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of the habenula in error monitoring and as a critical modulatory 
relay between the limbic forebrain structures and the midbrain. 
In another study, co-activation of the habenula and midbrain 
was observed during negative but not positive feedback (Shepard 
et al., 2006). A recent study with more detailed anatomical map-
ping confirmed the habenula as the locus responding to negative 
rewards (Salas et al., 2010). However, it remains unclear whether 
the habenula signals to the VTA/SN in outcome monitoring, as has 
been demonstrated in non-human primates. The current study 
aimed to fill this gap of knowledge.

In previous studies, we observed activation of subcortical struc-
tures including the habenula during error trials in a stop signal 
task (Li et al., 2008b). Here we substantiated the functional con-
nectivity of the habenula and VTA/SN, using psychophysiological 
interaction (PPI), Granger causality analysis (GCA), and mediation 
analysis. PPI is a voxel-wise method widely used to examine whether 
correlation in activity between two brain areas is modulated by 
psychological contexts (Friston et al., 1997; Gitelman et al., 2003; 
Stephan et al., 2003; O’Reilly et al., 2008; Hare et al., 2009). We 
used PPI to establish greater connectivity between the habenula 
and VTA/SN during stop error (SE) as compared to stop success 
(SS) trials. However, PPI does not specify the direction of influence 
between brain regions. In contrast, GCA has been used to model 
directional interaction between blood oxygenation level dependent 
(BOLD) time series (Goebel et al., 2003; Roebroeck et al., 2005; 

IntroductIon
Goal-oriented behavior requires outcome monitoring. Many 
studies in non-human primates described the role of the saliency/
reward pathway, involving the ventral tegmental area (VTA) and 
substantia nigra (SN), in outcome and error processing (Montague 
et al., 1996; Schultz et al., 1997; Holroyd and Coles, 2002; Schultz, 
2002; Fiorillo et al., 2003; Bayer and Glimcher, 2005). Neurons in 
the VTA/SN increase activity to an unexpected reward and decrease 
activity to a missing reward. These roles of VTA/SN in error-related 
cognitive processes have recently been substantiated in humans 
(D’Ardenne et al., 2008; Carter et al., 2009; Duzel et al., 2009).

Anatomical and electrophysiological studies converged to sug-
gest a function of the epithalamus/habenula in regulating out-
come-related signals in the VTA/SN (Matsuda and Fujimura, 1992; 
Scheibel, 1997; Ji and Shepard, 2007; Matsumoto and Hikosaka, 
2007, 2009; Hikosaka et al., 2008; Morissette and Boye, 2008). For 
instance, neurons in the habenula and midbrain were each excited 
and inhibited by no-reward-predicting targets; and electrical stimu-
lation of lateral habenula (LH) decreased activity in the dopamin-
ergic neurons (Matsumoto and Hikosaka, 2007).

In an earlier functional magnetic resonance imaging (fMRI) 
study of humans performing a target prediction task, hemody-
namic responses were observed in the anterior cingulate cortex, 
inferior anterior insula, and habenula during negative feedback 
(Ullsperger and von Cramon, 2003). The authors suggested a role 
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Abler et al., 2006; Stilla et al., 2007; Deshpande et al., 2008; Duann 
et al., 2009; Sato et al., 2009; Ide and Li, 2011). We thus used GCA 
to ascertain the direction of connectivity between the habenula and 
VTA/SN. Furthermore, with mediation analysis we established that 
the habenula projected directly to the VTA/SN.

MaterIals and Methods
subjects and behavIoral task
Fifty-nine healthy adult subjects (30 men, 22–45 years of age) par-
ticipated in the study according to a protocol approved by Yale 
University Human Investigation Committee.

We employed a simple reaction time task in this stop signal 
paradigm (Logan et al., 1984; Li et al., 2006, 2008a, 2009). There 
were two trial types: “go” and “stop,” randomly intermixed. A small 
dot appeared on the screen to engage attention at the beginning of 
a go trial. After a randomized time interval (fore-period) between 1 
and 5 s, the dot turned into a circle (the “go” signal), prompting the 
subjects to quickly press a button. The circle vanished at a button 
press or after 1 s had elapsed, whichever came first, and the trial 
terminated. A premature button press prior to the appearance of the 
circle also terminated the trial. Approximately three quarters of all 
trials were go trials. The remaining one quarter were stop trials. In 
a stop trial, an additional “X,” the “stop” signal, appeared after and 
replaced the go signal. The subjects were told to withhold button 
press when they saw the stop signal. Likewise, a trial terminated at 
button press or when 1 s had elapsed since the appearance of the 
stop signal. The stop signal delay (SSD) – the time interval between 
the go and stop signal – started at 200 ms and varied from one stop 
trial to the next according to a staircase procedure: if the subject 
succeeded in withholding the response, the SSD increased by 64 ms; 
conversely, if they failed, SSD decreased by 64 ms (Levitt, 1971). 
There was an inter-trial-interval of 2 s. Subjects were instructed to 
respond to the go signal quickly while keeping in mind that a stop 
signal could come up in a small number of trials. All participants 
had a practice session outside the scanner and completed four 
10-min runs of the task in the scanner. Depending on the actual 
stimulus timing (trials varied in fore-period duration) and speed 
of response, the total number of trials varied slightly across sub-
jects in an experiment. With the staircase procedure we anticipated 
that the subjects would succeed in withholding their response in 
approximately half of the stop trials.

