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These observations hint at fundamental differences in the way 
women and men process food-related information and control 
food intake, which is supported by evidence of partly separated 
neural mechanisms in response to food and in the control of eating 
behavior for both genders (Parigi et al., 2002; Smeets et al., 2006; 
Uher et al., 2006; Wang et al., 2009). However, since both men and 
women can become obese, neither of these ways seems to protect 
from excess weight gain.

In this study we investigated two aspects of gender-related differ-
ences in obesity. First, using voxel-based morphometry (VBM), we 
assessed differences in brain structure in lean and obese men and 
women. Second, we explored possible gender-related differences 
in cognitive control over eating behavior using a modified version 
of the Iowa Gambling Task (Bechara et al., 1994).

A recent study using functional MRI found gender-related dif-
ferences in ad libitum energy-intake following 6 days of eucaloric 
feeding as well as in food-related brain activation for normal weight 
subjects (Cornier et al., 2010). In this study, activation in dorsolat-
eral prefrontal cortex (DLPFC) correlated negatively with energy-
intake, but with increased activation levels in women as compared 
to men. The authors suggested that these greater prefrontal neural 

IntroductIon
The regulation of body-weight and energy-intake is a complex process 
involving humoral as well as central homeostatic and hedonic systems. 
Gender-based differences in the regulation of body-weight covering 
these domains are reported in the literature. The prevalence of obesity 
is slightly higher in women (in Germany, where this study was con-
ducted, women 20.2%, men = 17.1%, World Health Organization, 
2010) and differences between genders regarding the biological regu-
lation of body-weight have been described for gastrointestinal hor-
mones (Carroll et al., 2007; Beasley et al., 2009; Edelsbrunner et al., 
2009) and for eating-related social and environmental factors, as well 
as for dietary behavior (Rolls et al., 1991; Provencher et al., 2003).

A recent study showed that obesity risk-factors for women and 
men differ profoundly despite having the same effect on body-
weight: for men, most of the difference between groups with high 
and low health risk was explained by variability in eating compe-
tence (a score covering eating attitudes, food acceptance, internal 
regulation, and contextual skills such as meal planning) and the 
conscious restriction of food intake. For women, the inability to 
resist emotional cues and uncontrolled eating explained most of 
the group-differences (Greene et al., 2011).
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and thus mirrors the trade-off between immediate reward from eating and the long-term effect 
of overeating on body-weight. In women, but not in men, we show that the preference for salient 
immediate rewards in the face of negative long-term consequences is higher in obese than in lean 
subjects. In addition, we report structural differences in the left dorsal striatum (i.e., putamen) and 
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as well as in the hypothalamus (i.e., the brain’s central homeostatic center). These differences 
between lean and obese subjects in hedonic and homeostatic control systems may reflect a bias 
in eating behavior toward energy-intake exceeding the actual homeostatic demand. Although 
we cannot infer from our results the etiology of the observed structural differences, our results 
resemble neural and behavioral differences well known from other forms of addiction, however, 
with marked differences between women and men. These findings are important for designing 
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responses in women reflect increased cognitive processing related to 
executive function, such as guidance or evaluation of eating behav-
ior. In obesity, however, impairment of these control mechanisms 
may contribute to excess energy-intake.

To investigate possible gender-related differences in cognitive 
control over eating behavior in obesity, we used a modified ver-
sion of the IGT. This task requires evaluation of both immediate 
rewards and long-term outcomes and thus mirrors the trade-off 
between immediate reward from eating and the long-term influence 
of overeating on body-weight. Assuming that obese subjects prefer 
high immediate rewards even in the face of long-term negative 
outcome, we focused our investigations on card deck B. In this deck 
high immediate rewards are accompanied by infrequent but high 
punishments leading to a negative long-term outcome. In order to 
contrast each of the other decks with deck B individually, we pre-
sented only two instead of four alternative card decks at any time. 
Hypothesizing that obesity differentially affects cognitive control 
over behavior in men and women, we expected to find effects of 
both gender and obesity on behavioral measures in the IGT.

Voxel-based morphometry is a valuable tool in identifying 
differences in the brain’s gray matter (GM) structure related not 
only to diseases but also to task performance (Sluming et al., 2002; 
Horstmann et al., 2010). Moreover, GM density and structural 
parameters of white matter have recently been shown to change 
rapidly in response to altered behavior such as mastering a new 
skill – in other words, showing that the brain is a plastic organ 
(Draganski et al., 2004; Scholz et al., 2009; Taubert et al., 2010). 
Therefore, adaptations in functional circuits due to altered behav-
ior such as persistent overeating could be reflected in the brain’s 
GM structure.

