
HUMAN NEUROSCIENCE

Description of emulation
Humans and other animals actively participate in shaping their 
environments. We move through the world to find objects or areas 
that help us fulfill our goals, and we may take actions to change 
the objects we encounter. The action planning problem faced by 
human organisms is made more complex by the fact that planned 
actions take time to execute, while elements in the environment 
may be in motion – consider the problem of moving one’s hand 
to catch a thrown ball. Given delays in action execution, and mov-
ing objects in the environment, effective action selection requires 
some ability to predict the effects of actions in the future (if I put 
my hand there, I’ll catch the ball when it arrives). One way human 
bodies and brains might solve this problem is to create represen-
tations of what the future might be like given potential actions 
by the organism, evaluate those future possibilities, and select for 
execution the action associated with the “best” future state. Animals 
are also faced with the need to process an enormous amount of 
sensory stimuli at very high speeds. Representations of the expected 
future sensory environment could also be useful for reducing this 
problem of interpreting massive sensory stimuli de novo at every 
moment to the simpler problem of resolving differences between 
the predicted and sensed environments. Note that the predicted 
sensory environment includes the kinematic sensations associated 
with the positions of the organism’s body parts.

Converging lines of neuroscience and cognitive science research 
suggest that the importance of “emulations” (from Grush, 2004), 
which are ongoing representations of potential organism actions 
and the futures those actions are expected to produce, goes well 
beyond the action planning and sensory decoding described in the 
example above. The initial sections of this paper describe theories 
and evidence originating from distinct lines of scientific inquiry 
that all separately support the importance of emulations for human 
cognition. A single framework for cognition that combines the 
separately developed theories is then presented, followed by a dis-
cussion of the possible underlying neural implementation. These 
sections are followed by a “General Discussion.”

an integrateD framework
New scientific findings regularly add to our knowledge of how 
humans and other animals function in their environments. 
However, it is often difficult to relate new findings obtained from 
the different sub-fields of cognitive science, neuroscience, and psy-
chology, because no common theoretical framework easily connects 
all these areas. For example, we know that the frontal lobes are 
important for planning, and that mental models are important for 
human reasoning. These facts may lead us to suspect that mental 
models and the frontal lobes are closely related, but in the absence 
of a theory relating the two concepts, it is difficult to design experi-
ments that could shed light on the relationship. More specifically, 
research into the EEG signals that accompany errors in highly 
trained pianists (Ruiz et al., 2009) does not have an obvious impact 
on the interpretation of fMRI results from patients led to expect a 
less aversive taste than they were given (Nitschke et al., 2006), or on 
the design of experiments aimed at understanding the brain regions 
involved in reasoning, such as those conducted by Knauff (2009).

My goal is to present a theoretical framework that offers the 
promise of relating research in many sub-fields of cognitive science, 
neuroscience, and psychology, including the findings described in 
the above paragraph. The framework is based on the concept that 
cognition is organized around optimizing predictions of environ-
mental and organism state. Various forms of this concept have been 
previously published (see Llinas, 2001; Grush, 2004; Hawkins and 
Blakeslee, 2004; Friston and Stephan, 2007; Pezzulo et al., 2008; 
Bar, 2009; Bubic et al., 2010). There have also been many previous 
descriptions of the role of prediction in individual aspects of cog-
nition, some of which are reviewed below. This manuscript goes 
farther by proposing a theoretical framework for information pro-
cessing that explicitly relates many separately studied components 
of cognition based on how they operate on predictive representa-
tions. It is the common use of predictive representations across 
perception, motor planning, attention, and learning and higher 
cognitive reasoning that offers the promise of integrating these 
fields into a single theory of cognition.
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emulations in motor control – forwarD moDels
Grush (2004) has proposed an information processing theory 
to explain how animals demonstrate the ability to predict future 
environmental states and monitor ongoing action. His “emulation 
theory of representation” holds that Kalman-filter-like controllers 
utilize an ongoing representation of the future environment (a “for-
ward model”) to select actions that optimize the emulated future. 
This hypothesis is supported by evidence from studies indicating 
the necessity of forward models in skeletal movements (Mehta 
and Schaal, 2002; Diedrichsen et al., 2007; Miall et al., 2007) and 
smooth pursuit eye movements (Deno et al., 1995; Poliakoff et al., 
2004). Other theories of motor control also invoke control systems 
that minimize an error between incoming sensory information 
and environmental representations maintained by forward models 
that are informed by knowledge of ongoing actions (Kawato, 1999; 
Blakemore et al., 2001; Kawato et al., 2003; Davidson and Wolpert, 
2005). In particular, multiple theories of cerebellar function pos-
tulate that the cerebellum participates in the maintenance of a for-
ward model that produces the current state of the musculo-skeletal 
system (Wolpert et al., 1998; Nixon, 2003; Miall et al., 2007). The 
studies cited and many more provide solid evidence that human 
motor control utilizes predictions of the environment.

emulations in perception – top-Down influence
Empirical research into the basis of human perception indicates that 
perception does not result simply from the passive interpretation of 
incoming sensory “bottom-up” information (Bruner and Postman, 
1949). Human perception appears to be a generative process that 
combines sensory input with potentially multiple sources of “top-
down” information already possessed by the human (Teuber, 1966; 
Kosslyn and Shin, 1994; Bar, 2003). As hypothesized by multiple 
authors (e.g., Gross et al., 1999; Grush, 2004; Bar, 2007), the top-down 
information used in the generative process of perception may include 
a prediction of the future state of the organism’s environment. The 
theory of “predictive coding” (Rao and Ballard, 1999) holds that the 
well-known neurophysiological properties of early visual system neu-
rons reflect “difference signals,” which represent just the differences 
between the predicted state of the environment (projected down to 
lower-level visual areas) and the actual visual input.

