (in 
this example, the anterior cingulate cortex), attention might 
be better spent trying to understand how that area may utilize 
temporal schemes to compute and coordinate the diverse func-
tions suggested by empirical evidence.

event-related potentials
Most cognitive EEG studies report event-related potentials. The 
event-related potential is simply the time-domain average of EEG 
traces locked to the onset of some experimental event such as stimu-
lus onset or button press. The reasoning behind this approach is 
that background noise in the EEG is averaged out over many trials, 
and the remaining fluctuations reflect activation of different cogni-
tive systems. Peaks are named according to voltage sign relative to 
a pre-stimulus period and approximate peak time (N100, P200, 
etc.). The components are thought to reflect activation of modu-
lar cognitive or perceptual systems (Luck, 2005). The dependent 
variable is usually the peak amplitude of some component (e.g., 
the P300), the average voltage over some larger time window, or a 
peak-to-peak or base-to-peak amplitude difference.

To the extent that neuroelectric dynamics are oscillatory and 
non-phase-locked to the event, a considerable amount of cogni-
tively relevant information in EEG may be lost in time-domain 
averaging (Makeig et al., 2004). This is illustrated in Figure 3. 
Although an extreme example, non-phase-locked (and, therefore, 
not observed in ERP) dynamics are often observed in real data. 
Indeed, many of the findings reviewed in the next section would 
not be observed using event-related potentials. For this reason, 
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familiar visual perception (Demiralp et al., 2007), and errors 
due to lapses in attention (Mazaheri et al., 2009), consistent 
with alpha–gamma coupling in posterior cortex during visual 
perception (Osipova et al., 2008). Within the medial frontal 
cortex, alpha–theta coupling has been linked to reward and 
punishment evaluation (Cohen et al., 2009c).

Cross-frequency coupling is unlikely to elicit a hemody-
namic response as measured with fMRI. The reason is that 
frequency band-specific activity levels may not change over 
a timescale measurable with fMRI; rather, it is the precise 
timing of activity that fluctuates, e.g., 10–20 times per fMRI 
 measurement (Figure 4A).

Although there are potential methodological issues to be 
considered (discussed later), examination of cross-frequency 
coupling has the potential to shed insight into human neuro-
cognitive function beyond what is possible though fMRI or 
time-domain averages ERP averaging. Cross-frequency cou-
pling measures a putative mechanism by which spatially over-
lapping but functionally heterogeneous neural networks can 
be activated and coordinated in a rapid timescale.

(2) Inter-regional oscillatory synchronization. In addition to dyna-
mics across frequency bands within the same region of space, 
information may be embedded in the temporal relationship 
of activity over space. Inter-regional phase synchronization 
(a frequency band-specific measure of functional connecti-
vity) may underlie information transfer and co-processing 
(Knight, 2007; Womelsdorf et al., 2007). And because changes 
in phase synchronization may occur without any concomi-

 populations of cells that use higher frequency oscillations to 
process information. Cross-frequency coupling has been sugge-
sted to be a generic brain mechanism for information processing 
(Lisman, 2005; Jensen and Colgin, 2007), and it likely involves 
dynamics of multiple neural populations that overlap in time 
and space. There are several ways in which cross-frequency cou-
pling can be quantified (Mormann et al., 2005; Canolty et al., 
2006; Cohen, 2008; Tort et al., 2010); different methods may be 
suited for different purposes, but all methods generally test for 
a modulation of activity in one frequency band as a function of 
activity in another (typically, relatively lower) frequency band.

Cross-frequency coupling has been linked to a variety of 
human cognitive processes (Canolty et al., 2006; Sauseng et al., 
2008; Axmacher et al., 2010; Griesmayr et al., 2010). For exam-
ple, increases in gamma–theta synchronization strength were 
reported to increase with working memory load, although there 
was no reported significant change in overall oscillation power 
at those specific frequency bands (Axmacher et al., 2010). These 
findings support a model of working memory that predicts that 
theta acts to coordinate activation of stimulus representations 
stored in gamma band activity (Lisman, 2010). The human 
nucleus accumbens exhibits robust gamma–alpha coupling that 
differentiates reward from punishment feedback (even though 
average gamma power does not differentiate these conditions; 
Cohen et al., 2009a), and predicts, on a trial-by-trial level, the 
extent to which patients adjusted their decision-making time 
on subsequent trials (Cohen et al., 2009b). Posterior alpha and 
gamma power have been linked to frontal theta phase during 