As a control experiment, we also imaged 30 subjects during a 
10-min resting state session, in which subjects were instructed to 
stay awake and relaxed, with their eyes closed (Duann et al., 2009).

IMagIng protocol
Conventional T

1
-weighted spin echo sagittal anatomical images 

were acquired for slice localization using a 3-T scanner (Siemens 
Trio). Anatomical images of the functional slice locations were next 
obtained with spin echo imaging in the axial plane parallel to the 
AC–PC line with TR = 300 ms, TE = 2.5 ms, bandwidth = 300 Hz/
pixel, flip angle = 60°, field of view = 220 mm × 220 mm, 
matrix = 256 × 256, 32 slices with slice thickness = 4 mm and no 
gap. Functional, BOLD signals were then acquired with a single-
shot gradient echo echoplanar imaging (EPI) sequence. Thirty-two 
axial slices parallel to the AC–PC line covering the whole brain 
were acquired with TR = 2,000 ms, TE = 25 ms, bandwidth = 2,004  

Hz/pixel, flip angle = 85°, field of view = 220 mm × 220 mm, 
matrix = 64 × 64, 32 slices with slice thickness = 4 mm and no 
gap. Three hundred images were acquired in each session.

spatIal pre-processIng of braIn IMages
Data were analyzed with Statistical Parametric Mapping 8 
(Wellcome Department of Imaging Neuroscience, University 
College London, UK). Images from the first five TRs at the begin-
ning of each trial were discarded to enable the signal to achieve 
steady-state equilibrium between RF pulsing and relaxation. 
Images of each individual subject were first corrected for slice tim-
ing, realigned (motion-corrected) and unwarped (Andersson et al., 
2001; Hutton et al., 2002). A mean functional image volume was 
constructed for each subject for each run from the realigned image 
volumes. These mean images were co-registered with the high reso-
lution structural image and then segmented for normalization to 
an Montreal Neurological Institute (MNI) EPI template with affine 
registration followed by non-linear transformation (Ashburner 
and Friston, 1999, 2005). The normalization parameters deter-
mined for the mean functional volume were then applied to the 
corresponding functional image volumes for each subject. Finally, 
images were smoothed with a Gaussian kernel of 6 mm at full 
width at half maximum.

general lInear ModelIng
We followed our previous studies in the statistical modeling of 
imaging data (Li et al., 2006, 2008a). Briefly, four trial types were 
distinguished: go success (G), go error (F), SS, and SE trials. A 
statistical analytical design was constructed for each individual 
subject, using the general linear model (GLM) with the onsets of 
go signal in each of these trial types convolved with a canonical 
hemodynamic response function (HRF) and with the tempo-
ral derivative of the canonical HRF entered as regressors in the 
model (Friston et al., 1995). We entered reaction time (RT) and 
SSD as parametric modulators for go and stop trials, respectively, 
in the GLM. Realignment parameters in all six dimensions were 
also entered in the model. The data were high-pass filtered (128 s 
cutoff) to remove low-frequency signal drifts, and serial autocor-
relation caused by aliased cardiovascular and respiratory signals 
was corrected by a first-degree autoregressive or AR (1) model 
(Friston et al., 2000; Della-Maggiore et al., 2002). Across subjects, 
there were: 281.6 ± 19.6 G trials, 11.2 ± 12.0 F trials, 47.2 ± 4.7 SS 
trials, and 40.8 ± 7.2 SE trials. We did not include F trials in the 
current analyses, because they comprised less than 3% of all trials.

In the first-level analysis, we constructed for each individual 
subject a contrast SE > SS in order to identify regional brain activa-
tions associated with error detection (Li et al., 2008b). Our previ-
ous work showed that the contrasts SS > G and SE > G activated 
brain regions that overlapped those of SE > SS, including the 
anterior cingulate cortex (both SS > G and SE > G) as well as the 
thalamus and midbrain (SE > G; Li et al., 2008b). Thus, to dem-
onstrate the specificity of the contrast SE > SS in PPI, we examined 
SE > G and SS > G for comparison (see below). The contrast images 
(con) of the first-level analysis were used for random-effect analysis 
(Penny et al., 2004) to obtain group T maps using a one-sample 
t test. Brain regions were identified using an atlas (Duvernoy, 2003; 
Mai et al., 2008).
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time series were entered into multivariate autoregressive (MAR) 
modeling (Harrison et al., 2003). We used the Akaike Information 
Criterion (AIC), which imposes a complexity penalty on the 
number of parameters and avoids over-fitting of the data (Akaike, 
1974). The application of MAR modeling required that each ROI 
time series was covariance stationary, which we examined with the 
Augmented Dickey Fuller (ADF) test (Hamilton, 1994). The ADF 
test verified that there was no unit root in the modeled time series. 
The residuals of MAR modeling were used to compute the Granger 
causality measures (F values) of each possible connection between 
ROIs. Since MAR modeling often involves highly interdependent 
residuals (Deshpande et al., 2009), we used permutation resam-
pling (Hesterberg et al., 2005; Seth, 2010) to obtain an empirical 
null distribution of no causality, as suggested in Roebroeck et al. 
(2005), in order to estimate the F