Recent empirical studies of human behavior report compel-
ling evidence for the role of top-down influences in multi-sensory 
perception. When subjects were led to expect a less aversive taste 
then they were given, they rated the taste as less averse, and primary 
taste cortical activation was less intense then when their expecta-
tions were not manipulated (Nitschke et al., 2006). fMRI activity 
prior to stimulus onset in a cued visual attention task was found to 
significantly correlate with subject’s behavioral responses to stimuli 
(Slagter et al., 2006). A recent experiment demonstrating fMRI evi-
dence of an internal sensory prediction when subjects were deciding 
whether ambiguous stimuli were faces (Summerfield et al., 2006) 
offers more empirical evidence for predictions forming the basis 
of top-down influence on perception. These empirical examples 
support the notion that the perceptual process uses the predictions 
in emulations as a guide to interpreting actual sensory input.

Other theorists proposing that environmental expectations are 
used to interpret stimuli have also included planned actions in the 
expectation (e.g., Kosslyn and Sussman, 1994). In a similar vein, 

Gross et al. (1999) hold that the process of perception uses input 
from the senses along with learned knowledge of how the organism 
interacts with objects in the environment to classify visual input in 
terms of potential interactions. As described by Gross et al. (1999) 
since the basic understanding of the sensory input is held in the 
form of potential future interactions, it is the future state of the 
environment that is considered. These theoretical contributions 
are all compatible with the hypothesis that perception depends 
on emulations.

emulations in attention – exogenous anD 
enDogenous orienting
Research into mechanisms of attention support an important role 
for emulations in attentional capture. There are two main chan-
nels of attentional capture, endogenous, and exogenous orienting 
(see Ruz and Lupiáñez, 2002 for a review). As described below, 
current theories for both of these types of attentional capture rely 
on expectations of future environmental states. Endogenous, or 
goal-driven orienting is when a person redirects their attention to 
a location or object as a part of their ongoing task, like checking 
for traffic before crossing the street. LaBerge (1995) holds that in 
endogenous attentional capture, the focus of attention is shifted 
based on expectations of environmental events. According to this 
theory, humans focus their attention on locations or stimuli that 
are expected to be meaningful in the current context. Importantly, 
context is thought to be useful for directing attention because it 
provides a basis for realistic expectations. A study by Hayhoe et al. 
(2005) provides more recent support for this notion. These inves-
tigators found that when catching and throwing bounced balls, 
subjects make predictive head, eye, and hand movements to loca-
tions consistent with the subjects’ using an internal model of the 
future environment.

A study of goal-driven orienting found that subjects perform-
ing visual search tasks are optimally biased to detect features of 
the target that are different from known distractors (Navalpakkam 
and Itti, 2007). Subject performance in this study was consistent 
with an attention model that boosted the gain on those target 
features that best separated targets from the distracting stimuli, 
suggesting that subjects’ performance on this visual search task 
depends on expectations of the feature distributions of targets and 
distractors. Similarly, data on where humans fixate during search 
indicates that we maintain expectations for target location and use 
eye movements to efficiently update that expectation (Najemnik 
and Geisler, 2005).

Models of goal-derived, top-down influence in object recog-
nition that rely on a quickly processed “gist” of the visual scene 
predict eye movements to regions likely to contain objects given 
the scene context (Oliva et al., 2003; Torralba et al., 2006). These 
results suggest that expectations for the visual environment derived 
from initial, fast, incomplete processing of visual information pro-
vide top-down modulation for later activity in attention-guided 
visual tasks.

The literature discussed above indicates that top-down, endog-
enous effects on attentional capture are tightly tied to predictions 
of the environment. The same is true of exogenous orienting. 
Exogenous orienting occurs when attention is involuntarily drawn 
to stimuli that are not the focus of the current task. This type 
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suggests that the ACC might have a general role in monitoring 
and evaluating action outcomes. In this schema, ERN generation 
may occur when action outcomes do not match internal predic-
tions. These theories are entirely compatible with the generation 
of the ERN by neural processes responsible for detecting errors 
in emulations.

Recent evidence supporting the role of ACC in generation of 
neural signals indicating a departure from expectation comes from 
a study of accomplished pianists (Ruiz et al., 2009). Approximately 
50–70 ms before these subjects made an error while playing fast, 
complex pieces, a negative EEG signal was recorded from mesial 
frontal electrodes. Since the neurophysiological correlate appears 
before any auditory feedback of the error exists, Ruiz et al. (2009) 
conclude that the EEG signal may index the error signal of a for-
ward model guiding movement. Positive feedback can also generate 
ERN-like neurophysiological signals (Holroyd et al., 2008). Oliveira 
et al. (2007) specifically tested the hypothesis that the ACC is part 
of system that detects deviations from expectations, and found that 
both errors and unexpected positive outcomes produced feedback-
related negativities (FRNs) that appear very similar to the ERN.

The evidence presented in this section suggests that the ERN 
and related neurophysiological signals generated by the ACC are 
produced by a neural mechanism that detects sensory mismatches 
from internal predictions.

reinforcement learning corrects emulations
The neurophysiological responses described above are proposed to 
result from neural processing that recognizes errors in emulations. 
Further evidence outlined in Holroyd and Coles (2002) implicates 
the neural processing underlying the ERN and a similar EEG event, 
the medial frontal negativity (MFN), in the correction of emula-
tion errors.

Research into learning at the single neuronal level suggests that 
dopamine-containing neurons in the ventral tegmental area and 
the substantia nigra pars compacta, send a reinforcement learning 
signal throughout the cortex (Schultz et al., 1993). These neurons 
are collectively termed the mesencephalic dopamine system (MDS). 
Investigation of the time course of excitation in these neurons indi-
cates that their activity is most closely tied to errors in predictions of 
reward (Schultz et al., 1997; Bayer and Glimcher, 2005). According 
to Holroyd and Coles (2002), the error-processing function that 
involves the ERN and the reinforcement learning function attrib-
uted to the MDS both come into play when the organism must 
accommodate information that does not match expectations. They 
hypothesize that the ERN is generated in the ACC by a reinforce-
ment learning signal from the MDS.

Support for this proposed relationship between the ACC, the 
ERN, MFN, and FRN and reinforcement learning comes from mul-
tiple recent empirical investigations. Monkeys with lesions of the 
ACC are unable to integrate reward information over time to form 
optimal long-term behavioral strategies (Kennerley et al., 2006). 
fMRI activity in the ACC is related to the predictability of the task 
and reward, and the degree to which ACC activity was related to task 
predictability was correlated with subject learning rate throughout 
the task (Behrens et al., 2007). The magnitude of the recorded ERN 
or FRN can predict later changes in behavior indicating that learn-
ing has occurred (Yasuda et al., 2004; Frank et al., 2005; Cohen and 

of bottom-up attentional capture is primarily due to stimulus 
features, although top-down modulation may occur (Ruz and 
Lupiáñez, 2002).