Figure 3 | Simulated data showing how information contained in raw eeg data [(A,B): single “trials”] is not apparent in the event-related potential (C) but is 
readily observable in the time–frequency representation (D). Matlab code to run this simulation is available from the author.
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of either frontal or visual cortices, suggesting that there was 
information contained in the inter-regional interactions that 
could not be localized to either region alone. Granger causality 
has also been used to show that consciously perceived words, 
compared to subliminally presented words, are associated 
with long-range directional synchronization (Gaillard et al., 
2009). Partial directed coherence analyses demonstrate changes 
in directional cortical wave activity during sleep (Kaminski 
et al., 1997; De Gennaro et al., 2004), and interactions among 
motor, frontal, and parietal systems during response switching 
(Gladwin et al., 2006).

More generally, these findings illustrate an important feature 
of brain network phenomena: Widespread neural networks may 
synchronize and desynchronize within hundreds of millisec-
onds (Varela et al., 2001). This is important because ideas about 
connectivity and network functioning are becoming increasing 
popular in human and cognitive neuroscience (Sporns, 2010). 
From the findings reviewed here, it seems that many instances 
of brain functional network formation are transient and may 
be best measured using measurement technologies that take 
maximal advantage of time. Indeed, transient synchronizations 
in absence of changes in local power might not elicit a hemo-
dynamic response or event-related potential (Figure 4B).

(3) Microstates and other transient electrophysiological events. 
Microstates refer to brief periods of cortical electrophysio-
logical activity that are topographically stable over tens to 
hundreds of milliseconds (Lehmann et al., 2006). Microstates 
fluctuate 1–2 orders of magnitude faster than the hemodyna-
mic response, and have been linked to visual perception, error 
processing, and resting state (Muller et al., 2005; Britz and 
Michel, 2010). They are sometimes accompanied by hemo-

tant changes in power (Heinzle et al., 2007), there might be 
information embedded in the temporal relationship between 
areas that is not localized to either region alone.

For example, inter-regional oscillatory synchronization 
may be the mechanism by which the medial frontal cortex 
interacts with other brain systems, such as lateral prefrontal 
cortex to implement cognitive control after errors in speeded 
reaction-time (Hanslmayr et al., 2008; Cavanagh et al., 2009) 
or reinforcement learning (Cavanagh et al., 2010) tasks, with 
occipital cortex to bias sensory processing during go/no-go 
tasks in which no-go cues were difficult to perceive (Cohen 
et al., 2009d), or with the nucleus accumbens during reinforce-
ment learning and reward anticipation (Cohen et al., 2009b, 
2011). Long-range cortico-cortical phase synchronization has 
also been linked to conscious visual perception (Melloni et al., 
2007), working memory (Palva et al., 2010), and other aspects 
of top-down control (Engel et al., 2001). Further, several brain 
disorders ranging from schizophrenia to ADHD to Alzheimer’s 
are associated with aberrant patterns of oscillatory phase syn-
chronization (Uhlhaas and Singer, 2006; Stam, 2010).

Although some measures of phase synchronization are non-
directional, meaning it is not possible to determine the direction 
with which oscillations are traveling, the temporal precision of 
EEG allows one to estimate directional flow of activity. For 
example, using spectral Granger causality (Granger, 1969; Cui 
et al., 2008), we found that directed synchronization from the 
medial frontal cortex to the occipital cortex increased after 
response errors in a visually guided go/no-go task in which 
no-go cues were difficult to perceive (Cohen et al., 2009d). 
These patterns of inter-regional directional synchrony were 
not mirrored in the levels of activation (oscillation power) 