First pioneering studies investigating the structure of the brain in 
obesity showed obesity-related differences in various brain systems 
(Pannacciulli et al., 2006, 2007; Taki et al., 2008; Raji et al., 2010; 
Schäfer et al., 2010; Walther et al., 2010; Stanek et al., 2011) Although 
being very insightful in identifying brain structures which are different 
in obesity, those studies did not investigate possible gender-related 
effects. One study reported an influence of both gender and obesity 
on the diffusion properties of white matter (Mueller et al., 2011).

We studied the relationship between brain structure and obesity 
[as measured by body mass index (BMI) as well as leptin] using 
VBM in both men and women in a normal aged, healthy sam-
ple, matched for gender and BMI distribution. Given the above 
mentioned gender differences in the processing of food-related 
information, we hypothesized to find gender-dependent in addi-
tion to gender-independent correlates of obesity in brain structure.

MaterIals and Methods
subjects
We included 122 healthy Caucasian subjects. We matched males 
and females according to distribution and range of BMI as 
well as age [61 females (premenopausal), BMI (f) = 26.15 kg/
m2 (SD 6.64, 18–44), BMI (m) = 27.24 kg/m2 (SD 6.13, 19–43), 
χ2 = 35.66(25), p = 0.077; age (f) = 25.11 years (SD 4.43, 19–41), 
age (m) = 25.46 years (SD 4.25, 20–41), χ2 = 11.02(17), p = 0.856; 
see Figure 1 for distribution of BMI and age within both groups]. 
Inclusion criteria were age between 18 and 45. Exclusion criteria 
were hypertension, dyslipidemia, metabolic syndrome, depres-

sion (Beck’s Depression Inventory, cut-off value 18), a history of 
neuropsychiatric diseases, smoking, diabetes mellitus, conditions 
which are contraindications to MR-imaging and abnormalities in 
the T1-weighted MR scan. The study was carried out in accordance 
with the Declaration of Helsinki and approved by the local ethics 
committee of the University of Leipzig. All subjects gave written 
informed consent before taking part in the study.

MrI acquIsItIon
T1-weighted images were acquired on a whole-body 3T TIM Trio 
scanner (Siemens, Erlangen, Germany) with a 12-channel head-
array coil using a MPRAGE sequence [TI = 650 ms; TR = 1300 ms; 
snapshot FLASH, TRA = 10 ms; TE = 3.93 ms; alpha = 10°; band-
width = 130 Hz/pixel (i.e., 67 kHz total); image matrix = 256 × 240; 
FOV = 256 mm × 240 mm; slab thickness = 192 mm; 128 par-
titions; 95% slice resolution; sagittal orientation; spatial resolu-
tion = 1 mm × 1 mm × 1.5 mm; 2 acquisitions].

IMage ProcessIng
SPM5 (Wellcome Trust Centre for Neuroimaging, UCL, London, 
UK; http://www.fil.ion.ucl.ac.uk/spm) was used for T1-weighted 
image pre-processing and statistical analysis. MR images were 

FIgure 1 | Distribution of body mass index [in kg/m2 (A)] and age [in 
years (B)] for female and male participants.
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Experimental procedure
The modified IGT version and behavioral data acquisition were 
implemented in Presentation 14.1 (Neurobehavioral Systems Inc., 
Albany, CA, USA). Our modified task version was similar in its 
general deck composition to the original IGT (Bechara et al., 1994). 
Decks A and B were disadvantageous, leading to a long-term loss 
and decks C and D resulted in a positive long-term outcome. Our 
modifications of the task only pertained to the number of different 
card decks presented simultaneously and to the gain/loss frequency 
and gain/loss size in each deck. Participants had to choose between 
two alternative card decks in each block (e.g., deck B + C). Deck 
A and C had a gain/loss frequency of 1:1 with an immediate gain 
of +100 (+70 respectively) and an immediate loss of −150 (−20 
respectively). Decks B and D had a gain/loss frequency of 4:1 and 
yielded immediate rewards of +100 (+50 respectively) and losses in 
the amount of −525 (−75 respectively). Hence, deck A and B led to 
an overall net loss while deck C and D led to a net gain.