The “surprise-attention hypothesis” (Meyer et al., 1991, 1997; 
Horstmann, 2006), states that exogenous orienting is caused by 
surprising stimuli that capture attention. Surprising stimuli are 
defined as those that highlight a discrepancy between the actual 
environment and the current set of expectations. This hypothesis 
is supported by the findings that attentional capture by an unex-
pected color singleton was due to the mismatch in expectations 
for the color of the stimulus (Horstmann, 2005). Further evidence 
indicating that attention is drawn by unpredicted changes to the 
environment comes from psychophysical studies validating a com-
puter model of human eye movements (Itti and Baldi, 2006). The 
model changes its point of focus to “surprising” regions, which are 
visual regions that contain unexpected information. Predictions 
made by the model are a good fit for human eye movements over 
the same visual stimuli.

This brief review of exogenous orienting supports the concept 
that this type of attentional shift may be caused by violations of 
the predictions contained within emulations. Thus, theories of 
both exogenous and endogenous orienting are compatible with 
the proposal that emulations play an important role in selecting 
the focus of attention.

the neurophysiology of emulation errors
Thus far we have reviewed evidence suggesting that emulations are 
involved in directing attention, interpreting incoming stimuli, and 
planning and executing actions in a dynamic environment. The 
use of emulations is highly adaptive because it can enable rapid 
recognition even when given minimal sensory input. Emulations can 
also allow effective planning of actions that take time to complete. 
However, a perception–action system that relies on predictions will 
perform poorly if those predictions are incorrect. Neurophysiological 
evidence indicates that humans possess one or more specific mecha-
nisms to deal with detections of emulation errors.

error-relateD negativity
The error-related negativity (ERN) is an EEG evoked potential 
that is produced when subjects make errors. ERNs are typically 
seen in reaction time tasks that require a speedy response from 
the subject. It is a negative potential that begins 50–100 ms after 
the error is made (Falkenstein et al., 1991; Gehring et al., 1993; 
see Taylor et al., 2007 for a review), and its origin has been well-
localized to the medial frontal cortex around the dorsal anterior 
cingulate cortex (ACC; Dehaene et al., 1994). Two earlier competing 
theories put forth to explain the generation of the ERN disagreed 
over whether it reflected neural process responsible for detecting 
errors (Holroyd and Coles, 2002) or for detecting conflict (Carter 
et al., 1998; Botvinick et al., 2001). More recently, multiple authors 
(Luu and Pederson, 2004; Oliveira et al., 2007) have suggested that 
both of these viewpoints might be consolidated into the hypothesis 
that an ERN is produced when a subjects’ internal model of the 
environment has been proven incorrect.

Luu and Pederson (2004) have proposed that the ERN is pro-
duced by the activation of processes that result from violations 
in the representation of context. Similarly, Botvinick et al. (2004) 
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of ERN’s in subjects of varying anxiety (Compton et al., 2007). ERN 
amplitude was smaller for anxious people viewing aversive pictures 
(angry faces), and greater for anxious people viewing happy faces. 
Compton et al. (2007) propose that anxious subjects have different 
expectations for the effect of stimuli on bodily state, and interpret 
their results as indicating that ERN amplitude is affected by viola-
tions of expectations. The relationship between insula activation 
and learning is indicated by an fMRI study showing that the mag-
nitude of right anterior insula activation in anticipation of losses 
was correlated to the degree of learning displayed when subject’s 
behavior was retested months later (Samanez-Larkin et al., 2008). 
A review and meta-analysis by Knutson and Greer (2008) similarly 
found that loss anticipation evoked relatively greater activation in 
anterior insula, and that anterior insula activation predicted choices 
made to avoid losses.

Thus it appears as though the right anterior insular cortex may 
trigger reinforcement learning by signaling the anticipation of dis-
ruptions to homeostasis. Since negative expectations for the inter-
nal environment seem to produce an error signal similar to that 
generated when predictions for the external environment do not 
match sensory stimuli, emulation of the organism’s internal state 
may default to a prediction of healthy organism function within 
normal homeostatic limits.

emulations anD higher cognitive function – mental 
moDels
Humans and animals process information in many ways, and for 
many purposes. Dual-process theories (Schneider and Shiffrin, 
1977; see Evans, 2008 for a recent review) state that most human 
activities depend on fast, automatic, unconscious information pro-
cessing. These rapid processes are said to make up System 1 cogni-
tion, and they include the cognitive activities hypothesized in the 
above sections to depend on emulations. A separate process, System 
2, is held to be responsible for slower, conscious thought such as 
explicit reasoning through complex problems. Here I describe evi-
dence suggesting that this second system for conscious deliberation 
also operates using emulations.

Mental model theory (Johnson-Laird, 1980, 1983; Johnson-Laird 
and Byrne, 2009) holds that humans reason their way through dif-
ficult problems using “mental models.” Mental models are described 
as “possibilities,” and are derived from Craik’s (1943) concept that 
the mind predicts events using small-scale models of reality. The 
concept of cognition as emulation is thus compatible with mental 
model theory if mental models are multifaceted emulations that 
are imagined and analyzed during reasoning tasks.

Empirical evidence suggesting that mental models of this type 
play a role in higher-level cognition comes from experiments in 
mechanical reasoning. The time it takes for subjects to mentally 
rotate a three-dimensional objects is proportional to the amount of 
rotation (Shepard and Metzler, 1971). A similar result was found for 
subjects guessing the rate of rotation of interlocking gears (Schwartz 
and Black, 1996). Hegarty (2004) provides a review of the role of 
simulation in constructing and operating on mental models used 
for mechanical reasoning.