Figure 4 | Simulated data showing how information may be contained in 
the fine temporal landscape of M/eeg data, and how that information 
might go undetected using more temporally coarse methods such as fMri. 
(A1) An increase in theta-band oscillation power peaking at 2 s is not different 
between conditions “blue” and “red.” However, close inspection of the grayed 
areas reveals cross-frequency coupling (A2) such that gamma power is 

concentrated at different theta phase regions between the conditions (A3). (A4) 
shows the predicted hemodynamic response (red and blue lines are overlapping). 
(B1) Bandpass filtered EEG data from two channels, and (B2) their phase angle 
time series. (B3) shows band-specific power at each site; note that inter-channel 
synchronization (B4) does not occur at times of increased power at either site, 
showing the independence of local activity (B3) and network synchronization (B4).
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ity, partial directed coherence, cross-correlations, etc. Several free 
toolboxes for analyzing data exist, including but not limited to 
EEGLAB, fieldtrip, spm8, BIOSIG, and BSMART. Some labs write 
in-house code for processing and analyses.

The analyses used in this research are not simple, nor are the 
methods standardized and widely used. New methods and ideas 
are continuously injected into the field. Although this “wild west” 
atmosphere provides researchers with the flexibility and freedom to 
custom-tailor mathematical and statistical approaches that can be 
optimized for the hypotheses at hand, it also makes entry into the 
field difficult for scientists who lack the background and experience 
in signal processing and programming.

However, even without performing relatively complex 
 frequency- or synchronization-based analyses, single-trial analyses 
(in the time-domain or time–frequency domain) can better link 
cognitive/behavioral to neural dynamics compared to cross-trial 
averaging (Debener et al., 2007; Mars et al., 2008; Rousselet et al., 
2008), and may be particularly relevant for linking EEG to fMRI 
(Debener et al., 2005, 2007; De Martino et al., 2010).

One practical issue is that because of volume conduction – the 
influence of deep and/or distant sources to many electrodes – it 
may be difficult to distinguish true inter-regional synchronization 
from artificially high synchronization due to different electrodes 
recording the same activity. This is a larger issue for EEG than for 
MEG. Ignoring zero-phase lag synchronizations may combat this 
issue, although there may be biologically relevant zero-phase lag 
synchronizations in the brain (Konig et al., 1995; Rajagovindan and 
Ding, 2008; Vicente et al., 2008). Another approach is to apply a 
spatial high-pass filter or other spatial transform such as current-
source-density or Laplacian, which helps minimize contributions 
of deep/distant sources that project to many electrodes (Kayser and 
Tenke, 2006; Srinivasan et al., 2007), or independent components 
analysis, which estimates unique sources of variance in the brain 
(Makeig et al., 1997). Finally, one can estimate the cortical genera-
tors via beamforming, minimum-norm estimates, or dipole mod-
eling, and then perform analyses in source-space. This approach 
is also not without drawbacks, because there is no unique inverse 
solution for any given cortical topography, and different methods 
may yield different estimates of source activity. Of course, there are 
advantages and limitations to every methodological approach that 
one must consider when interpreting results.

limitations oF time-based inFormation coding/
processing schemes
Recording electrophysiological or electromagnetic activity is 
not a perfect measurement of neurocognitive function. M/EEG 
recordings, like any methodology, have limitations that must 
be considered.

Mixing in the temporal or spatial domain is a critical issue. 
Mixing refers to when multiple spatially overlapping populations 
contribute to the signal recorded at a single electrode. An exam-
ple of mixing in the temporal domain that cannot be recovered 
through time–frequency analyses is illustrated in Figure 5. Another 
(extreme) example of mixing is if two populations of pyramidal 
cells are equally simultaneously active, but aligned in opposing 
orientation (e.g., on different sides of a sulcus). In this case, their 
electrical fields will cancel and the researcher may be left with the 

dynamic responses (Britz et al., 2010; Musso et al., 2010). 
Other brief cortical events include endogenous “bursts” of 
frontal alpha asymmetry (Allen and Cohen, 2010) that have 
been linked to depression. Transient bursts of synchronized 
electrophysiological activity also occur during sleep, namely 
spindles and ripples, which have been linked to memory for-
mation and dream recall (Axmacher et al., 2008).