In every trial, two card decks with a question mark in between 
were shown on the screen, indicating that subjects had to choose 
one card. The question mark was replaced by a white cross after 
participants made their choices. In each trial, participants had to 
make their decision in less than 3 s. If the subjects failed to select 
a card within this limit, a smiley with a question mark mouth 
appeared and the next trial started. These trials were discarded.

Participants completed 90 trials subdivided into 3 randomized 
blocks (AB/BC/BD) of 30 trials each. After each block, a break of 
30 s was introduced, in which subjects were informed that the 
card decks presented would be different in the following block. 
Analogously to the original IGT, subjects were told to maximize 
their outcome via advantageous deck choices.

For motivational issues, participants were paid a bonus of up 
to 6€ in addition to the baseline payment according to their per-
formance in the task.

Data analysis
All results were computed with PASW Statistics 18.0 (IBM 
Corporation, Somers, NY, USA). The number of cards drawn from 
deck B was analyzed with respect to obesity and gender differences 
including age as a covariate in the general linear model. In addi-
tion, learning curves were investigated using a repeated-measures 
ANOVA. Further ANOVAs to obtain separate group effects for both 
genders with respect to obesity were performed. The correlation 
between BMI and preference for deck B was computed using a 
linear model.

results
gray Matter structure
To explore correlates of obesity in brain structure, we used DARTEL 
for VBM of the whole brain (Ashburner, 2007) based on T1-weighted 
MRI. Detailed results are shown in Figure 2 and Table 1. We found 
a positive correlation between BMI and gray matter volume (GMV) 
in the medial posterior orbitofrontal cortex (OFC), the nucleus 
accumbens (NAcc) bilaterally, the hypothalamus, and the left puta-
men (i.e., dorsal striatum, peak voxels p < 0.05, FWE-corrected for 
multiple comparisons at voxel-level) when both men and women 
were included in the analysis (see Figure 2). Performing the same 
analysis within the equally sized groups (n = 61) of women and 

processed using the DARTEL approach (Ashburner, 2007) 
with  standard parameters for VBM running under MatLab 7.7 
(Mathworks, Sherborn, MA, USA). All analyses were performed 
on bias-corrected, segmented, registered (rigid-body transforma-
tion), interpolated isotropic (1.5 mm × 1.5 mm × 1.5 mm), and 
smoothed (FWHM 8 mm) images. All images were warped based 
on the transformation of the group-specific DARTEL template to 
the GM prior image provided by SPM5 to meet the standard ste-
reotactical space of the Montreal Neurological Institute (MNI). GM 
segments were modulated (i.e., scaled) by the Jacobian determi-
nants of the deformations introduced by normalization to account 
for local compression and expansion during transformation.

statIstIcal analyses
The following statistical models were evaluated: a full-factorial 
design with one factor (gender) and two levels (women and men), 
including BMI as a covariate centered on the factor mean with 
no interaction. Additional models included interactions between 
either BMI or central leptin level and gender to examine the 
differential effects of these covariates within both groups. All 
statistical models included covariates for age and total gray and 
white matter volumes to account for the confounding effects 
of age and brain size. Results were considered significant at a 
voxel-wise threshold of p < 0.001 with an additional cluster-level 
threshold of p < 0.05 (FWE-corrected, whole brain). Effectively, 
this combined voxel- and cluster-level statistic reflects the prob-
ability that a cluster of a given size, consisting only of voxels with 
p < 0.001, would occur by chance in data of the given smooth-
ness. Results were further corrected for non-isotropic smooth-
ness (Hayasaka et al., 2004).

analytIcal Procedures
Leptin, an adipocyte-derived hormone, is well known to cor-
relate with the percentage of body fat (Considine et al., 1996; 
Marshall et al., 2000). Central effects for leptin have been exten-
sively described (Fulton et al., 2006; Hommel et al., 2006; Farooqi 
et al., 2007; Dileone, 2009). We therefore included estimated 
 central  leptin level (i.e., the natural logarithm of peripheral leptin, 
Schwartz et al., 1996) in addition to BMI as measure of obesity. 
Serum leptin concentration (Enzyme-linked immunosorbent assay, 
Mediagnost, Reutlingen, Germany) was determined for a subsam-
ple [n = 56 (24 females), BMI (f) = 27.29 kg/m2 (SD 6.67, 19–44), 
BMI (m) = 30.13 (SD 6.28, 20–43); age (f) = 25.33 years (SD 5.27, 
19–41), age (m) = 25.19 years (SD 4.5, 20–41)].