Barbey et al. (2009) propose that higher-level cognition depends 
on mental models that take the form of activated associative memo-
ries that are used for planning. Similarly Gilbert and Wilson (2007) 

Ranganath, 2007). The Cohen and Ranganath (2007) study also 
found that the magnitude of the FRN was larger over the motor 
cortical region generating the changed behavior, further advanc-
ing the notion that the ERN and FRN are signals arising from a 
system involved in reinforcement learning, and that the signals may 
be produced by a neural mechanism acting to change the motor 
cortex representation of the task movement.

These results suggest that the ERN, FRN, and MFN are pro-
duced by a reinforcement learning signal from the MDS (Holroyd 
and Coles, 2002). If the ERN reflects activity from a system that is 
designed to correct emulations, as outlined in the preceding section, 
then this evidence also supports the proposal that reinforcement 
learning corrects emulations.

emulation in homeostasis
As described above, the maintenance of predictions of external 
environmental state is highly adaptive because it allows the organ-
ism to rapidly recognize external objects, and execute action plans 
for optimal future effect. Humans may similarly use emulations of 
their internal state to regulate bodily homeostasis. Just as a Kalman-
filter-like controller can optimize goal-directed motor activity, the 
ability to respond to expected disruptions in homeostasis can mini-
mize variations away from an optimal state. This ability would allow 
the organism to learn how to avoid disruptive states and rapidly 
respond to unavoidable disruptions.

The role of the insula in signaling impending aversive body 
states is prominently featured in an integrative theory of the neu-
roscientific basis of anxiety (Paulus and Stein, 2006). These authors 
propose that one role of the insula is to integrate information about 
the salience (appetitive and aversive) of external stimuli with bod-
ily state information to form predictions of future body state, and 
that the insula produces a neural signal when deviations from an 
optimal homeostatic state are expected. They go on to suggest that 
heightened activity in the anterior insula may be associated with an 
exaggerated expected body state in anxious individuals.

Physiological experiments indicate that the insular cortex main-
tains an internal representation of the body in humans (Critchley 
et al., 2004), and activation of the insula is modulated by risk predic-
tion and risk prediction errors (Preuschoff et al., 2008). The anterior 
insula is activated by anticipation of painful stimuli (Ploghaus et al., 
1999) and anticipation of touch, with the magnitude of activa-
tion related to the reported subjective intensity of touch (Lovero 
et al., 2009). Anatomical evidence also strongly supports the idea 
of a bodily representation in the dominant (right) anterior insular 
cortex (Craig, 2002).

As reviewed above, ERN amplitudes appear to be related to the 
degree of learning that occurred, suggesting a role for the ERN 
in reinforcement learning (Holroyd and Coles, 2002). Paulus and 
Stein (2006) further propose that in anxious people, pathologi-
cally incorrect anticipation of negative outcomes in the insula may 
generate an (incorrect) error signal in the ACC. These hypotheses 
may be combined in the idea that negative expectations detected 
by the anterior insula may generate ERNs in the ACC that result 
from reinforcement learning.

Recent studies provide evidence upholding different parts of the 
combined hypothesis. The link between anticipation of aversive 
body state and the ACC and ERN is brought out in measurements 
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emulation’s prediction and preparation for emulation action. This 
process advances emulations whose environmental predictions are 
most accurate toward the realization of their potential, includ-
ing execution of their potential action, and production of their 
expected future environment. The term “environment” here refers 
to sensory impressions from both inside (homeostatic information) 
and outside the body. As described in the Section “Emulation in 
Homeostasis” above, emulations may default to a prediction of 
healthy organism function.

This description of emulation realization is similar to the the-
ory of decision-making advanced by Cisek (2006). Cisek (2006) 
hypothesized that decision-making involves multiple, distributed 
representations of potential actions that compete for execution. 
These ideas are supported by neurophysiological evidence indi-
cating that neurons controlling saccadic eye movements initially 
encode multiple potential actions while the subject is gathering task-
relevant information (reviewed in Smith and Ratcliff, 2004). Once 
enough information is gained to deduce the correct response, these 
same neurons all represent only the single, correct action. Further 
evidence consistent with the notion that emulations containing 

hold that humans predict their emotional reaction to potential 
futures using their immediate emotional reaction to simulations, 
and Moulton and Kosslyn (2009) claim that mental imagery is used 
to generate predictions based on past experience. These theories are 
compatible with the notion that human reasoning may utilize explicit 
representations of the future environment that can be tested “off-
line,” i.e., in the imagination. Functional imaging evidence support-
ing this mechanism in humans has been provided in a recent series 
of papers (reviewed in Knauff, 2009), that demonstrated increased 
activity in visual cortex during problem steps involving construc-
tion and maintenance of representations, but no activity in those 
areas during a later “reasoning” stage. Thus, a body of theory and 
evidence supports an important role for environmental predictions, 
in the form of mental models, in human higher cognitive reasoning.

cognition means creating, maintaining, anD 
selecting potential futures
The preceding sections describe evidence suggesting that many 
aspects of cognition rely upon emulations. This section integrates 
those observations into a theory of cognition. I suggest that at a high 
level, cognition is carried out via a number of constantly ongoing, 
concurrently running control processes, as shown in Figure 1. Put 
simply, the theory is that all of human information processing is 
organized around creating and maintaining accurate emulations. 
The following paragraphs describe the different aspects of the 
theory in more detail.

emulation generation
Emulations are ongoing representations of actions and predictions 
of the future environment associated with those actions. Emulations 
are thus sensorimotor constructs, or put another way, they are rep-
resentations of actions that include the predicted sensory context. 
Emulations are generated by incoming sensory stimuli that act as 
partial cues to trigger the activation of associative memories of 
similar previous situations, the organism actions associated with 
those previous situations, and the resulting internal and external 
environmental states. This explanation for the genesis of emulations 
generally agrees with multiple hypotheses (Hawkins and Blakeslee, 
2004; Schacter and Addis, 2007; Barsalou, 2009; Barbey et al., 2009) 
that activated long-term memories are used to predict events, and 
optimal actions are selected using the resulting predictions. Fuster 
(2006) has also suggested that working memories are long-term 
memories that have been activated by the current context.