Relatedly, transient pre-stimulus oscillatory dynamics predict 
performance on the upcoming trial. For example, specific pre-
 stimulus alpha and theta phases predict performance on perceptual 
(Mathewson et al., 2009; Busch and VanRullen, 2010), memory 
(Guderian et al., 2009), cognitive control (Mazaheri et al., 2009; 
O’Connell et al., 2009; Eichele et al., 2010), and switching (Gladwin 
et al., 2006) tasks. These and other similar findings demonstrate 
that there are transient but cognitively meaningful brain states that 
modulate upcoming task-related performance. Indeed, these pre-
stimulus dynamics may be causally involved in perceptual processes, 
as suggested by TMS manipulations (Romei et al., 2010). Because 
these pre-stimulus dynamics are transient and driven by phase and 
not amplitude, they are unlikely to be observed with time-domain 
averaging or the hemodynamic response (see Mathewson et al., 
2009, Figure 4 for an example with empirical data).

In conclusion, these examples illustrate cases in which cognitively 
meaningful brain dynamics are related to the subjects’ cognitive state, 
or predict upcoming performance, while overall levels of average activ-
ity do not. The point here is not to argue that spatiotemporal averaging 
or low temporal resolution imaging is invalid or inappropriate; rather, 
the point is to stress that there are vast and complex neural dynamics 
that are relevant for understanding neurocognitive function that occur 
“below the radar” of fMRI and event-related potentials.

how to study time-based processing schemes
In humans, the primary tools for studying electrophysiological 
activity are EEG and MEG. In some cases, it is possible to record 
EEG intracranially directly from patients with electrodes implanted 
for epilepsy or deep brain stimulation. Due to the high temporal 
resolution of EEG – a sample of electrical/magnetic brain activ-
ity can be recorded from each of dozens or hundreds of channels 
multiple times each millisecond – it is possible to examine the rich 
temporal landscape of cortical activity, and observe phasic changes 
in synchronization and desynchronization that occur over tens to 
hundreds of milliseconds. As discussed earlier, these complex corti-
cal dynamics occur 1–2 orders of magnitude faster than the BOLD 
response, and may be lost in time-domain EEG averaging during 
standard event-related potential analyses.

There are several advanced mathematical tools that are appro-
priate for extracting the fine spatiotemporal oscillation dynamics 
from EEG data, including but not limited to short-time fast Fourier 
transform, complex wavelet convolution, multi-taper (in combina-
tion with Fourier transform or wavelet convolution), autoregres-
sive coefficients, and bandpass filtering with the Hilbert transform. 
With careful parameter selection, these methods can produce 
nearly identical results (Quian Quiroga et al., 2002; Bruns, 2004), 
although in practice each approach has advantages and limitations. 
Functional connectivity can be estimated through spectral coher-
ence, phase synchronization, power correlations, Granger causal-
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recruit areas of cortex that span gyri and sulci. Finally, due to 
the large number of dimensions available in EEG data and thus 
a huge number of possible statistical comparisons across time, 
space, frequency, and power/phase (and interactions among these 
dimensions such as inter-electrode cross-frequency coupling), 
there is a large potential for spurious Type I errors, particularly 
during exploratory analyses. There is a fine balance between, on 
the one hand, being driven by and constraining oneself to a priori 
hypotheses based on theory and previous research, and, on the 
other hand, being open to unexpected and unpredicted but robust 
patterns of results in the data.

Despite the limitations, examination of neural temporal dynam-
ics has the potential to provide insight into human neurocognitive 
function beyond what is possible using approaches based on spa-
tial localization (e.g., fMRI) or time-domain averages (e.g., ERP). 
Arguably, these limitations and considerations reinforce the idea 
that analyzing the rich temporal dynamics of neural activity bring 
us closer to the true complexity of brain function.

misleading conclusion that no neural activity has occurred. Mixing 
is particularly problematic in EEG due to volume conduction and 
smearing/smoothing of the signal through the skull. Spatial filters 
such as current-source-density seem to be appropriate for obtaining 
relatively finer spatial resolution and linking inter-regional synchro-
nization to cognitive processes (Srinivasan et al., 2007; Winter et al., 
2007). Independent components analysis may recover some activity 
from mixed sources if those sources are temporally differentiable. 
Complex mixing from spatially overlapping and non-stationary 
sources may be less mathematically tractable to separate.

