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are independent, then the SE rate at a given SSD corresponds to 
the fraction of go RT distribution cut off by SSD + SSRT (the dark 
shaded region in Figure 2A). Conversely, given the SE rate for a 
particular SSD, SSRT can be estimated by subtracting SSD from the 
appropriate percentile of go RTs. Subject-specific SSRT is typically 
estimated by averaging the SSRT estimates from different SSDs, 
or simply taken as the SSRT best explaining the SSD giving rise to 
50% error rate on stop strials. Consistent with the interpretation 
that SSRT measures some aspect of inhibitory ability, SSRT has 
been measured as longer in populations with presumed inhibitory 
deficits, such as attention-deficit hyperactivity disorder (Alderson 
et al., 2007), substance abuse (Nigg et al., 2006), and obsessive-
compulsive disorder (Menzies et al., 2007). Although the race model 
yields an elegantly simple description of classical behavioral data, 
it does not address how different cognitive processes contribute to 
stopping behavior, thereby precluding the possibility of predicting 
how experimental manipulations of different cognitive factors, such 
as reward and context, should affect stopping behavior. Relatedly, it 
cannot readily differentiate the underlying cognitive deficits seen in 
the various clinical populations.

We present a rational decision-making framework for inhibi-
tory control in the stop signal task. In our framework, sensory 
processing and action choice are optimized relative to a quantita-
tive, global behavioral objective function that takes into account 
the costs associated with go errors, stop errors, and response delay. 
Classical behavioral results in the stop signal task are shown to 
be natural consequences of rational decision-making in the task. 
Moreover, the model can quantitatively predict changes in stop-
ping behavior as a consequence of manipulations in task demands 
such as reward contingencies (Leotti and Wager, 2009). We show 
that a drift-diffusion model implementation of the race model 

1 IntroductIon
Humans and animals often need to choose among actions with 
uncertain consequences, and to modify those choices according 
to ongoing sensory information and changing task demands. The 
requisite ability to dynamically modify or cancel planned actions 
is termed inhibitory control, considered a fundamental component 
of flexible cognitive control (Barkley, 1997; Nigg, 2000). In this 
paper, we examine optimal inhibitory control in the context of the 
widely studied stop signal paradigm (Logan and Cowan, 1984), 
where the subject’s go response on a primary task, such as a two-
alternative forced choice discrimination task, is interrupted by a 
stop signal on some trials. Subjects are instructed to withhold the 
go response on stop trials: a successful response cancelation is a 
stop success (SS), whereas a response is considered a stop error 
(SE, see Figure 1). Typically, SE rate increases as the presentation 
time of the stop signal is delayed with respect to the go stimulus 
onset, in a characteristic pattern known as the inhibition function 
(e.g., Figure 5A, adapted from Emeric et al., 2007). More subtly, SE 
reaction time (RT) tends to be faster than go RT (e.g., Figure 5C, 
adapted from Emeric et al., 2007).

The classical model for the stop signal task is the race model 
(Logan and Cowan, 1984), where behavioral outcome on each trial 
is conjectured to arise from the competition of two independent 
processes: go and stop. In this model, a stop trial results in error if 
the go process finishes before the stop process (Figure 2A). Thus, 
the average stopping latency, called stop signal reaction time (SSRT) 
by the race model, determines how successfully the observer can 
interrupt the go process. Since the stop process and its outcomes 
are unobservable, SSRT is estimated from the observed go RT dis-
tribution and the error rate on stop trials at a given stop signal delay 
(SSD). Specifically, if SSRT is constant, and the go and stop processes 
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(e.g., Verbruggen and Logan, 2009b) can be seen as a simpler 
approximation to optimal decision-making, whereby parameters 
of the race model, such as the SSRT, must vary with task parameters 
in a systematic way to maintain the best approximation to opti-
mal decision-making. Thus, race model-like behavior, including 
the well-studied SSRT, can be understood as emergent properties 
of rational decision-making. Altogether, our results suggest that 
cognitive control plays a critical role in stopping behavior, and 
the brain implements optimal or near-optimal decision-making, 
possibly via a race-model-like process, in an adaptive and context-
dependent manner.

2 Methods
Our computational model consists of two main components: (1) 
a monitoring process, which models sensory inference and learning 
about the identity, prevalence, and timing of the stimuli as hier-
archical Bayesian inference, and (2) a decision process, formalized 
in terms of stochastic control theory, that translates the current 
expectations based on sensory evidence into a choice of action. In 
our model, the available actions at any given time include the two 
possible go responses and waiting one more time step. Repeated 
selection of the wait option results in a stop response on a given trial. 

Consistent with typical experimental design, the model assumes 
that subjects are given a deadline for responding, and that they 
must withhold the go response for the same amount of time to 
indicate a stop response.