critical
, and assess the statistical 

significance of Granger causality measures. With resampling, we 
produced surrogate data by randomly generating time series with 
the same mean, variance, autocorrelation function, and spectrum 
as the original data (Theiler et al., 1992), as implemented in previ-
ous EEG (Kaminski et al., 2001; Kus et al., 2004), and fMRI studies 
(Deshpande et al., 2009). We used binomial test to assess statistical 
significance in group analysis (Duann et al., 2009; Uddin et al., 
2009); for each connection, we counted the number of subjects 
that had F > F

critical
 (i.e., significant connection) and estimated its 

significance using a binomial distribution with parameters n = 59 
trials and p = q = 0.5 (same probability to observe a connection or 
not). Multiple comparisons were corrected for false discovery rate 
(FDR; Genovese et al., 2002).

We applied the same multivariate GCA procedures to resting 
state data of the 30 subjects, following our previous work (Duann 
et al., 2009), as an additional control for false positive connectivities. 
The absence of functional connectivity in the resting data would 
suggest that the task-related connectivity is not an artifact of HRF 
variability across the brain (see next section for more details).

GCA: methodological considerations
Although some investigators argued the importance of causality 
based on temporal precedence and the utility of GCA in connec-
tivity analyses (e.g., Roebroeck et al., 2009), others discussed the 
limitations of GCA (e.g., Friston, 2009). As detailed in a recent 
review of GCA in neuroimaging (Bressler and Seth, 2010), the util-
ity of Granger causality measures depends on successfully estimat-
ing autoregressive (AR) models of stochastic processes. Successful 
applications of GCA to fMRI data (Roebroeck et al., 2005; Stilla 
et al., 2007; Bressler et al., 2008; Deshpande et al., 2009; Duann et al., 
2009; Kayser et al., 2009; Ide and Li, 2011) appeared to have some 
elements in common. First, it is crucial that the modeled time series 
are wide-sense stationary (WSS; i.e., they have constant mean and 
variance). Otherwise, non-stationary time courses are known to 
produce spurious regression results (Granger and Newbold, 2001). 
Second, it is also important to have a number of observations (time 
points) adequate to estimate the AR model coefficients. In the cur-
rent GCA modeling, by concatenating BOLD time series across 
four sessions for each individual (a total of 1,180 time points) after 
de-trending and normalization, we obtained time series (averaged 
inside each ROI) that were sufficiently long and covariance station-
ary, the latter verified by the ADF test. Third, we applied spatial 

psychophysIologIcal InteractIon
We used PPI to describe how functional connectivity between brain 
regions was altered as a result of psychological context (Friston 
et al., 1997). We hypothesized that the habenula showed greater PPI 
with the VTA and SN during SE compared to SS trials. With the 
contrast SE > SS, we identified a mask of the habenula comprising 
two symmetric spheres each of 6 mm in radius and centered at MNI 
coordinates [−1, −25, 1] and [1, −25, 1]. This mask was well within 
the area identified as habenula in Ullsperger and von Cramon, 2003 
(Talairach and approximate MNI coordinates: [−5/6, −25, 8] and 
[−6/6, −25, 5]). On the basis of the GLM, we extracted the time 
series of the first eigenvariate of the BOLD signal of the habenula 
for each individual subject. The eigenvariate value, inside a region 
of interest (ROI), corresponds to the average BOLD signal weighted 
by the voxel significance, and it is more robust to outliers (Gitelman 
et al., 2003). This time series constituted the physiological variable. 
The time series were de-convolved to remove the effects of HRF, 
multiplied by the psychological variable (SE > SS, i.e., “1” for SE 
and “−1” for SS conditions), and re-convolved with the canoni-
cal HRF to obtain the interaction term or PPI variable (Gitelman 
et al., 2003). The three variables were entered as regressors in a 
whole-brain GLM. PPI analysis was performed for each individual 
subject, and the resulting positive contrast images (i.e., “1” for the 
PPI regressors) were used in random-effect group analysis (Penny 
et al., 2004). Group results were reported for p < 0.001, uncorrected. 
To check whether PPI results were specific to the contrast SE > SS, 
we also used SE > G and SS > G as psychological variables of PPI 
for comparison.

To ascertain the specificity of brain regions of PPI with the 
habenula during error processing, we performed another PPI 
analysis with a “control” seed region, involving the error activated 
thalamic cluster (MNI coordinates [14, −12, 5] and [−14, −20, 10], 
5,600 mm3), exclusively masked by a larger area encompassing the 
habenula (two spheres of 10 mm in radius and centered at [−1, 
−25, 1] and [1, −25, 1]). This mask was to ensure the exclusion of 
the habenula from the control seed region.