Note that the sensory predictions and actions in emulations need 
not exactly match the previously occurring actions and environmen-
tal states. Since partial cues may retrieve many related memories from 
neural networks, the predictions and actions in emulations may vary 
somewhat from actual previous sensorimotor states. The emulations 
that may be generated by a particular sensory percept are also con-
strained by the prediction of the internal sensory environment. As 
described in the Section “Emulation in Homeostasis” above, emula-
tions appear to default to a prediction of healthy organism function.

emulation realization – a theory of action selection
Typically, at any given time, many emulations exist within an organ-
ism. These simultaneous emulations represent potential futures 
for the organism. Emulation realization involves evaluation of the 

Figure 1 | This figure depicts an emulation-based framework for 
cognition. The constituent control processes that make up the framework 
create and operate on emulations. The control processes are described in 
detail in the manuscript text. The figure shows the control processes 
operating in a pool of active emulations. Thick arrows represent the movement 
of emulations out from the emulation generation process into the active pool. 
The meanings of the numbered arrows are given below. (1) Sensory 
expectations – the red arrow depicts expectations in active emulations that 
are fed back to lower-level sensory regions, creating a bias in those regions to 
quickly interpret incoming sensory information in accordance with 
expectations. (2) Sensory percepts – the purple arrows show how perception 
affects associative memory and emulation realization. Perceptions of the 
current environmental state influence the advancement of active emulations, 
and trigger associations that can generate new emulations. (3) Difference 
signals – the yellow arrows indicate the use of difference signals in attention 
and learning. When incoming sensory information differs from the 
expectations in emulations, difference signals are generated that can trigger 
increased attention to the unexpected sensations, and reinforcement learning 
activity to accommodate the new information. (4) Reinforcement learning – 
the blue arrow depicts the action of learning signals that update associative 
memory so that future expectations will take current information into account. 
(5) Actions and associated environmental predictions – the pink arrow 
indicates the flow of associations used by emulation generation. Action plans 
and predictions that make up emulations are derived from associations 
generated by either real or emulated sensory states. (6) Emulation chaining – 
the thick arrow shows active emulations as input to associative memory. The 
expected future environment of emulations can trigger associations that 
generate new emulations, causing chains of emulations to form.
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emulation chaining – a theory of higher cognitive function
As described in the Section “Emulations and Higher Cognitive 
Function – Mental Models,” experimental results suggest that 
human deliberative reasoning makes use of emulations. System 2 
cognition including complex reasoning and long-term planning 
may be made possible by the “chaining” of emulations, such that 
the predicted future of one emulation may serve as the sensory 
percept triggering the generation of a new emulation. This method 
of developing and evaluating sequences of possible actions and pre-
dictions of their effects is described in Hesslow (2002). Emulation 
chaining allows organisms to evaluate the potential course of a 
series of actions by short-circuiting the actual execution of actions, 
and examining the resulting sensory predictions “off-line” from 
the real sensory environment. The ability to create and test action 
sequences before execution allows humans to develop and execute 
complex, long-term plans.

a theory of cognition
The framework laid out in Figure 1 integrates action selection, per-
ception, attention, and learning, and higher cognitive functions into 
a single theory of cognition. The common use of, and operation on 
predictive representations supports the exposition of the relation-
ships between information processing modules. The relationships 
shown in the Figure can be used to explicitly link findings derived 
from studying each individual cognitive module.

For example, new experimental results revealing details about 
how forward models are used to plan actions can now also be used 
to guide further research into how sensory expectations are used 
to speed perception, or research into the dependence of attention 
on expectations for the environment. The theoretical framework 
supports the application of motor planning results to reinforce-
ment learning and vice versa, it supports the use of knowledge 
about how perception constrains action to frame studies of higher 
cognitive function, and so on. The integrated theory of cognition 
provides a common framework capable of relating these previously 
disparate fields.

emulations exist as active DistributeD networks 
(cognits)
This section outlines the possible neurophysiological and neu-
roanatomical bases for the hypothesized cognitive processes 
described above. I propose that emulations are stored in, or main-
tained by, distributed networks of neurons whose discharge rate 
has increased above baseline. This description of the physiology 
of active emulations is inspired by studies of working memory. 
Classic experiments on the physiology of working memory uti-
lized the delayed match-to-sample paradigm to demonstrate that 
some frontal cortex neurons increased their firing rates during 
periods when the animal subject had to retain memories dur-
ing a relatively brief delay period (Fuster and Alexander, 1971). 
Later experiments found similar results in the parietal (Gnadt and 
Andersen, 1988) and temporal (Fuster and Jervey, 1982) cortices. 
These results and others were later interpreted as indicating that 
the neurons showing increases in firing rate were participating 
in a distributed network that represented the stored memory 
updated for the current context (Fuster, 2006). Like working 
memories, emulations are  maintained by distributed networks 

more accurate predictions will advance to execution comes from 
the finding that cortico-spinal excitability indicating preparation 
for an action increases when sensory stimuli indicate an increased 
certainty that the action will be appropriate (Bestmann et al., 2008).

Since emulation realization is an action selection process that 
advances joint representations of actions and their expected con-
sequences, this proposed process is in agreement with ideo-motor 
theory (see Stock and Stock, 2004 for a review) and common coding 
theory (Prinz, 1997), which both emphasize this joint representa-
tion. The use of cognitive representations of expected action effects 
in action planning is separately described as the “action-effect” 
principle by Prinz (1997).

emulation-guiDeD perception – a theory of perception
All of the processes in Figure 1 are proposed to be constantly oper-
ating on the information they can access. Specifically, emulation 
realization operates concurrently with emulation-guided percep-
tion. Although there is no temporal order to process operation, 
the cognitive system does have a directional information flow. An 
event originating in the (internal or external) environment (e.g., 
the detection of a predator) enters the system via sensation and 
first impacts cognition during emulation-guided perception. As 
described in the Section “Emulations in Perception – Top-Down 
Influences” above, this process fits raw sensory input to prior 
expectations of the environment. Along with producing sensory 
percepts that can generate new emulations and advance match-
ing emulations toward realization, emulation-guided perception 
also produces “difference signals” (after Rao and Ballard, 1999), 
describing how sensed reality differs from internally generated 
predictions.

emulation monitoring anD repair – a theory of attention anD 
learning
The emulation monitoring and emulation repair processes are 
engaged when significantly large difference signals are produced 
by emulation-guided perception. Emulation monitoring acts to 
focus attention on the surprising sensory information. Increased 
attention directs a greater proportion of sensory resources toward 
those surprising environmental. The resulting increase in informa-
tion concerning the unexpected environmental event produces new 
sensory percepts that can adjust the expectations in emulations to 
reduce future surprise.