2.1 the MonItorIng process: BayesIan statIstIcal Inference
The monitoring process in our model tracks sensory information 
about the go and stop stimuli during each trial, integrating it with 
prior belief about the distribution of go stimulus identity, and the 
prevalence and timing of the stop signal. Figure 3 shows the gen-
erative model for sensory evidence in the task. The model assumes 
that subjects believe there are two hidden variables, correspond-
ing to the identity of the go stimulus (d = {0,1}), and whether or 
not the current trial is a stop trial (s = 1 for stop, s = 0 for go). 
Priors over d and s reflect experimental parameters: P(d = 1) = 0.5, 
P(s = 1) = r = 0.25, where r is the prior probability that a trial is a 
stop trial. Conditioned on d, a stream of independent and identical 
(iid) inputs are generated on each trial, x1,…,xt… where t indexes 
time within a trial from go signal onset, and the likelihood func-
tions are p(xt|d = 0) = f

0
(xt) and p(xt|d = 1) = f

1
(xt). Without loss 

of generality, we assume f
0
 and f

1
 to be Bernoulli distributions with 

rate parameters q
d
 and 1 − q

d
, respectively. The dynamic variable zt 

denotes the presence/absence of the stop signal: if the stop signal 
appears at time u then z1 = … = zu − 1 = 0 and zθ = … = 1. On a go 
trial, s = 0, the stop signal of course never appears, P(u = ∞) = 1. On 
a stop trial, s = 1, we assume that the onset of the stop signal has a 
constant hazard rate, i.e., u is generated from a geometric distribu-
tion: p(u|s = 1) = (1 − λ)u − 1λ. Conditioned on zt, there is a second, 
conditionally independent, stream of observations associated with 
the stop signal: p(yt|zt = 0) = g

0
(yt), and p(yt|zt = 1) = g

1
(yt). Again, 

we assume for simplicity that g
0
 and g

1
 are Bernoulli distributions 

with rate parameters q
s
 and 1 − q

s
, respectively.

The counterpart to the generative model is the recognition 
model, which specifies statistically optimal reverse-inference of 
the hidden variables based on the continual stream of sensory 
inputs. In the stop signal task, this means computing the poste-
rior probability about go stimulus identity, pd

t tP ( = 1| )d x , and 
the stop signal presence, p P tz

t
 { ≤ | }u y t , where xt tx x { , , }1 …  

denotes all the sensory inputs associated with the go stimulus, and 

Figure 1 | Schematic illustration of a saccadic version of the stop signal 
task. (A) On a majority of trials (go trials), a central fixation dot is followed by 
one of two targets requiring a saccade to the indicated location. (B) On stop 
trials, the target presentation is followed after a short delay (SSD) by 
reappearance of the fixation point. A saccade on a stop trial is a stop error 
(SE), and a successfully canceled movement is a stop success (SS). Figure 
adapted from Hanes and Schall (1995).

Figure 2 | race model and drift-diffusion model for the stop signal task. 
(A) The race model (Logan and Cowan, 1984) proposes that the finishing times 
of two independent (go and stop) processes determine trial outcome: stop or 
go, depending on which finishes first. SSD + SSRT (stop signal reaction time) 
specifies the finishing time of the stop process, and determines what fraction of 
go trials will finish earlier and therefore result in a stop error. (B) An 
implementation of the race model using a drift-diffusion process, similar to 

(Verbruggen and Logan, 2009b). The go process consisting of a constant drift 
rate corrupted by additive Wiener (Gaussian, white) noise on each time step, a 
temporal offset (also known as the non-decision time), and a threshold for 
evoking the go response. The stop process is assumed to initiate at a time SSD 
after the go stimulus, and to take a time of SSRT (assumed to be fixed here) to 
reach the threshold. Whichever process finishes first determines trial outcome: 
go or stop.
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where P(s = 1|θ > t, yt) = P(s = 1|θ > t) again does not depend on 
past observations:

 

P s t
P t s P s

P t s P s P t s P s
= > =

( > | = 1) ( = 1)

( > | = 1) ( = 1) + ( > | = 0) ( =
( )1 | u

u

u u 00)

=
(1 − ) −1

(1 − ) −1 + 1 (1 − )

l

l

t r
t r r

·

· ·  

(5)

The belief state at time t, the vector bt
d
t

s
tp p= ( , ), represents all 

the information the ideal observer has about the stimulus proper-
ties on the current trial.

Figure 4A illustrates the behavior of this inference procedure, 
averaged across trials, for different types of trials. The evolution of 
the beliefs corresponding to the identity of the go stimulus (p

d
), and 

whether the trial is a stop trial (p
s
), are shown on trials without a stop 

signal (GO), as well as successful (SS) and error (SE) stop trials; in all 
examples, true d = 1. Over time, p

d
 increases in all three kinds of trials 

as sensory evidence about the go stimulus accumulates. On the other 
hand, p

s
 shows an initial rise due to prior expectation and then either 

decays to 0 on GO trials, or rises toward 1 on stop trials. Individual 
trajectories are stochastic due to noise in the sensory inputs. This sto-
chasticity induces a go response on some stop trials and not others: stop 
error trials (non-canceled trials) are those on which the go stimulus 
belief state happens to be rising fast, and the stop signal is processed 
slower than average. Successful stop trials show the opposite trend.