ModIfIed Iowa gaMblIng task
Participants
Sixty-five healthy participants were tested with the modified Iowa 
Gambling Task [34 females, 15 lean (mean BMI 21.9 kg/m2 ± 2.2; 
mean age 24.1 years ± 2.8) and 19 obese (mean BMI 35.4 kg/
m2 ± 3.9; mean age 25.4 years ± 3.4); 31 males, 16 lean (mean BMI 
23.8 kg/m2 ± 3.2; mean age 25.2 years ± 3.8) and 15 obese (mean 
BMI 33.5 kg/m2 ± 2.4; mean age 26.7 years ± 4.0)]. Subjects with 
a BMI greater than or equal to 30 kg/m2 were classified as being 
obese. The four subgroups were matched according to their edu-
cational background. One obese female subject was excluded from 
the analysis due to a thyroid hypofunction.
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FIgure 2 | Obesity is associated with structural alterations of the brain’s 
gray matter structure. Results are shown in detail for the whole group 
(n = 122), including both men and women. Top row: coronal slices, numbers 

indicate slice location in MNI coordinates. The position of the slices in relation to 
the whole brain is indicated visually on the right (blue lines). Middle row: sagittal 
slices, conventions as above. Bottom row: axial slices, conventions as above.

Table 1| Correlations between gray matter and measures of obesity.

gM correlation region Laterality x y z z value p Sign r

BMI whole group OFC/NAcc Left −10 18 −14 4.41 <0.0001 +
 OFC/NAcc Right 18 18 −14 5.55 <0.0001 +
 Putamen Left −28 −8 10 4.98 <0.0001 +
 Hypothalamus – 3 6 −15 4.09 <0.0001 +
BMI women  Putamen Left −30 −2 10 4.75 <0.0001 +
 OFC/NAcc Right 21 20 −14 4.28 <0.0001 +
BMI men OFC/NAcc Right 14 16 −12 4.15 <0.0001 +
Central leptin women OFC/NAcc Left −16 6 −15 3.76 <0.0001 +
 OFC/NAcc Right 18 10 −16 3.57 <0.001 +
 Putamen Left −22 18 4 4.20 <0.0001 +
 Fornix – −2 −4 21 4.07 <0.0001 +
 DLPFC Right 39 39 32 4.04 <0.0001 –

Central leptin men OFC/NAcc Left −10 3 −12 4.29 <0.0001 +
 OFC/NAcc Right 9 3 −15 3.90 <0.0001 +
 Hypothalamus – 2 0 −12 3.54 <0.001 +

Statistical values are given for cluster peaks, coordinates are in Montreal Neurological Institute (MNI) space. GM, gray matter; sign r gives the direction of correlation; 
OFC, orbitofrontal cortex; NAcc, nucleus accumbens.

men separately, we obtained comparable results for women but not 
for men: In particular, we found a significant positive correlation 
between GMV in OFC/NAcc and BMI in both groups (Figure 3 
top row, females r = 0.48, p < 0.001, males r = 0.48, p < 0.001) but a 
significant correlation between the GMV in the putamen and BMI 
for women only (Figure 3 middle row, women r = 0.51, p < 0.001; 
men r = 0.003, p = 0.979).

Obese subjects are known to show elevated peripheral leptin-
levels, a circulating adipocyte-derived hormone that correlates 
strongly with the amount of body fat (Marshall et al., 2000; Park 
et al., 2004). Hence, elevated leptin-levels reflect the amount of 
excess body fat. As an elevated BMI does not necessarily reflect 
excess body fat, we used leptin as an additional measure of the 
degree of obesity to make sure that a high BMI in our sample 
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FIgure 3 | The association of obesity with profound, gender-dependent 
structural alterations within brain regions involved in reward processing, 
cognitive, and homeostatic control. The volume of posterior medial 
orbitofrontal cortex (OFC), nucleus accumbens (NAcc), and hypothalamus 
increases significantly with BMI (first panel, warm colors) in both genders. For 
women, an additional association between gray matter volume and BMI can be 
observed in the left putamen (second panel: warm colors and scatterplot). 
Leptin, a more direct measure of the degree of obesity, is also associated with 
gender-dependent changes in brain structure. The association between BMI 