For the regression slope analysis, multivariate GCA, and media-
tion analysis, we referred to the habenula and the regions identified 
with PPI as the ROIs or only the latter brain regions as ROIs.

MultIvarIate granger causalIty analysIs
The analysis of PPI identified areal interaction but did not specify 
the direction of influence. In order to confirm our hypothesis 
that the habenula signals the VTA in error detection and not the 
other way around, we used a multivariate GCA (Stilla et al., 2007; 
Deshpande et al., 2009) to examine the direction of the influence 
between the ROIs of PPI and the habenula.

Multivariate GCA was implemented as in our previous work 
(Duann et al., 2009; Ide and Li, 2011). We considered two models; 
the first one included the habenula and all four regions identified 
from PPI as ROIs, and the second model included the habenula 
and three PPI regions (all except the globus pallidus; see below). 
Multivariate GCA was performed for individual subjects. For each 
subject and each ROI, a summary time series was computed by aver-
aging across voxels inside the ROI for each time point. These average 
time series were concatenated across four sessions, after de-trending 
and normalization (Ding et al., 2000). Afterward, the pre-processed 
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but not temporal filtering to the original BOLD signals because 
temporal (e.g., bandpass) filtering is known to introduce severe 
confounds in GCA of neuroimaging time series (Florin et al., 2010; 
Seth, 2010). These procedures were also successfully applied in our 
previous studies (Duann et al., 2009; Ide and Li, 2011).

An additional consideration is the effects of HRF variability 
and down-sampling of BOLD signals on autoregressive mod-
eling. A popular approach is to use the “difference of influence” 
(DOI) between two regions (Roebroeck et al., 2005; Stilla et al., 
2007) to ameliorate these effects. However, this approach is no 
longer valid for multivariate GCA. In such cases, a useful practice 
is to analyze Granger causality during different experimental 
conditions (e.g., by studying both task and resting conditions; 
Duann et al., 2009; Kayser et al., 2009), since the effects of HRF 
variability and signal down-sampling are not expected to vary 
across conditions.

A few studies in the literature presented less successful results 
from GCA. In a study of simultaneous electroencephalographic 
recordings and fMRI in rats, David et al. (2008) showed spurious 
connectivities derived from GCA due to HRF variability. However, 
one should note that the HRF variability was outside normal 
physiological range. Furthermore, in a recent investigation using 
simulated BOLD signals by convolving a standard HRF with local 
field potentials recorded from macaque cortex, Deshpande et al. 
(2010) showed that, even considering real and normal range of HRF 
variability (Handwerker et al., 2004) and a signal-to-noise ratio 
of 1 unit and a TR = 2 s, GCA reliably detected neuronal delays 
around 700 ms (Deshpande et al., 2010). Witt and Meyerand (2009) 
reported poor performance of GCA but it is not clear whether 
these experiments were biased because of simulated fMRI time 
series generated using Dynamic Causal Modeling (Friston, 2009) 
or whether these simulated time series were covariance stationary.

Taken together, although GCA presents some technical chal-
lenges, we believe that, when it is carefully applied and done without 
over-interpretation of the results, GCA is a useful exploratory tool 
to delineate effective connectivity of the complex human brain.

MedIatIon analysIs
We performed mediation analyses to further characterize functional 
connectivity between the ROIs (MacKinnon et al., 2007), using the 
toolbox M3, developed by Tor Wager and Martin A. Lindquist1. 
Mediation analyses are widely used in social and economic research 
to examine whether a relationship between two variables is mediated 
by an intervening variable (Maccorquodale and Meehl, 1948; Baron 
and Kenny, 1986). It was successfully applied to fMRI of emotion 
regulation (Wager et al., 2008; Lebrecht and Badre, 2008) and more 
recently to analyses of functional connectivity (Hare et al., 2010). In 
a mediation analysis, the relation between the independent variable 
X and dependent variable Y, i.e., X → Y, is tested to see if it is signifi-
cantly mediated by a variable M. The mediation test is performed 
by employing three regression equations (MacKinnon et al., 2007):

Y = i
1
 + cX + e

1

Y = i
2
 + c′X + bM + e

2

M = i
3
 + aX + e

3

where a represents X → M, b represents M → Y (controlling for X), 
c′ represents X → Y (controlling for M), and c represents X → Y. 
In the literature, a, b, c, and c′ were referred as path coefficients or 
simply paths (MacKinnon et al., 2007; Wager et al., 2008), and 
we followed this notation. Variable M is said to be a mediator 
of connection X → Y, if (c − c′) is significantly different from 0, 
which is mathematically equivalent to the product of the paths 
a × b (MacKinnon et al., 2007). If the product a × b and the paths 
a and b are significant, one concludes that X → Y is mediated by 
M. In addition, if path c′ is not significant, it indicates that there 
is no direct connection from X to Y and that X → Y is completely 
mediated by M. Note that path b is the relation between Y and M, 
controlling for X, and it should not be confused with the correla-
tion coefficient between Y and M.