2.2 the decIsIon process: optIMal stochastIc control
Based on the belief state, subjects have to make a decision at each 
moment about whether to go now or wait at least one more time 
point in case this is a stop trial; and if they wait, they need to make 
the same decision again using one more data point. To model this 
decision process, we again assume an ideal observer implementing 
a Bayes-optimal decision policy. To say what is optimal, we need to 
specify a loss function that captures the reward structure of the task, 
against which the decision policy can be optimized. We assume there 
is a time cost of c per unit time on each trial to capture the oppor-
tunity cost of not responding quickly. Consistent with experimental 
design, we also assume a deadline D for responding on go trials and 
for determining a subject has withheld a go response long enough on 
a stop trial. In addition, there is a penalty c

s
 for choosing to respond 

on a stop signal trial, and a unit cost for making an error on a go trial 
(by choosing the wrong discrimination response or exceeding the 
deadline for responding). Because only the relative costs matter in 
the optimization, we can normalize the coefficients associated with 
all the costs such that one of them is unit cost. Let t denote the trial 
termination time, so that t = D if no go response is made before the 
deadline, and t < D if a response is made. On each trial, the policy π 
produces a response time t ≤ D, as well as a binary response d∈{0,1} 
if a go response is made (t < D). The loss function is:

 
l d s D c cs(t d u t T T D T, ; , , , ) = + + +{ } { } { }1 1 1< , = < , ≠ , = = , =D s D s D s1 0 0d  

(6)

where 1{·} is the indicator function, evaluating to 1 if the condi-
tions in {·} are met, and 0 otherwise. The optimal decision policy 
minimizes the average or expected loss, L l d s Dp t d ( , ; , , ) ,

 

L c c rP D s r P D d s

r P D s

sp t t t d

t

= + ( < | = 1) + (1− ) ( < , ≠ | = 0)

+ (1− ) ( = | = 0).

yt ty y� …{ , , }1  denotes all the sensory inputs associated with the 
stop signal observed so far. Note that P d pt

d
t( | )= = −0 1x , and 

P pt
z
t(u > | ) = 1−t y .

The computation of pd
t  is a simple application of Bayes’ rule:
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(1)

Inference about the stop signal is slightly more complicated 
due to the hidden dynamics in zt (going from signal-absent to 
signal-present at a stochastic onset time). We first compute pz

t
, 

the posterior probability that the stop signal has already appeared.

 

p
g y p p h t

g y p p h t
z
t

t
z
t

z
t

t
z
t

z
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1

1 1

1
1 1

1

1
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(2)

where pz
0 0=  (stop signal never occurs at the same time as the go 

signal), and h(t) is the conditional probability that the stop signal 
will appear in the next instant given it has not appeared already, 
h t P t t t( ) ) ( = | > −1, −1u u y :

 

h t
rP t s

rP t s r

r

r

t

t

( ) =
= | = 1( )

> −1| = 1( ) + 1−( )

=
1−( )

1−( ) + 1−

−1

−2

u

u

l l

l rr( )  

(3)

where, recall, r is the prior probability of a stop trial. h(t) does not 
depend on the observations, since given that the stop signal has not 
yet appeared, whether it will appear in the next instant does not 
depend on previous observations.

In the stop signal task, a stop trial is typically considered a stop 
trial even if the subject makes the go response before the stop signal. 
Following this experimental convention, we need to compute the 
posterior probability that the current trial is a stop trial, denoted 
p P ss

t t
 ( = 1 | )y , which depends both on the current belief about 

the presence of the stop signal, and the expectation that it will 
appear in the future:

 
p p p P s ts

t
z
t

z
t t= 1+ 1−( ) = 1| > ,( )· · u y

 
(4)

Figure 3 | graphical model for sensory input generation in our Bayesian 
model. Two separate streams of observations, {x1,…,xt,…} and {y1,…,yt,…}, 
are associated with the go and stop stimuli, respectively. xt depend on the 
identity of the target, d∈{0,1}. yt depends on whether the current trial is a stop 
trial, s = {0,1}, and whether the stop signal has already appeared by time 
t,zt∈{0,1}.
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or d = 0, depending on whether pd
t is greater or smaller than 0.5, 

respectively. The dependence of Qw
t  on Vt + 1 allows us to recursively 

compute the value function backward in time. Given Vt + 1 and bt, we 
can compute 〈Vt + 1〉 by summing over the uncertainty about the next 
observations xt + 1, yt + 1, since the belief state bt + 1 is a deterministic 
function of bt and the observations (Eqs 1 and 4).
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(11)

The initial condition of the value function can be computed 
exactly at the deadline since there is only one outcome (subject 
is no longer allowed to go or stop): V cD pD D

s
D( ) ( )b = + −1 . We 

can then compute { }V t
t
D
=1 and the corresponding optimal deci-

sion policy backward in time from t = D − 1 to t = 1. In our 
simulations, we do so numerically by discretizing the probability 
space for ps

t into 1000 bins; pd
t  is represented exactly using its 

sufficient statistics.