and GMV in the left putamen overlaps with the association between the 
concentration of central leptin and GMV in the putamen, an effect, which we 
only find in women (third panel: red). Women show additional alterations in the 
NAcc bilaterally and the fornix (third panel, red); men show alterations of brain 
structure in the NAcc bilaterally and the hypothalamus (third panel, blue). We 
found a significant negative association between central leptin and GMV 
restricted to women in the right lateral prefrontal cortex (lower panel). All GMV 
values are mean standardized and corrected for age, total gray and white 
matter.
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FIgure 4 | Differences in lean and obese women in their ability to adjust 
choice behavior to match long-term goals. (A) Preference for deck B over 
all trials correlates with BMI within the group of women. Gray line: linear 
regression. (B) Difference between lean and obese women in choice behavior 
during learning. Lean women learn to gradually select fewer cards from deck 
B. In contrast, obese women continue to select cards from deck B. Each block 
consists of five trials. (C) No difference between lean and obese men in 
choice behavior is observable during learning. Each block consists of five trials.

indeed reflects excess body fat rather than excess lean mass. We 
found that women had a higher absolute serum leptin concen-
tration as compared to men [women 30.92 ng/ml (SD 26.07), 
men 9.65 ng/ml (SD 8.66), p < 0.0001]. An ANCOVA revealed a 
significant interaction between BMI (2 levels: normal weight ≤ 25; 
obese ≥ 30), gender, and serum leptin concentration (F

1,41
 = 16.92, 

p < 0.0001).
For both men and women, we found a positive correlation 

between leptin and GMV in the NAcc and ventral striatum bilat-
erally (women r = 0.56, p = 0.008; men r = 0.51, p = 0.005) as well 
as in the hypothalamus (Figure 3 third row). Only women show 
additional leptin-related structural differences in the left putamen 
and the fornix (Figure 3, areas shown in red in third row). The 
clusters in the NAcc and putamen show a substantial overlap with 
the regions identified by correlating BMI with GMV (Figure 3 first 
to third row). Moreover, only for women did we find an inverse (i.e., 
negative) correlation between leptin-levels and GMV in the right 
DLPFC (r = −0.62, p < 0.001; Figure 3, bottom row).

relatIonshIP between gaMblIng behavIor, gender, and 
obesIty
In the IGT, deck B conveys high immediate rewards with each card 
but low frequency high losses, ultimately resulting in a negative 
long-term outcome. Hence, the options in deck B mirror the con-
flict between very salient immediate rewards and the achievement 
of long-term goals. In the present version of the Iowa Gambling 
Task, obese women chose significantly more cards from deck B 
when contrasted with each advantageous deck (i.e., C or D) than 
lean women across all trials (F

1,32
 = 8.68, p = 0.006). We found no 

difference between lean and obese women when contrasting the 
two disadvantageous decks (i.e., A and B). Additionally, there was a 
significant correlation between BMI and the total number of cards 
chosen from deck B for women (Figure 4A). Comparing lean with 
obese men we found neither a significant difference for the total 
number of cards chosen from deck B (F

1,29
 = 0.51, p = 0.48), nor a 

significant correlation with BMI.
In order to test differences in learning behavior between lean 

and obese participants, we analyzed choices of deck B over time. 
Over the course of learning, obese women showed no adjustment 
in choice behavior. In contrast, for lean women we observed a 
gradual decrease in the preference for cards from deck B (see 
Figure 4B). Thus, obese women did not adapt their behavior 
toward an overall advantageous outcome compared to lean 
women. Analysis of learning behavior only revealed a signifi-
cant effect for obesity in women (F

1,30
 = 6.61, p = 0.015) but not 

in men.
This effect of gender was particularly pronounced in the last 

phase of learning (i.e., trials 25–30), where we observed a signifi-
cant interaction between gender and obesity for choice behavior 
on deck B (F

1,59
 = 6.10; p = 0.02). Here, obese women chose more 

than twice as many cards from deck B as lean women (F
1,33

 = 17.97, 
p < 0.0001). For male subjects, no significant difference was observed 
(Figure 4C, F

1,29
 = 0.13, p = 0.72). Moreover, a correlation analysis 

showed a strong correlation (r = 0.57, p < 0.0001) between BMI 
and the number of cards chosen from deck B in the last block for 
women. Again, no significant correlation was observable for men 
(r = 0.17, p = 0.35).
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 stimulus-response links (Daw et al., 2005; Frank and Claus, 2006; 
Frank, 2009). In the context of obesity, Rothemund et al. (2007) 
 previously demonstrated, using an fMRI-paradigm, that BMI pre-
dicts activation in the putamen during viewing of high-caloric food 
in women. Furthermore, Wang et al. (2007) have shown a gender 
difference in the putamen regarding changes in CBF in response 
to stress: Stress in women primarily activated the limbic system, 
including the ventral striatum and putamen.