Mediation analyses: methodological considerations
As with other methods based on structural equation models, one 
assumed that all relevant variables are included in the analysis; 
i.e., one could not rule out the existence of mediating factors not 
tested in the model (Lebrecht and Badre, 2008). In addition, media-
tion analysis is only valid upon correct specification of the causal 
orders (MacKinnon et al., 2007). We believe that these limitations 
were addressed to a significant extent in the current study: whole-
brain PPI identified all relevant ROIs functionally connected to the 
habenula during errors; and multivariate GCA provided impor-
tant information regarding causal orders. Finally, as pointed out 
by Wager et al. (2008), an additional limitation of using mediation 
analysis in fMRI is that models are made on the basis of naturally 
occurring variance over subjects, and thus conclusions are made 
with the assumption that inter-subject variability does not affect the 
coupling between dependent variables. This restriction also applies 
to the study. One could control the variability by simply removing 
the regression outliers (Chatterjee and Hadi, 1986) or, alternatively, 
develop multilevel mediation models that consider the mediation 
path coefficients as random effects (MacKinnon et al., 2007).

results
braIn regIons of ppI wIth the habenula
With general linear modeling we examined and confirmed error-
related regional brain activations during the stop signal task (Li 
et al., 2008b). Compared to SS, SE trials evoked greater activations 
in the medial frontal cortex including the dorsal anterior cingulate 
cortex (dACC) and pre-supplementary motor area (preSMA), as 
well as the anterior inferior insulas, thalamus, habenula, and struc-
tures in the midbrain, at p < 0.05, corrected for family-wise error 
(FWE) of multiple comparisons (Figure 1; Table 1).

In PPI, we identified brain regions that were functionally con-
nected with the habenula. Compared to SS trials, SE trials evoked 
greater PPI with the habenula in the VTA/SN, bilateral anterior 
inferior insula, amygdala, and the internal segment of the globus 
pallidus (GPi), at p < 0.001, uncorrected (Figure 2; Table 2). To 
test our hypothesis targeting the VTA/SN, we also performed a 
ROI analysis, using small volume correction for a spherical mask 
centered at [2, −16, −10] and 6 mm in radius (Carter et al., 2009). 
The results identified a peak of activation at [6, −16, −14], p < 0.005, 
corrected for FWE. In addition, on the basis of the literature (Seeley 
et al., 2007; Hikosaka et al., 2008; Haber and Knutson, 2010), 1http://www.columbia.edu/cu/psychology/tor/

Frontiers in Human Neuroscience www.frontiersin.org March 2011 | Volume 5 | Article 25 | 4

Ide and Li Habenula and error processing

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Because voxel smoothing in image pre-processing diminished 
spatial specificity of the results, we examined brain regions of PPI 
with the thalamic cluster “minus the habenula” as a control. The 
results showed that, at the same statistical threshold, regions show-
ing PPI with the thalamus included the occipital cortices, fusiform 
gyrus, temporal cortex, insula, supplementary motor area, and pre-
frontal cortex (Figure 5; Table 3). No activation was observed in 
the VTA/SN region (p < 0.01, uncorrected). Thus, the PPI of the 
VTA/SN, bilateral amygdala, and the GPi appeared to be specific 
to the habenula.

granger causalIty analysIs
With multivariate GCA, we determined the direction of influence 
between the habenula and ROIs of PPI (Figure 6). In one model we 
included the habenula, VTA/SN, GPi, bilateral amygdala, and insula. 
To minimize model complexity and facilitate interpretation of the 
results, we combined bilateral amygdala as a single ROI. Similarly, 
we combined bilateral insula as a single region. For each individ-
ual subject we tested all possible connections between regions at 
p < 0.05, corrected for FDR, against an empirical statistical null dis-
tribution (see Materials and Methods). In a binomial test (p < 0.05) 
for the group, the results showed significant projections from the 
habenula to the VTA/SN, insula, and amygdala, but not to the GPi 
(Figure 6A). Thus, in a second model, we excluded the GPi, and 
again obtained significant projections from the habenula to the 
VTA/SN but not from the VTA/SN to the habenula (Figure 6B). 
Thirty-eight of the 59 participants also showed a significant projec-
tion from the amygdala to the VTA, compared to 44 with projection 
from the habenula to the VTA/SN.

In contrast to these task-related connectivity patterns, no signifi-
cant Granger causality was observed (binomial test, p > 0.50, in both 
models) for any of the connections in the resting state time series, 
providing evidence that these task-related connections were not 
spurious, such as resulting from HRF variability across the brain.

the insula, amygdala, and GPi were also significant at p < 0.05, 
 corrected for FWE, after small volume correction using anatomical 
masks from the Automated Anatomical Labeling atlas (Tzourio-
Mazoyer et al., 2002). Conversely, no brain regions showed greater 
connectivity with the habenula during SS compared to SE trials 
(p < 0.01, uncorrected).

In comparison, PPI with SE > G and SS > G as psychological 
variables each revealed activations in the bilateral insula (SE > G) 
and precuneus (G > SE), and the right insula (SS > G) as well as 
posterior cingulate cortex and the precuneus (G > SS), p < 0.001, 
uncorrected (Figures 3 and 4). No foci were observed in the area 
of the VTA/SN or the amygdala (p < 0.01, uncorrected).