Zacks et al. (2007) outlined a theory of human event segmenta-
tion (event segmentation theory, or EST) that proposed identical 
mechanisms (detection of spikes in difference signals leading to 
increased influence of sensory information) for the detection of 
event boundaries and the creation of new event context models. 
Emulations may be a part of the “event models” in EST.

As discussed in the Section “The Neurophysiology of Emulation 
Errors,” “Reinforcement Learning Corrects Emulations,” and 
“Emulation in Homeostasis“ ”bove, empirical evidence suggests 
that specific neural mechanisms are responsible for recogniz-
ing errors and engaging reinforcement learning mechanisms. 
Emulation repair (learning) uses the discrepancy between sensed 
information and expectations to update associative memory, and 
reduce the likelihood that errors in emulations are repeated. This 
process is analogous to updating event schemata in EST.
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and Roesch, 2005). Schacter and Addis (2009) review evidence 
implicating the hippocampus and parahippocampal gyrus in cre-
ating and storing predictions. The hippocampus and surrounding 
cortex are part of the brain’s “default network” of brain regions 
active when the brain is not engaged in a specific task (Raichle et al., 
2001; Buckner et al., 2008). One of the functions of the default 
network may be to create and store environmental predictions 
(Raichle, 2006; Buckner and Carroll, 2007).

A specific cortical region that may play a role in sustaining rep-
resentations of the future is area F5 in the ventral premotor cortex 
(Gallese, 2000; Garbarini and Adenzato, 2004). “Canonical” neu-
rons in this area increase firing not only during the execution of 
specific actions (e.g., hammering), but also in response to stimuli 
that are intimately related to that action (e.g., a hammer; Murata 
et al., 1997). Similarly, “mirror” neurons from this area increase 
firing during self-action and also when the subject views the same 
action performed by others (Gallese et al., 1996; Rizzolatti et al., 
1996). We would expect to see these increases in firing rates if visual 
stimuli related to some action triggered the formation of emula-
tions that included that same actions performed by the organism, 
and area F5 neurons took part in the instantiation of the emulation.

The information reviewed above suggests that the emulation 
generation process depicted in Figure 1 is implemented by the 
brain’s default network by tapping into a general cortical associ-
ated memory store. Activated networks are distributed throughout 
the brain, with participation by the cerebellum, basal ganglia, hip-
pocampus, cortex, and thalamus. Neurons from the insula and the 
OFC also contribute homeostatic and goal information to emu-
lation instantiation. The pool of existing emulations contributes 
to emulation-guided perception via cortical feedback into lower-
level cortical sensory regions. Cortical sensory regions generate 
the difference signals between the expected and observed external 
sensation that produce reinforcement learning activity in the mes-
encaphalic dopamine system and ACC. Similarly, the right ante-
rior insula signals deviations from homeostasis that can produce 
reinforcement learning activity through similar pathways. Possible 
anatomical loci for emulation-handling cognitive processes are 
summarized in Figure 2.

prefrontal cortex represents alternate futures with 
actions
The frontal cortex has long been viewed as playing an important role 
in planning organism actions. The current proposal indicates that a 
more precise description of the information processing in frontal 
cortex is that active neurons in these areas maintain representa-
tions of alternate futures for the organism that include upcoming 
organism actions. This re-description of frontal cortex function was 
previously suggested by Schubotz (2007). Emulations may often 
begin with general action plans that can satisfy goals and produce 
the desired environmental effects. These initial emulations could be 
contained within networks that include neurons spread through-
out frontal cortex. Emulation realization requires more detailed 
movement planning, and the progressive recruitment of neurons 
in more caudal regions of frontal cortex into the active distributed 
network instantiating the emulation, as demonstrated in Figure 2. 
The movement of active networks toward the primary motor strip 
occurs while their emulations continue to match incoming sensory 

of activated neurons (“cognits,” from Fuster, 20061). More work 
remains to clarify the relationship between emulations and work-
ing memories.

Furthermore, all cognitive processes operate on single instantia-
tions of emulations. That is to say, a single activated cognit stores 
both the motor plan and the sensory prediction of the resulting 
environment. As that cognit advances to realization and execution 
of its motor plan, the cognit’s prediction of the external environ-
ment will aid in the perception of incoming sensory stimuli, and 
provide a context to guide attention. The cognit may also be part of 
a group of cognits that together form a chain of potential actions 
and predicted effects that are being evaluated as a possible complex 
action plan.

Importantly, the instantiation of the entire emulation is distrib-
uted throughout the active cognit. This means that the motor plan 
is not just stored in the discharge patterns of motor neurons, it is 
also maintained by the firing of the cognit’s sensory neurons, and 
vice versa. Thus, an active cognit closely resembles the neural bases 
of the simulators proposed by Barsalou (2009) as category repre-
sentations. Evidence supporting the spread of the entire representa-
tion over the entire active cognit comes from research describing 
brain activity modulation in both motor (Platt and Glimcher, 1999; 
Tobler et al., 2009) and sensory (Shuler and Bear, 2006; Pleger et al., 
2008) cortices by changes in the expected reward. If all neurons 
participating in an active cognit take part in the maintenance of 
the entire emulation, then changes to the predicted sensory envi-
ronment, including the expected reward, may be reflected in the 
discharge rates of all neurons. Widely distributed emulations are 
also consistent with Teuber’s (1966) hypothesis that the frontal 
lobes communicate intended actions to sensory regions to assist 
in the interpretation of incoming sensory information.

The proposal that potential actions and sensory predictions are 
represented in widely distributed physical instantiations appears to 
contradict established findings that align brain regions with specific 
cognitive functions. If motor plans and environmental predictions 
are distributed throughout cortex, then how do motor and sensory 
cortical areas differ? The underlying nature of the representation’s 
instantiation in a neuronal network may hold the answer. The 
participation of neurons from a particular brain region may be 
necessary for an emulation to be useful for that region’s purported 
function, but neurons from that region are just contributors to the 
entire emulation. Without the context provided by the activity of 
participating neurons from other brain regions, no single neuron 
or group of neurons can instantiate a useful representation.