Minimizing L
p
 over the policy space directly can seem computa-

tionally daunting, since there is no obvious parameterization of the 
policy space; however, Bellman’s dynamic programming principle 
(Bellman, 1952) provides an iterative relationship in terms of the 
value function (defined in terms of costs here), Vt(bt)

 
V p a V dt t

a

t t t t t( ) min ( | ; ) ( ) ,b b b b b= 





+ + + +∫ 1 1 1 1

where bt
d
t

z
tp p= ( , )  is the belief state, and a ranges over all pos-

sible actions.
In our model, the action (decision) space consists of {go,wait}, 

with the corresponding expected costs (also known as Q-factors), 
Qg

t t( )b  and Qw
t t( )b , respectively. Note that our model produces a 

“stop” response on a trial by repeatedly deciding to wait rather than 
go until the deadline is reached.
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V Q Qt t

g
t

w
t( ) ,b = ( )min

 
(9)

The optimal decision policy chooses the action corresponding 
to the smaller Q-factor, and the value function is the smaller of the 
Q-factors Qg

t  and Qw
t . Note that the go action results in either d = 1 

Figure 4 | inference and action selection in the stop signal task. (A) 
Evolution of the belief state over time, on go trials (green), successful stop trials 
(SS; blue), and error stop trials (SE; red). Solid lines represent the posterior 
probabilities assigned to the true identity of the go stimulus (one of two 
possibilities) for the three types of trials – they all rise steadily toward the value 
1, as sensory evidence accumulates. The dashed black vertical line represents 
the onset of the stop signal on stop trials. The probability of a stop signal being 
present (dashed lines) rises initially in a manner dependent upon prior 
expectations of frequency and timing of the stop signal, and subsequently rises 
farther toward the value 1 (stop trials), or drops to 0 (go trials), based on sensory 

evidence. (B) Average action costs corresponding to going (Qg
t , see text) and 

waiting (Qw
t , see text), using the same sets of trials as (A). The black dashed 

vertical line denotes the onset of the stop signal. A response is initiated when 
the cost of going drops below the cost of waiting. The RT histograms for go and 
error stop trials (bottom) indicate the temporal distribution of when the go cost 
crosses the stop cost in each simulated trial. Each data point is an average of 
10,000 simulated trials. Error bar = SEM. Simulation parameters: qd = 0.68, 
qs = 0.72, l = 0.2, r = 0.25, D = 50, cs = 0.2, cs = 0.004. See section 2 for 
definition of parameters. Unless otherwise specified, these parameters were 
used in all subsequent simulations.
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is t + t
0
, where t

0
 is a temporal offset parameter denoting non-

decision time (Ratcliff, 1978; Bogacz et al., 2006). For b > 0, the 
response is correct if h is first crossed, and incorrect if −h is first 
crossed; vice versa if b < 0. We note that there is redundancy in 
the parameterization, such that b, s, and h can all be scaled by the 
same constant and remain an identical process; we can therefore 
fix s = 1 without loss of generality. Thus, the go process has three 
free parameters: b, h, and t

0
.

The stop process, as typically modeled in the literature, 
(Logan and Cowan, 1984), is assumed to have a fixed finishing 
time of SSD + SSRT. Since SSD is given by experimental design, 
SSRT is the only free parameter for the stop process. On stop 
trials, if t + t

0 
< SSD + SSRT, an error response occurs at t + t

0
; 

otherwise, it is a correct stop trial and t is assumed to take on 
the value ∞.

Our goal is to find a diffusion model approximation to opti-
mal decision-making. To do this, we compare the joint distri-
bution of RT and choice based on simulation of the optimal 
model, p(t,d), and that from a parametrization of the race model 
p(t,d|U). We look for settings of the diffusion model parameters 
U b t ( , , , )0h SSRT  that would minimize the KL divergence 
between the two distributions:
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where the approximation comes from the fact that the expectation 
of the log likelihood ratio 〈logp(t,d)/p(t,d|U)〉 under the distribu-
tion p(t,d) can be approximated by a finite sum based on samples 
from p(t,d) – the approximation becomes exact as n → ∞. We note 
the interesting observation that minimizing the KL divergence is 
identical to minimizing the coding cost of the samples from the 
true (optimal) distribution by the approximate diffusion model 
distributions; it is also identical to maximum likelihood estima-
tion of parameters of the approximate model as a function of the 
samples generated from the true (optimal) model.