FIgure 1 | error-related activations during a stop signal task: stop 
error > stop success; p < 0.05, corrected for FWe. dACC, dorsal anterior 
cingulate cortex; SMA, supplementary motor area; PMC, primary motor 
cortex. The inset on the top depicts the error-related activations in relation to 
regions functionally connected to habenula (in green, results from 
psychophysiological interaction, Figure 2).

Table 1 | Brain regions showing greater activation during stop error (Se), compared to stop success (SS), trials in the stop signal task (p < 0.05, 

corrected for FWe).

Cluster Z-value MNI coordinate (mm) Side Identified brain region

size (mm3)

  x y z  

23,296 12.56 −2 16 42 L Dorsal anterior cingulate cortex

 9.98 2 8 62 R Pre-supplementary motor area

 9.33 −10 20 34 L Dorsal anterior cingulate cortex

69,952 9.70 18 −64 6 R Calcarine sulcus/lingual gyrus

 9.37 6 −68 −14 R Vermis VI

 9.25 −14 −20 10 L Thalamus (including the habenula and midbrain)

9,216 7.37 −42 12 −6 L Inferior insula

 7.34 −54 8 −6 L Superior temporal cortex

 6.81 −34 20 10 L Anterior insula

6,592 6.93 −42 −8 46 L Precentral cortex

 6.63 −38 −20 54 L Postcentral cortex

 6.51 −46 −16 62 L Precentral cortex

2,240 5.91 −54 −20 18 L Supramarginal gyrus

 5.67 −46 −32 22 L Superior temporal cortex
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FIgure 2 | regions showing psychophysiological interaction (in hot color) 
with the habenula (blue) during stop error as compared to stop success in 
the stop signal task. T maps were thresholded at p < 0.001, uncorrected. The 
insets on the top highlight locations of the right amygdala (left) and the ventral 

tegmental area/substantia nigra (VTA/SN, right) on sagittal and coronal sections. 
Interestingly, this VTA/SN cluster has little overlay with error-related activations in 
the midbrain area (see inset in Figure 1), i.e., these identified dopaminergic 
midbrain clusters were mostly not activated during stop error > stop success.

Table 2 | Brain regions with psychophysiological interaction with the habenula during stop error > stop success (p < 0.001, uncorrected).

Cluster Z-value MNI coordinate (mm) Side Identified brain region

size (mm3)

  x y z  

192 3.62 6 −16 −14 R Ventral tegmental area (VTA)

384 4.14 34 12 −10 R Anterior inferior insula

704 3.43 −30 20 −14 L Anterior inferior insula

364 4.08 −22 −4 −22 L Amygdala

192 3.85 34 0 −18 R Amygdala

384 3.72 14 0 −14 R Amygdala

364 4.03 −10 −4 −2 L Internal globus pallidus (GPi)

MedIatIon analysIs
We performed mediation analyses to further characterize the 
functional connectivity between the habenula, amygdala, and 
VTA/SN during error processing. In particular, we tested the 

hypothesis that the projection amygdala → VTA/SN was medi-
ated by the habenula. We derived for each individual subject 
the effect-size of SE > SS of the three ROIs for a single-level 
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FIgure 3 | regions showing psychophysiological interaction with the habenula during stop error (Se) as compared to go success (g, in hot color), and 
during g > Se (in cold color) in the stop signal task. T maps were thresholded at p < 0.001, uncorrected.

mediation analysis (MacKinnon et al., 2007); i.e., one single 
value (the effect-size of SE > SS; Brett et al., 20022). We tested 
two models. In the first model, the effect-sizes of the amy-
gdala and VTA/SN, habenula were set as X, Y, and mediator 
variable M, respectively. In the second model, we tested if the 
projection from habenula (X) to VTA/SN (Y) was mediated 
by amygdala (M).

Figure 7 and Table 4 summarized the results. The results of the 
first model confirmed the hypothesis of the habenula mediating 
the connection from amygdala to VTA/SN during error processing. 
The results of the second model confirmed the lack of a projection 
from the amygdala to the VTA/SN.

dIscussIon
The VTA/SN, bilateral amygdala, insula, and GPi showed greater PPI 
with the habenula during SE as compared to SS trials. In contrast, 
except for the left insula, none of these areas showed a PPI with the 
thalamic cluster. Thus, with the exception of the left insula, these brain 
regions altered activation to SE as compared to SS trials in specific 
association with the habenula in the stop signal task. Furthermore, the 
connectivity between the habenula and VTA/SN was contrast-specific 
as PPI of SS > G or SE > G did not reveal this connection.