Downing (2009) describes how multiple brain structures might 
implement prediction, drawing a distinction between procedural, 
implicit predictions made by the cerebellum and basal ganglia, and 
declarative predictions made by the hippocampus, thalamus, and 
neocortex. By contrast, Coull and Nobre (2008) review evidence 
implicating the basal ganglia in explicit timing tasks, and multiple 
cortical areas in implicit timing. The orbitofrontal cortex (OFC) 
may play an important role in generating affective predictions that 
aid in interpreting incoming stimuli (Barrett and Bar, 2009) and 
representing the desirability of expected outcomes (Schoenbaum 

1Fuster (2006) uses cognits to describe distributed networks of strictly cortical neu-
rons, but I do not restrict the locations of active neurons in cognits to the neocortex.
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the future environment. Thus, the current proposal accounts for 
changes in the activity of neurons in frontal regions resulting from 
incoming environmental stimuli that indicate a different expecta-
tion for the future (i.e., “reward cells” in frontal cortex), even in 
the absence of any change in the motor plan.

Differences in cognits between system 1 anD system 2 
cognition
System 1 cognition operates on a short timescale to aid our navi-
gation through the environment on a moment-by-moment basis. 
System 2 cognition works in parallel to allows us to formulate and 
carry out complex plans over a longer timescale. Active networks 
instantiating both short and longer-term, possibly chained emula-
tions may exist simultaneously, as humans navigate life’s immedi-
ate concerns while continuing to work toward long-term goals. 
Since the final predicted state is generally farther away for System 
2 emulations, the details of the final state may be less determined 
than for System 1 emulations. As a result, active cognits instanti-
ating System 2 emulations may not receive as much participation 
from lower-level sensory regions compared to cognits for more 
immediate, System 1 emulations. This testable hypothesis leads 
to the prediction that greater activation would be seen in primary 
sensory and motor regions when subjects made plans to execute 
concrete, immediate tasks (i.e., tell us how you would paint the 
waiting room), then when they were asked to make high-level plans 
to accomplish tasks over a longer time period (i.e., tell us how you 
will prepare for retirement).

testable hypotheses
The individual components of the framework outlined in Figure 1 
suggest multiple testable hypotheses such as that outlined just above 
concerning differences in System 1 and System 2 emulations. For 
instance, the proposed reliance of perception on top-down expecta-
tions that are related to specific organism actions suggests that percep-
tive ability can be modulated by constraining action effects on the 
environment. If this hypothesis is true, experimental manipulations 
that prohibited specific classes of organism actions should increase 
the time to respond to stimuli that would have been produced had 
the actions been performed. An example paradigm might involve 
measuring responses to stimuli before and after the elimination 
of user interface functionality that a subject has learned to associ-
ate with those stimuli. Neurophysiological recordings should also 
reflect changes in brain activity corresponding to the hypothesized 
reduction in top-down influence.

Another individually testable portion of the proposed frame-
work is the reliance of action planning on the continued corre-
spondence between sensory expectation and ongoing perception. 
Sufficiently large sensed differences from expectations should cause 
us to pause our actions, because if current emulations do not con-
tain sensory predictions that are still viable, then no emulations can 
advance to realization. Accordingly, changing the expected stimuli 
for subjects that have learned a particular action sequence should 
introduce delays in the subject’s actions.

The experiments suggested above would serve to test hypotheses 
about the proposed relation between possible actions and percep-
tion. Although the experiments have not been performed, previous 
authors have advanced the underlying theories (e.g., Prinz, 1997 for 

data and contain favorable homeostatic information. Chakravarthy 
et al. (2010) suggest that the basal ganglia are involved in selecting 
potential actions according to their potential reward. Thus, the basal 
ganglia may play a key role in gating the caudal movement of active 
networks toward realization of their emulations.

There is a fine distinction between describing neural activity as 
taking part in “organism action planning” compared to the current 
proposal that the frontal cortex “represents alternate futures that 
include action.” An important difference is that the current proposal 
implies that frontal cortex activity has a relationship to the future 
that extends beyond action to include purely sensory aspects of 

Figure 2 | The figure depicts a notional active cognit embodying an 
emulation. A single emulation is instantiated by active neurons in many 
locations in the brain. In this case the organism is faced with a complex social 
situation, trying to break away from a conversation at a party in order to get 
some food. The emulation stores the possibility of the organism vocalizing his 
feeling of hunger and moving away from a speaker and toward the area 
containing food. The following points list the notional active areas and the 
cognitive control processes their participation embodies. (1) Motor 
planning – increased discharge rates in these frontal cortical neurons store the 
emulation’s motor plan. In this case the motor plan consists of both 
vocalization and movement. Activity in Broca’s area neurons (near 1a) store 
the vocalization plan, while activity in neurons in the premotor cortex (near 1b) 
and the cerebellum (near 1c) store the movement plan. If the sensory 
predictions in this emulation do not deviate too strongly from incoming 
sensation, the emulation emulation realization will occur as this emulation is 
advanced toward realization. Advancement of the emulation is enacted by a 
shift in frontal cortex activity from these association areas along the dark 
arrows toward the primary motor cortex, eventually resulting in the 
performance of the stored action. Note that activity from area 1b stores a 
representation of bodily movement, so that activity shifts to the region of the 
motor strip that controls the trunk and legs. Similarly, activity from area 1a 
stores a representation of speech, so that activity moves to the area of the 
motor strip that controls the mouth. (2) Sensory association – activity patterns 
in parietal (near 2a) and temporal (near 2b) association areas store higher-level 
overviews of the expected sensory environment, which is the cessation of 
speech directed at the organism and the view of movement toward the food. 
These sensory expectations are communicated to the primary sensory areas 
(3a,b,c), creating lower-level sensory representations of the expected 
environment. (3) Primary sensory – activity in primary sensory areas is 
influenced by both the incoming sensory information and top-down feedback 
from sensory association areas storing the sensory expectations. The interplay 
between these two influences produces Emulation-Guided Perception. If 
incoming information deviates significantly from the top-down expectations, 
then difference signals (not shown) are sent to the anterior cingulate cortex, 
triggering an error-related negativity, and emulation repair. The comparison 
between incoming sensory information and top-down feedback containing 
sensory expectations is the emulation monitoring process.
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internal schema that drove the violated expectations. Meyer  et al. 
(1997) also stated that surprising events caused a re-appraisal of 
planned actions, which is consistent with emulation realization.