Another limitation of M/EEG is that they are limited to record-
ing only certain kinds of activity from certain kinds of neurons 
(e.g., pyramidal and not interneuron) arranged in certain geomet-
ric orientations relative to the skull. Another theoretical limitation 
is that EEG measures only neural populations that are tangentially 
aligned to the skull, whereas MEG measures neural populations 
that are radially aligned to the skull. This is mostly a theoretical 
argument, however, because in practice many cognitive processes 

Figure 5 | example of how mixing in the time-domain can affect the 
time–frequency representation. The activities of two spatially overlapping and 
similarly oriented neural networks (left two columns), one generating a 10-Hz 
rhythm and the other generating a 0.3-Hz rhythm, sum and are recorded by a 
single electrode (third column). At right is the time–frequency representation. 
Note that neither population on its own exhibits cross-frequency coupling. 

Oscillation baseline shifts and amplitude asymmetries have been described 
before and linked to cognitively relevant event-related potentials (Nikulin et al., 
2007; Mazaheri and Jensen, 2008). This simulation demonstrates that the 
sensitivity of M/EEG measurements is not infallible, although they may still 
provide deeper insights into neurocognitive function compared to functional 
localization.
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open questions and Future directions
Following is a non-exhaustive list of important foci for future 
research on temporal coding and processing schemes in human 
neurocognitive function.

(1) What is the neurobiological meaning of different features of 
oscillation dynamics? The different features are power and 
phase within each frequency range, and all interactions they 
entail (e.g., power–power correlation, phase–phase synchro-
nization, power–phase synchronization). Within each fre-
quency band, estimates of power and phase are independent 
of each other (with the exception of zero power, in which case 
it is not possible to estimate phase, although in practice this 
is not often observed in real data at neurocognitively relevant 
frequencies). Sometimes, results obtained from power and 
from phase are convergent; other times, divergent. How do 
we interpret results from power, phase, phase-power cohe-
rence, phase–phase synchrony, etc., and what do they mean 
for network dynamics, brain function, and information 
processing transfer?

It is tempting to speculate that the number of simultaneously 
active neurons drives power whereas the timing of the activity 
of those neurons drives phase. However, this is likely overly 
simplistic. For example, both power and phase  information 
can be used to predict spike-timing (Rasch et al., 2008). For 
human neuroscience, perhaps the best way to dissociate the 
roles of power and phase for neurocomputation may come 
from careful and clever experimental design in which different 
predictions are made for how measures of power vs. phase are 
related to different cognitive processes.

(2) What spatial scales are relevant and how are dynamics at diffe-
rent spatial scales related? Dynamic and oscillatory neural acti-
vity can be measured at a large range of spatial scales, from 
within a single neuron to populations of millions of neurons 
(Varela et al., 2001; Kiebel et al., 2008; Moran and Bar-Gad, 
2010). What is the appropriate spatial scale for neurocognitive 
function? Are different scales more appropriate for different 
cognitive functions? Are multi-spatial-scale interactions rele-
vant for cognition?

There have been few investigations into how electrophysi-
ological measurements at different spatial scales are related to 
each other. For example, in a study investigating the relation-
ship between single-/multi-unit activity and EEG in a monkey, 
even the best combination of EEG characteristics (in this case, 
delta phase and gamma power) recorded from a small electrode 
accounted for only ∼15% of the variance of multi-unit activity 
(Whittingstall and Logothetis, 2009). Similarly, in an intrac-
ranial EEG study in humans, we found that time-domain cor-
relation coefficients and theta-band phase synchrony between 
Cz and each intracranial electrode in the medial frontal cortex 
showed significant correlations/synchrony, but the magnitude 
was low (in the range of 0.1–0.2; Cohen et al., 2008). Thus, 
surface EEG may reflect a complex mixture of spatiotemporal 
dynamics from widespread areas. Whether and to what extent 
the divergence between activities recorded from multiple spa-
tial scales is meaningful for cognitive function deserves more 
empirical attention.

what about space?
Accepting that information in the brain is coded precisely in time 
but distributed in space does not necessarily imply that space is 
irrelevant for neural representations and computations. Indeed, a 
logical consequent of this proposition is that space-based analy-
ses should focus on distributed patterns rather than localization. 
Space and time may even have similar hierarchical computational 
organizational principles (Kiebel et al., 2008).