As described in the above, PPI analyses did not provide informa-
tion about the direction of influence between brain regions. Thus, 
we performed GCA, which confirmed a feedforward connection 
from the habenula to VTA/SN but not vice versa. The amygdala 
also showed a significant projection to the VTA/SN in addition to 
a bidirectional connection with the habenula, broadly consistent 2http://marsbar.sourceforge.net/
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Unlike single-unit recordings, which could determine the “sign” 
of influence of neuronal activities in one brain region on those in 
another, the BOLD signals in fMRI represented an  indirect meas-
ure of neural activity (Logothetis, 2008). Thus, although the cur-
rent findings demonstrated a feedforward connectivity between 
the habenula and the VTA/SN, they did not indicate whether the 
influence is excitatory or inhibitory. Indeed, Ji and Shepard (2007) 
and Hikosaka et al. (2008) showed that neurons in the LH might 
exert inhibitory effects on neurons in the VTA/SN by exciting local 
GABAergic neurons. Furthermore, dopaminergic neurons in the 
VTA/SN may respond to stimuli with both positive and nega-
tive motivational value (Matsumoto and Hikosaka, 2009). These 
issues may lead one to consider whether the functional connec-
tivity between the habenula and the midbrain had more to do 
with saliency than the motivational valence of errors. On the other 

with evidence of anatomical projections from the amygdala to the 
VTA (Kaufling et al., 2009) and the role of amygdala in reward and 
saliency processing (Baxter and Murray, 2002; Etkin et al., 2006; 
Murray, 2007; Haber and Knutson, 2010; Linke et al., 2010; see 
also Delgado et al., 2008 for a review). On the other hand, Granger 
causality did not describe event-related relationship between time 
series. Thus, we used mediation analyses to further characterize 
the functional connectivities between the habenula, amygdala, 
and VTA/SN during error processing. The results supported the 
hypothesis that the error-related connectivity between the amy-
gdala and VTA/SN was largely mediated by the habenula and that 
the error-related connectivity between the habenula and VTA/SN 
was not mediated by the amygdala. Taken together, the results of 
these complementary analyses support a robust error-related signal 
from the habenula to VTA/SN during the stop signal task.

FIgure 4 | regions showing psychophysiological interaction with the habenula during stop success (SS) as compared to go success (g, in hot color), and 
during g > SS (in cold color) in the stop signal task. T maps were thresholded at p < 0.001, uncorrected.
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FIgure 5 | regions (in hot color) of psychophysiological interaction (PPI) 
with the thalamus cluster “minus the habenula” (blue), during stop error 
as compared to stop success; p < 0.001, uncorrected. These brain regions are 

summarized in Table 3. Note that, except for the left insula, the brain regions 
of PPI with the thalamus cluster did not overlap those of PPI with the 
habenula (Figure 2).

Table 3 | Brain regions with psychophysiological interaction with the thalamus cluster “minus habenula” during stop error > stop success (p < 0.001, 

uncorrected).

Cluster Z-value MNI coordinate (mm) Side Identified brain region

size (mm3)

  x y z  

13,760 5.36 −42 −88 −6 L Inferior occipital and fusiform gyrus

 4.88 −50 −76 −2 L Inferior and middle occipital cortices

 4.85 −62 −52 6 L Middle temporal gyrus

3,840 5.02 −30 16 −10 L Insula

14,848 4.55 54 −48 6 R Middle temporal gyrus

3,072 4.39 46 20 −18 R Superior temporal pole

1,472 4.29 10 24 58 R Supplementary motor area

768 4.04 −54 20 10 L Inferior frontal cortex

960 4.03 54 24 14 R Inferior frontal cortex

4,672 3.90 18 52 38 R Superior frontal cortex

320 3.71 −6 52 18 L Superior medial frontal cortex

448 3.64 38 28 30 R Middle frontal cortex

320 3.54 −42 −44 −18 L Fusiform gyrus

768 3.47 58 −12 38 R Postcentral cortex

384 3.31 −2 −12 50 L Supplementary motor area
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Methodological considerations
Some methodological issues need to be considered. First, the volume 
of the VTA is approximately 60 mm3 (Paxinos and Huang, 1995); 
and the volume of the SN, pars compacta, is approximately 190 mm3, 
estimated based on atlas plates (Mai et al., 2008). Thus, the total vol-
ume of the VTN/SN in the current data set corresponded approxi-
mately to 250 mm3 or 4 voxels (1 voxel = 4 mm × 4 mm × 4 mm). A 
cluster of this size is difficult to localize precisely in fMRI. Thus, we 
compared and noted that the coordinates of the VTA/SN (MNI: [6, 
−16, −14]; and Talairach: [5, −17, −8]), converted from MNI coordi-
nates using the BioImage Suite coordinate converter (Lacadie et al., 
2008) were very close to those reported in previous fMRI studies: 
VTA in MNI coordinate [4, −16, −10] (Carter et al., 2009); VTA/SN 
in MNI coordinates [8, −20, −18] (Bunzeck and Duzel, 2006); VTA/
SN in Talairach coordinates [6, −18, −12] (Schott et al., 2007); and 
SN in Talairach coordinate [6, −21, −12] (Wittmann et al., 2005).