To evaluate the sum, we generate n = 10,000 samples from 
the optimal model: {(t di i

n, )} =1ι , where the probability of each trial 
being a stop trial is r, and the probability of the go stimulus being 
each of the two alternatives is 0.5, both given by the actual experi-
mental design in question. We can compute p(t,d|U) exactly, up 
to a discretization of values of k(t), by convolving p(k(t)) with 
standard-normal noise and removing probability mass beyond 
both thresholds at the next timestep, to get p(k(t + 1)). This gives 
p(t,d|U) on go trials. On stop trials, we truncate the distribution 
at SSD + SSRT, which then gives us both the error stop trial RT 
distribution, as well as the error rate, for each SSD. We then sum 

Figure 4B illustrates how these action costs evolve over the 
course of a trial, averaged across trials of different types as before: 
go (GO) trials, stop error (SE) trials, and successful stop (SS) tri-
als. Since the probability associated with the (correct) go stimulus 
identity increases with accumulating sensory evidence, the cost of 
going drops, eventually crossing the cost of waiting and triggering 
a go response. On stop trials, the onset of the stop signal initiates 
an increase in the cost of going, when the cost of a stop error is 
factored in. In error stop trials, the go cost (Qg

t ) crosses the wait cost 
(Qw

t ) before the stop stimulus is fully processed. In successful stop 
trials, the go cost never dips below the wait cost. The RT histograms 
for go and error stop trials illustrate that, although the average go 
cost trajectories do not cross the average wait cost, every individual 
trajectory crosses over at some point on each trial.

2.3 approXIMatIng optIMal decIsIon-MaKIng By a race Model
We make the relationship between optimal decision-making and 
race-like behavior concrete by considering a specific implementa-
tion of the race model. One reason for examining this connection 
is that race-like processes may serve as a neural implementation of 
behavior in the stopping task (Hanes et al., 1998; Pare and Hanes, 
2003; Boucher et al., 2007). In particular, we examine a diffusion 
model implementation which has long been used to model reac-
tion times (Stone, 1960; Laming, 1968; Ratcliff, 1978; Luce, 1986; 
Hanes and Schall, 1996; Gold and Shadlen, 2002; Mazurek et al., 
2003; Bogacz et al., 2006). Variants of the drift diffusion model 
have also been applied specifically to the stop signal task (Hanes 
and Carpenter, 1999; Verbruggen and Logan, 2009b).

Our implementation is illustrated in Figure 2B, where the go 
process consists of a constant drift rate with a starting point or 
offset, and additive, cumulative Gaussian noise on each time step 
of a trial. The stop process is modeled as a fixed-latency process 
with a corresponding latency parameter (SSRT). Although we could 
easily consider a stochastic stop process with its attendant rate and 
threshold, we specifically wish to model SSRT as measured in prac-
tice, i.e., by using a constant-SSRT assumption (Logan and Cowan, 
1984). Finally, go responses are initiated by the process crossing a 
threshold, unless it is at a time exceeding SSD + SSRT, which is the 
finishing time of the stop process – in the latter case, no response 
is produced. For each condition in the reward manipulation task 
(Section 3.2), we select values for these four parameters, rate, offset, 
threshold, and SSRT, in order to best approximate the cumulative 
RT and stop error distributions of the optimal model.

The basic drift-diffusion model has the following form:

 d dt dk b e= + W  (12)

where the rate parameter b determines the direction (positive 
or negative) and speed of the average movement of the dynamic 
parameter k, and dW denotes Wiener noise, such that e dW is 
normally distributed with mean 0 and variance e2dt. In practice, 
we simulate this process by discretizing time and approximating 
it with a random-walk:

 k t k t w( +1) ( )= + +b  (13)

with drift parameter b, and normally distributed noise w ∼ N(0, 
s2). We assume that a decision is made when k(t) first crosses the 
threshold h or −h, whichever first. The simulated RT for a trial 
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The race model explains these results as well, utilizing a similar 
proximate explanation: later initiation of the stop process allows 
more go trials to “escape,” giving rise to the form of the inhibition 
function; stochasticity in the go process allows the go process to 
sometimes escape the stop process, and those that do happen to 
escape have shorter finishing times (Logan and Cowan, 1984). A 
critical difference is that by focusing on the finishing times of the 
stop and go processes, but not their underlying computational 
import, the race model cannot predict a priori the effect of changes 
in experimental constraints on stopping behavior. We elaborate 
further on this contrast by considering the effect of reward manipu-
lations on stopping behavior.

3.2 Influence of reward structure on stoppIng
Leotti and Wager (2009) showed that subjects can be biased 
toward stopping or going by experimentally manipulating the 
relative penalties associated with go and stop errors. Their experi-
ments associated a reward for fast go response times and pen-
alty for stop errors, and manipulated these values in an iterative 
fashion to induce a particular degree of bias in each subject, as 
measured by the fraction of stop errors committed. Figures 6A,B 
shows that as subjects are biased toward stopping, they make 
fewer stop errors and have slower go responses. Since our model 
explicitly parametrizes the relative costs of go and stop errors 
(c

s
 in Eq. 6), we can easily simulate such a manipulation by set-

ting c
s
 to a higher or lower value in Eq. 6. The new cost function 

induces different statistics in the trajectories of the action costs 
as in Figure 4B. In particular, making c

s
 larger makes expected 

go cost higher, as the same probability of a stop trial lead to a 
greater stop error cost, and this has the effect of slowing the initial 
downward trajectory of the go cost curve, and speed its repulsion 
away from the wait cost if later the stop signal is introduced – 
the over all effect, is to slow down go reaction times and lower 
stop error frequency. Simulation results from the optimal model 
(Figures 6D,E filled) confirm these intuitions and are similar to 
subjects’ actual behavior (top row).