The best spatial resolution currently possible is a few cubic 
millimeters with high-resolution fMRI, although this resolu-
tion refers to the hemodynamic response, which may be spa-
tially dispersed from its neural origin, following vascular features 
(Disbrow et al., 2000). Nonetheless, to the extent that representa-
tions extend over space at the level of several millimeters or cen-
timeters, fMRI seems to be a valid tool for uncovering sparse or 
distributed representations. Spatial multivariate approaches that 
analyze patterns of activity over space (voxels) have sometimes 
proven more sensitive than standard approaches (i.e., testing 
whether the activity at all voxels is different from zero, or dif-
ferent between conditions) at linking brain states to cognitive 
states. On the one hand, this might be expected considering that 
multivariate regressions use more parameters to characterize the 
data – indeed, it remains to be discussed in the literature what 
the actual probability of Type I errors are and what preventa-
tive statistical measures are appropriate – but nonetheless the 
pattern of spatial activation sometimes predicts subjects’ cog-
nitive state better than the overall amount of activity averaged 
over space (Haynes and Rees, 2006; Norman et al., 2006). Still, 
many applications of spatial multivariate approaches continue 
to rest on functional localization assumptions, for example by 
considering multivariate patterns only from small clusters of 
contiguous voxels, and then moving this “spotlight” around the 
brain (Kriegeskorte et al., 2006), or by selecting voxels for multi-
variate analyses that exhibit significant modulation by condition 
in a standard localization-based general linear model (Norman 
et al., 2006).

Relatively low spatial resolution techniques like EEG and 
MEG can also be used to examine distributed spatial patterns 
of electrical activity. For example, spatial multivariate patterns 
in EEG have been used to dissociate neural computations of 
magnitude from valence in a feedback-driven learning task 
(Philiastides et al., 2010) and word categories (Chan et al., 2010). 
Multivariate pattern analyses may also be informative across 
frequencies in one brain region. For example, visual gradient 
orientation can be predicted from frequency multivariate pat-
terns (Duncan et al., 2010), even though the neurons coding 
for directional gradients are at a spatial scale too small to be 
resolved by MEG.

Distributed, multivariate spatial analyses in fMRI vs. multivari-
ate time–frequency analyses in M/EEG may provide complemen-
tary information: Whereas examining complex spatial patterns in 
fMRI data may be suitable for understanding how representations 
are “stored” or activated, examining complex temporal patterns 
in M/EEG data may be more amenable for understanding the 
operations/computations performed on those representations, 
and how those representations are shared or transferred across 
space and over time.
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2007; Mayes et al., 2009). It may also be possible to train 
subjects to modulate intrinsic oscillatory activity through 
“neurofeedback,” which can modulate cognitive processes 
(Gruzelier et al., 2006; Keizer et al., 2010; Zoefel et al., 2010) 
as well as neuroplasticity and corticomuscular excitability 
(Ros et al., 2010).

(5) Are all time-based coding/processing schemes oscillatory? 
Time–frequency decomposition is often used because of 
visually observable oscillations in EEG data, the link to 
animal research examining local field potential oscilla-
tions (Buzsaki and Draguhn, 2004), the fact that time–fre-
quency methods are becoming increasingly common in the 
field, and the continuous advances in computing power, 
which facilitate analyses. But is all (or even most) time-
based information in the brain contained in oscillation 
dynamics?

In fact, in time–frequency decomposition analyses such as 
wavelet convolution or Fourier transform, oscillations them-
selves in different frequency bands are not directly measured; 
instead, what is measured is the extent to which the time- 
domain signal correlates with wavelets or sine waves at specific 
frequency bands with specific windows in time. Because any 
time-domain signal can be represented as a sum of sine waves of 
different phases, frequencies, and amplitudes, non-oscillatory 
responses will be captured by time–frequency decomposition. 
Yeung et al. (2004) attempted to use this feature of Fourier’s 
theorem to argue that the error-related negativity may not be 
an oscillatory theta response, although their simulation of a 
“non-oscillatory response” was a half-sine wave at theta fre-
quency (for more discussion, see Trujillo and Allen, 2007). 
Yeung et al.’s theoretical point is well taken, however, and there 
may be non-oscillatory dynamics that appear oscillatory due 
to time–frequency decomposition. Indeed, even in absence 
of sharp peaks in EEG power spectra over extended record-
ing periods, frequency band-specific temporal dynamics are 
apparent (He et al., 2010), and can be characterized using 1/f 
functions (Miller et al., 2009). Broadband activity also seems 
to be relevant for some aspects of sensory–motor functioning 
(Onton and Makeig, 2009; Miller et al., 2010).