The same localization issue applies to the habenula, a small 
structure with a size of approximately 3 mm × 3 mm × 6 mm (Salas 
et al., 2010). We sought to obtain the functional time course reflect-
ing the habenula activity, by computing the average BOLD signal of 
a mask with a volume of approximately 1,344 mm3 or ∼29 voxels. 
Note that this mask included voxels in the white matter and CSF 
and raised the question whether the functional connectivities were 
specific to the habenula. We wish to address this issue from two per-
spectives. First, as described in the Section Materials and Methods, 
aliased cardiovascular and respiratory signals were removed with 
high pass filtering and AR (1) in analyses (Friston et al., 2000; 
Della-Maggiore et al., 2002). Second, the PPI of the habenula mask 
showed results that were anatomically specific while the control 
mask (which also contained white matter and CSF) did not. We 
feel that signal artifacts of the CSF or white matter are unlikely to 
account for the current results. In addition, we computed PPI for a 
“control” region that excluded this habenula mask for comparison.

Second, GCA per se does not involve modulation of the connectivity 
by experimental conditions, as does PPI analysis. Thus, GCA alone does 
not guarantee “causality” between regional brain activations in response 
to specific events in the cognitive task. That is, it was possible that the 
causalities observed between the habenula, amygdala, and the VTA/SN 
was due to signals unrelated to error processing. For this reason, we used 
mediation analyses to examine the correlation of activity between these 
brain regions. In particular, compared to the habenula, the amygdala 

hand, both SE and SS trials are more salient than G trials. Our 
supplementary results showing a largely lack of activation in the 
VTA/SN during PPI with SE > G and SS > G  suggested that the 
feedforward influence of the habenula on VTA/SN was contingent 
upon a contrast between negative and positive motivational value.

In rodent studies, Jhou et al. (2009) reported the mesopontine 
rostromedial tegmental (RMTg) nucleus mediating the projections 
of the LH to VTA/SN. In the PPI analyses, we did not observe any 
significant clusters in the brain stem that might correspond in location 
to the RMTg nucleus. In contrast, we observed activation in a cluster 
around the pretectal area (Figure 2, z = −14), consistent with an earlier 
work showing projection from the superior colliculus and pretectal 
area to SN during the detection of salient visual events (Comoli et al., 
2003). Although the GPi was functionally connected to the habenula 
during PPI, neither GCA or regression slope analysis could further 
confirm its role in this circuit. The latter result thus needs to be recon-
ciled with findings from single-unit recordings of monkeys showing 
habenula-projecting neurons in the GPi (Hong and Hikosaka, 2008).

Figure 6 | granger causality analysis (gCA) indicated the directions of 
influence between the BOLD time series of regions of interest. (A) Shows 
the results of five ROIs: habenula, insula, amygdala, ventral tegmental area/
substantia nigra (VTA/SN), and internal globus pallidus (GPi). The GPi did not 
show Granger causality with any other brain regions. Thus, we removed the 
GPi in a second model (B) of multivariate GCA. The results at (B) show that 
the habenula, insula, and amygdala are bidirectionally connected, while the 
habenula and amygdala unilaterally project to the VTA/SN. GCA was 
performed and evaluated for each connection of each individual subject, at 
p < 0.05, corrected for FDR. Group results were obtained using a binomial test 
for each connection (p < 0.05). The numbers next to the arrows indicate the 
number of subjects out of 59 who have that connection.

Figure 7 | Single-level mediation analysis of the error-related effect-size 
(Se > SS) across subjects. (A) Model to test whether habenula mediates the 
correlation between amygdala and VTA/SN. (B) Model to test whether 
amygdala mediates the correlation between habenula and VTA/SN. 

Table 4 | Mediation analysis results between amygdala, habenula, and 

VTA/SN.

 Path a Path b Path c′ Mediation

 (X → M) (M → Y) (X → Y) path a*b

MODeL 1 X (AMYgDALA)→Y (VTA/SN) MeDiATeD BY M (hABeNuLA)

β 0.47 0.48 0.14 0.23

p-Values 0.0034* 0.0000* 0.0139 0.0002*

MODeL 2 X (hABeNuLA)→ Y (VTA/SN) MeDiATeD BY M (AMYgDALA)

β 0.51 0.14 0.48 0.07

p-Values 0.0003* 0.0153 0.0000* 0.0133

β denotes the regression coefficients and p-values are uncorrected. The 
mark “*” indicates significant connections at p < 0.05, Bonferroni corrected 
(p = 0.05/4 = 0.0125).
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showed a less significant projection (Granger causality) to the VTA/
SN, raising the possibility that the habenula may mediate the projection 
from the amygdala to VTA/SN during error processing. The results of 
mediation analyses substantiated this hypothesis. Error-related activity 
of the habenula was significantly correlated with the VTA/SN even with 
the amygdala as an intervening variable; in contrast, amygdala correlated 
with the VTA/SN largely through its connection with the habenula.

Finally, a contrast of SE > SS involved differences in motor responses 
in addition to error processing (Table 1). Although to our knowledge 
the habenula has never been implicated in motor control, the current 
results need to be considered in the context of this limitation.

conclusIon
The complementary results of psychophysiological, regression 
slope, Granger causality, and mediation analyses delineated a 
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