Another line of theory is centered on the use of sensory pre-
dictions for interpreting incoming sensory input (Bar, 2007), and 
generating signals when actual sensory information does not match 
expectations (Rao and Ballard, 1999; Friston and Kiebel, 2009). 
Llinas points out the importance of prediction, especially for direct-
ing movement (Llinas, 2001; Llinas and Roy, 2009). Kunde et al. 
(2007) separated two distinct functions for anticipation in planning 
and executing actions. Firstly, he stressed the role of anticipating 
the effects of action in order to select an action plan that satis-
fied organism goals. His second role for anticipation was in the 
description of a predicted set of sensory events that would serve as 
a trigger for action execution. This manuscript builds on the work 
of these many authors by explicitly integrating multiple cognitive 
neuroscience hypotheses in a single theoretical framework based 
on emulations.

notional cognitive architecture
The functional overview of cognitive control processes outlined 
in Figure 1 suggests a computational architecture that could serve 
as a blueprint for building machines that process information like 
humans. Ziemke and colleagues have investigated robot architec-
tures that are based on simulation of actions and the anticipation 
of environmental consequences (Ziemke et al., 2005; Svensson 
et al., 2009b), as have Pezzulo and colleagues (Pezzulo et al., 2008; 
Pezzulo, 2009). Many elements of the notional cognitive control 
processes depicted in Figure 1 are also implemented in the DiPRA 
layered agent architecture (Pezzulo, 2009). Actions in DiPRA are 
a part of sensorimotor schemas that also contain environmental 
predictions (analogous to emulations). Similar to the proposed 
process of emulation realization, actions in DiPRA advance toward 
realization as evidence accumulates that the predictions in their 
associated sensorimotor schemas are more accurate.

perception–action cycle
Many previous authors describe a “perception–action cycle” (e.g., 
Arbib, 1981; Fuster, 1985). In contrast, I suggest that cognition is 
not best understood as a cycle in which cognitive processes occur 
in a sequence. Specifically there is no time order to the cognitive 
control processes in Figure 1, they are all occurring simultaneously. 
Evidence that sensory information is brought to bear on actions in 
many stages of planning (e.g., Bestmann et al., 2008) supports this 
view. There is, however, a cyclical flow of information that influ-
ences cognitive activities related to specific environmental events, such 
as when a response is required to receive a reward in a laboratory 
setting. In these and similar circumstances, when the only cogni-
tion that is being measured relates to the environmental cues of the 
experiment and the actions required in the experimental paradigm, 
the multiple, concurrently operating control processes outlined in 
Figure 1 may well have their effects in a fixed sequence, or cycle.

gathering information for action
The “free-energy principle” developed by Friston and colleagues 
(Friston et al., 2006; Friston, 2009) holds that a goal of human 
action is to reduce uncertainty in environmental predictions. In a 

the relation of action and perception). This manuscript re-phrases 
those theories in terms of emulations and places them in a unified 
framework for cognition.

It is more difficult to design experiments that will produce evi-
dence supporting or refuting the integration of multiple theories 
of prediction in cognition into a single framework. Obtaining such 
evidence may require building models based on the framework and 
comparing model activities to human behavior. Models constructed 
using the blueprint provided in Figure 1 should not only demon-
strate the behavior predicted by the individual theories (e.g., per-
ception and attention are related to potential actions), the models 
should also process information in a more human-like fashion than 
other automated agents. For instance, the dependence of perception 
on expectations will both speed perception and introduce a bias in 
what is perceived, both of which are human-like traits. Similarly, 
since differences from expectations produce both a learning signal 
and the ability to focus attention and sensory resources, instan-
tiations of the framework should be better able to adapt to novel 
input data than typical machine algorithms. A significant amount 
of software development must be performed before models based 
on Figure 1 can be constructed to test these hypotheses.

general Discussion
The role of prediction in cognition has been widely discussed (see 
Bubic et al., 2010 for a recent review, and Nobre et al., 2007, for 
a review of temporal prediction). Many authors have focused on 
how predictions are used in specific cognitive processes, such as 
perception, action, or attention. A smaller number have emphasized 
the importance of predictions throughout multiple cognitive pro-
cesses. Figure 1 of this manuscript presents a theory of how shared 
operations on predictive representations can be used to integrate 
the information processing underlying motor planning, perception, 
attention, and learning, and higher cognitive reasoning into a single 
framework that is consistent with many previous accounts of the 
role of prediction in cognition.

Grush (2004) proposed that a Kalman-filter-like mechanism 
might maintain emulations that were central to motor planning 
and sensory perception. Grush went on to suggest that these emula-
tions could be a part of mental models that were central to higher 
cognitive reasoning, and that “visceral emulations” were used to 
interpret the emotional significance of incoming stimuli. Multiple 
authors have focused specifically on the role of internal simulations 
in cognition (Jeannerod, 2001; Hesslow, 2002). Barsalou et al. (2007) 
consider cognition as a continuous flow of multi-modal predictions, 
including simulations of actions and their expected results. Similarly 
Svensson et al. (2009a) have argued that cognition is enacted by 
internal simulations occurring at multiple sensorimotor levels.

Pezzulo et al. (2008) state that anticipation is an “ordering prin-
ciple” of cognition. Pezzulo and Castelfranchi (2007) describe a 
theory of how anticipatory representations evolved from use in 
error monitoring and sensory interpretation to be utilized as com-
plex goals and expectations that are not anchored in space and 
time. Multiple aspects of the framework presented in Figure 1 
are present in a model of surprise-related processes developed 
by Meyer et al. (1997). Much like the emulation monitoring and 
repair processes proposed herein, these authors hypothesized that 
unexpected events attracted attention and caused updating of the 
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