Also shown in Figures 6C,F is the measure of stopping latency 
(SSRT) assumed by the race model, for human behavior and for 
the optimal model. Since the race model’s conjectured stop pro-
cess is not observable, the SSRT must be inferred from the go 
RT distribution and the stop error distribution. In particular, if 
going and stopping are assumed independent, and the SSRT is 
approximated as constant, then the difference between the mid-
points of the RT and stop error cumulative distribution functions 
is an estimate of the SSRT (Logan and Cowan, 1984). Note, how-
ever, that when this estimation process is applied to human data 
in the experiment, the SSRT changes with reward manipulation 
(Figure 6C), and therefore cannot be used in isolation as a subject-
specific index of inhibition. Although SSRT is not an explicit 
component of our framework, nevertheless the same procedure 
outlined above can be used to estimate it for our model simula-
tions, yielding the very same trend (Figure 6F, filled). The close 
match with human behavior suggests that SSRT is an emergent 
property of the interaction between going and stopping, and vari-
ations in SSRT are directly explained by optimal adjustments to 
the tradeoff between them.

the log likelihood of each sample (t
i
,d

i
) under p(t,d|U) over all 

10,000 samples. We do so for each setting of the diffusion model 
parameters U, and use Matlab’s fmincon function to find the 
best-fitting parameters.

3 results
3.1 stoppIng BehavIor as a natural consequence of ratIonal 
decIsIon-MaKIng
In the stop signal task, subjects typically make more stop errors 
when the stop signal delay (SSD) is longer, and response times 
on stop error trials are on average faster than go RTs (Logan and 
Cowan, 1984; Hanes and Schall, 1995; also see Verbruggen and 
Logan, 2009a for a recent review). Figure 5 shows how this behavior 
arises naturally as a consequence of rational decision-making in the 
task. Data from human subjects performing a saccade version of 
the stop signal task (Emeric et al., 2007; Figures 5A,C), and from 
model simulations (Figures 5B,D), show the same characteristics: 
error rate increases as SSD increases, and RTs on stop error trials 
are on average faster than go trials.

Intuitively, the later the stop signal, the more likely that the cost 
of going has already dropped below the cost of waiting before the 
stop signal information can be factored in (see Figure 4B), leading 
to the increasing SE curve or inhibition function shown here. Faster 
RT on SE trials is an outcome of stochasticity in the processing of 
the go and stop signals; as shown in Figures 4A,B, stop error trials 
are those in which the go stimulus is processed faster than average 
(and the stop stimulus slower than average). This difference gives rise 
to the observed faster RT, illustrated by the histograms in Figure 4B.

Figure 5 | Classical properties of stopping behavior arise naturally from 
optimal decision-making. (A) Inhibition function: errors on stop trials increase 
as a function of SSD. (B) Similar inhibition function seen for the model. (C) 
Discrimination RT is generally faster on stop error trials than go trials. (D) 
Similar results seen in the model. (A,C) Data adapted from Emeric et al. (2007) 
with permission from Elsevier.
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the resulting race model fit is able to approximate the RT distribu-
tions and the stop error distribution functions qualitatively well, 
as a result of the optimization procedure selecting the appropriate 
race model parameters for each condition.

In summary, optimal decision-making may be implemented 
by a suitably parameterized race-diffusion model, suggesting one 
possible neural mechanism for behavior in the task. Furthermore, 
with an explicit procedure for fitting the race model to the optimal 
model, we can predict a priori how the race model parameters, such 
as SSRT, should change under different experimental manipula-
tions, since the optimal model encodes the experimental parameters 
in a principled manner and gives precise predictions of associated 
behavioral changes.

4 dIscussIon
We presented a rational decision-making framework for inhibi-
tory control in the stop signal task. Our framework optimizes sen-
sory processing and action choice relative to a quantitative, global 
 behavioral objective function that explicitly takes into account the 
various costs associated with go errors, stop errors, and response 

3.3 race Model and ssrt as eMergent propertIes of optIMal 
BehavIor
We examine the relationship between the race model and optimal 
behavior by fitting a diffusion model implementation of the race model 
to output from the optimal model (Figure 2B, see section 2 for details). 
We examined how parameters of the best-fitting diffusion model vary 
as the reward structure of the task is manipulated (i.e., c

s
 takes on dif-

ferent values). The best-fitting parameters are shown in Figure 7, and 
indicate that the SSRT parameter indeed has to be adjusted in a manner 
consistent with our optimal model’s predictions, as well as the experi-
mental data (Leotti and Wager, 2009). The fit also shows that the rate 
and threshold do not vary substantially. However, the offset parameter 
(non-decision time) increases with increasing stop error cost – this is 
consistent with later response times, without apparent informational 
gain, as c

s
 increases. In general, the best-fitting race model for each c

s
 

behaves very similarly to the optimal model (Figures 6D–F, unfilled).
Figure 8 shows the race model fits resulting from this optimi-

zation procedure, with (Figures 8A,B) showing the reaction time 
distribution of GO and stop error trials, as well as the cumulative 
SE distributions from the optimal model. Figures 8C,D show that 