One could argue that whether the neural dynamics are truly 
oscillatory is not important; rather, what is important is that a 
time–frequency approach to analyzing electrophysiology data 
may provide new insights into neurocognitive function beyond 
what could be learned from simple time-domain averaging. 
However, whether the dynamics are truly oscillatory in nature 
might be relevant to linking human work to in vivo animal 
recordings, computational models, etc.

There are other ways in which information can be encoded 
in time that are not necessarily oscillatory. For example, there 
might be temporal “states” or patterns (Stam and van Dijk, 
2002; Osterhage et al., 2007). Dynamics unfolding over time 
could be decoded using pattern-based analyses like support-
vector machines or multivariate regressions, in which activity 
at different points in time are weighted to produce a linear or 
non-linear integration of activity over time (and/or frequency; 
Duncan et al., 2010) that best predicts the subjects’ internal 
mental state or cognitive process.

(3) How does anatomical connectivity shape functional connecti-
vity? Synchronous activity across widespread brain regions 
is believed to reflect functionally unified networks, such 
that physically separate neural ensembles are co-processing 
the same information or transferring information back and 
forth. Presumably, functional interactions – the nature and 
strength with which different nodes in a brain network com-
municate with each other – are shaped by the anatomical 
connections bridging those nodes. But what aspects of fun-
ctional connectivity are shaped by anatomical connectivity: 
The strength of connectivity? Frequency range of synchro-
nous interactions? Timing and phase delay? Which aspects of 
structure–function relationships are relevant for cognitive/
behavioral functioning?

This question may be best addressed by linking EEG meas-
ures to white matter properties, measured through diffusion 
tensor imaging (DTI; Johansen-Berg and Rushworth, 2009), 
which takes advantage of the fact that the diffusion of water 
molecules in the brain is constrained by white matter fiber 
bundles. DTI data provides meaningful information about 
local white matter integrity and also the strength of tracts 
connecting different brain regions (Johansen-Berg, 2010). 
For example, visual stimulus-evoked gamma oscillations are 
correlated across subjects with corpus callosum white matter 
integrity (Zaehle and Herrmann, 2010). Similar findings have 
been observed with resting state EEG connectivity (Teipel et al., 
2009) and medial frontal cortical responses to errors (Westlye 
et al., 2009).

(4) Are oscillations causally involved in neurobiological pheno-
mena? Establishing causation is critical to science. To date, 
much of the current work on the role of oscillations in human 
neurocognitive function has been correlative. Although this 
is a necessary initial step, once spatial–temporal-frequency 
characteristics of neurocognitive processes are characterized, 
oscillation dynamics should be experimentally manipulated, 
ideally without explicitly manipulating the cognitive process 
thought to rely on those dynamics. There are several tools for 
addressing issues of causality, including transcranial magne-
tic stimulation, which has been shown to transiently perturb 
ongoing oscillations (Van Der Werf and Paus, 2006) that are 
dominant to each cortical region (Rosanova et al., 2009), and 
can impair cognitive processes such as attention that are thou-
ght to rely on specific oscillation patterns (Hamidi et al., 2009; 
Sauseng et al., 2009; Romei et al., 2010). Pharmacological 
manipulations may also be useful, although pharmacological 
agents may have complex effects on several brain systems and 
functions, so it may be difficult to interpret such results solely 
in the context of oscillations.

Oscillations can also be exogenously manipulated through 
stimulus flicker: When a visual stimulus is flashed at a par-
ticular frequency (like a strobe-light), regions of the brain 
that process that stimulus begin to oscillate at that fre-
quency. In addition to “tagging” particular stimulus features 
(Herrmann, 2001; Ding et al., 2006), flicker has been shown 
to module – in task/frequency band-specific ways – attention 
and memory processes (Silberstein et al., 2001; Williams, 
2001; Ellis et al., 2006; Williams et al., 2006; Wu and Yao, 
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