Figure 6 | effect of reward manipulation on stopping behavior. (A–C) Data 
from human subjects performing a variant of the stop signal task where the ratio 
of rewards for quick go responses and successful stopping was varied, inducing 
a bias toward going or stopping (adapted from Leotti and Wager, 2009 with 
permission from APA). As stop errors are punished more severely, subjects have 
lower stop error rate (A), slower go RT (B), and faster SSRT (C); low stop error 

penalty induces the opposite pattern. (D–F) The optimal decision model (black) 
and its best-fitting race model approximation (white) show similar trends as a 
function of stop error penalty (relative to go errors). “High,” “Med,” “Low” refer 
to high (cs = 0.5, medium (cs = 0.25), and low (cs = 0.15) stop error penalty, 
respectively. For model simulations (D-F), each bar denotes average of 10 
simulated “sessions,” each session consisting of 10,000 trials. Error bar = SEM.

Figure 7 | race model approximation to optimal decision-making as 
stop error penalty is varied. The figure shows the best race parameters, 
implemented as a diffusion model shown in Figure 2, that approximate the behavior 
of the optimal model, as the cost of stop errors is changed. The temporal offset to 

the start of the diffusion process increases (C), and SSRT decreases (D); rate and 
threshold parameters are unaffected (A, B). Changes in SSRT are similar to those in 
optimal model and experimental data (Figure 5). Each bar denotes average of 10 
simulated “sessions,” each session consisting of 10,000 trials. Error bar = SEM.
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ferent task conditions in order to best approximate the optimal 
model, and in order to account for experimental data (Emeric et al., 
2007; Leotti and Wager, 2009). Our framework can therefore guide 
the search for, and provide a computational understanding of, the 
neural mechanisms underlying stopping behavior. For example, we 
conjecture that FEF neurons represent and track the relative values 
of various available actions such as going, waiting, and cancelation.

In our model, the RT distribution is the outcome of an 
adaptively optimal policy acting on accumulated noisy sensory 
evidence, in light of the global objective function. Notably, the 
optimal policy is deterministic given a particular sequence of 
sensory inputs, so that stochasticity in response latency is entirely 
driven by stochasticity in sensory inputs, which determine RT 
variance and all other higher-order moments in the RT distribu-
tion. A related but distinct framework (Daunizeau et al., 2010) 
considers the restricted space of non-adaptive policies where a 
fixed stopping time is chosen at the outset of the trial, based on 
minimizing the expected cost for the chosen stopping time. It is 
non-adaptive in the sense that it chooses a mean stop time without 
considering the actual sequence of sensory inputs observed, and 
assumes variability around that mean to arise independently from 
a non-sensory origin. However, substantial experimental data 
suggest that simple perceptual decisions involve accumulation 
of evidence up to a bound, related to a specific confidence level 
in the probability space (and therefore dependent on the actual 
sequence of noisy inputs observed), rather than up to a chosen 
stopping time (see e.g., Gold and Shadlen, 2007 for a review). 
Moreover, from a theoretical perspective, optimal policies for the 
type of stopping problems, including the stop signal task con-
sidered here as well as the simpler two-alternative forced choice 
tasks (e.g., Gold and Shadlen, 2007), are known to live within the 

delay. We show that classical behavioral results in the stop signal task 
are natural consequences of rational decision-making. Moreover, 
the model can quantitatively predict the influence of subtle manip-
ulations of task parameters, such as reward contingencies (Leotti 
and Wager, 2009), on stopping behavior. Our results suggest, there-
fore, that cognitive processing in the task is a continual, intertwined 
choice between go and wait (stop), under the influence of multiple 
cognitive factors in a computationally optimal manner.

We also examined the relationship between the race model and 
the rational decision-making model. The two models are moti-
vated by fundamentally different levels of analysis, corresponding 
to algorithmic and computational models in Marr’s (1982) levels 
of analysis. Despite its elegant simplicity and ability to explain a 
number of classical behavioral results, the descriptive nature of 
the race model precludes an a priori prediction of how behavior 
should change in order to accommodate various cognitive goals 
and task constraints. On the other hand, the optimal model requires 
complex computations unlikely to be directly implemented by the 
brain. Even if subjects’ behavior is similar to model predictions, the 
brain may well implement a simpler approximation to the optimal 
algorithm. Recent studies suggest that the activity of neurons in 
the frontal eye fields (FEF; Hanes et al., 1998) and superior col-
liculus (Pare and Hanes, 2003) of monkeys could be implement-
ing a version of the race model (Hanes et al., 1998; Boucher et al., 
2007; Wong-Lin et al., 2009). Specifically, movement and fixation 
neurons in the FEF show responses that diverge on go and correct 
stop trials, indicating that they may encode computations leading 
to the execution or cancelation of movement. If the race model is 
an appropriate description of these neural activities, however, we 
showed that the race model (and its diffusion model elaboration) 
will need its parameters, such as SSRT, carefully adjusted in dif-

Figure 8 | race model approximation to optimal decision-making as stop error penalty is varied: inhibition function and rT distribution. (A,B) Optimal model. 
(C,D) Diffusion race model. Left: RT distributions for GO and SE trials. SSD = 15, cs = 0.25, as in Figure 6. Right: Inhibition function for different stop error costs (low: cs = 0.15, 
med: cs = 0.25, high: cs = 0.5). Results based on 10,000 simulated trials from the optimal model, and also from the corresponding best-fitting diffusion race model.
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adaptive policy space, and not in the very restrictive sub-class of 
non-adaptive policies (Wald and Wolfowitz, 1948; Chow et al., 
1971). In particular, adaptive policies can better accommodate 
moment-by-moment changes in perceived sensory information 
(Kiani et al., 2008). We note here that the original race model is 
agnostic with respect to to the source of stochasticity in reaction 
times, taking it as the consequence of some inherent stochasticity 
in the unspecified go and stop processes. However, the race model 
can be implemented using a drift-diffusion model to make explicit 
the role of sensory noise in decision-making, as we demonstrate 
in our simulations.

In our model, a stop decision is implemented as a sequence of 
wait actions. Neurophysiological evidence from monkeys (Hanes 
et al., 1998) and humans (Aron et al., 2007a,b) suggest that suc-
cessfully stopped actions may involve increased activity in certain 
neural populations such as the fixation neurons of the FEF, or 
cortical regions such as the inferior frontal gyrus and subtha-
lamic nucleus implicated by human imaging studies. Studies in 
humans involving fMRI and tractography data suggest that the 
inferior frontal gyrus may implement a stop action via a hyper-
direct pathway to the subthalamic nucleus (Aron et al., 2007a,b). 
One important and planned line of inquiry for our work is to 
consider a rational model with an explicit stop action, in order 
to better account for what is known about the neurophysiology 
of stopping.

The stop signal task is traditionally thought of as probing 
behavioral inhibition, whereas other tasks such as the Stroop and 
Eriksen tasks (Stroop, 1935; Eriksen and Eriksen, 1974) are thought 
to engage cognitive inhibition (see e.g., Nigg, 2000 for a taxonomy). 
In contrast to this view, the close correspondence between our 
rational decision-making model and human behavior at the task 
demonstrates the influence of multiple cognitive factors on stop-
ping behavior. Our previous work also showed that behavior in 
the Eriksen task (Yu et al., 2009) can arise from Bayesian statisti-
cal inference in a bounded rational manner (Simon, 1956). An 
interesting challenge is to explore how performance measures from 
these various inhibitory control tasks relate to each other within 
individuals, both empirically and from a computational perspective 
(Friedman and Miyake, 2004).

One major aim of our work is to understand how stopping abil-
ity and SSRT arise from various cognitive factors. Our work shows 
that SSRT arises from number of contributing elements: reward/
penalty-sensitivity, sensory processing rate, and top-down expecta-
tions such as that of stop signal frequency. Thus, SSRT should not 
be viewed as a unique, invariant measure of stopping ability for 
each subject, but rather as an emergent property of the dynamic, 
context-dependent comparison between going and stopping. This 
more nuanced view of stopping ability and SSRT may aid in the 
careful analysis of impaired stopping ability, e.g., longer measured 
SSRTs, in a number of psychiatric and neurological conditions, 
such as substance abuse (Nigg et al., 2006), attention-deficit hyper-
activity disorder (Alderson et al., 2007), schizophrenia (Badcock 
et al., 2002), obsessive-compulsive disorder (Menzies et al., 2007), 
Parkinson’s disease (Gauggel et al., 2004), Alzheimer’s disease 
(Amieva et al., 2002), and so on. It is unlikely that these various 
conditions share an identical set of underlying neural and cog-
nitive deficits. In our framework, almost all model parameters, 
such as the fraction of stop trials, the SSD distribution, stop error 
cost, and go response deadline, are set directly by the experimental 
design. The only exceptions are parameters representing the sensory 
noise corrupting go stimulus and stop signal processing. These 
sensory parameters may be one important source of inter-subject 
 differences. However, it is also likely that in practice, individuals 
have different estimates for the other parameter values on any given 
trial in an experiment, given their prior biases, memory capacity, 
individual experiences, and learning rates. Since our model makes 
explicit the dependence of subject behavior on subtle differences in 
these subject-specific parameters, these parameters can be inferred 
from behavioral data directly via model-fitting. In the future, we 
plan to use model-fitting techniques, in conjunction with calibra-
tion experiments for independent estimation of behavioral biases, 
to study individual and group differences in inhibitory control.
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