The basal ganglia are strongly interconnected with the PFC 
(Alexander et al., 1986), establishing integrative cortico-striato-
cortical pathways linking reward-based learning, motivational con-
text and goal-directed behavior (e.g., Draganski et al., 2008). Miller 
and Cohen (2001) stated that cognitive control over behavior is pre-
dominantly provided by the PFC. They conclude that activity in the 
PFC subserves the selection of a response, which is appropriate in a 
given situation even in the face of a stronger (e.g., more automatic/
habitual or desirable) alternative. It has recently been demonstrated 
that the DLPFC guides anticipatory implementation of behavioral 
goals within working memory in rewarding and motivational con-
texts (Jimura et al., 2010). Gender-related differences for activity in 
this region in the context of food and control of eating behavior have 
also been demonstrated recently by Cornier et al. (2010). They found 
that right DLPFC activation in response to hedonic food was only 
apparent in women, while men showed a deactivation. Activation in 
DLPFC was negatively correlated with subsequent ad libitum energy-
intake, suggesting a specific role of this cortical region in the cogni-
tive control of eating behavior. If one assumes functional relevance 
of altered brain structure, the negative relationship between GMV 
in the right DLPFC and obesity found in the present study may be 
interpreted as an impairment in the ability to adjust current actions 
to long-term goals or, in other terms, a loss of cognitive control over 
eating behavior in obese as compared to lean women.

Applying a simplified version of the Iowa Gambling Task, 
a learning task with very salient immediate rewards conflicting 
with the achievement of long-term goals, we observed that lean 
women decreased their choice of deck B over time, while obese 
women did not. This finding may support the functional relevance 
of the observed differences in brain structure in rewarding con-
texts. Differences on the classical IGT between morbidly obese and 
healthy-weight subjects have been shown recently (Brogan et al., 
2011). However, the results of the aforementioned study were not 
analyzed for influences of gender. Our findings point to a higher 
sensitivity to immediate rewards in obese than in lean women, 
accompanied by a possible lack of inhibitory goal-directed control. 
Further evidence for an impact of obesity on decision-making has 
been provided by Weller et al. (2008), who found that obese women 
showed greater delay-discounting than lean women. Interestingly, 
they did not find differences in delay-discounting behavior between 
obese and lean men, which corroborates our gender-specific results. 
Another study, which only included women, tested the impact of 
obesity on the effectiveness of response inhibition and found that 
obese women showed less effective response inhibition than lean 
women in a stop-signal task (Nederkoorn et al., 2006). In the 
context of eating behavior, less effective behavioral inhibition in 
combination with a higher sensitivity to immediate rewards may 
facilitate overeating, especially when faced with a constant supply 
of highly palatable food.

dIscussIon
For both men and women, we show a correlation between GMV 
and measures of obesity in the posterior medial OFC (mOFC) 
and within the ventral striatum (i.e., the NAcc) which is in line 
with previously reported group-differences in GM when compar-
ing lean to obese subjects (Pannacciulli et al., 2006). The interplay 
between these two regions is crucial for evaluating motivationally 
salient stimuli (such as food) and relaying this information for the 
purpose of decision-making. Functionally, these regions code the 
saliency and subjective value of stimuli (Plassmann et al., 2010). In 
bulimia nervosa (BN), a condition where eating behavior but NOT 
BMI differs from normal, GMV of the same structures is higher in 
patients than in controls (Schäfer et al., 2010). This suggests that 
the structure of these regions is either affected by or is a predispo-
sition for altered eating behavior instead of being physiologically 
determined by the percentage of body fat.

In addition to mOFC and NAcc, both genders showed a cor-
relation between brain structure and obesity within the hypo-
thalamus. The hypothalamus is a key region controlling hunger, 
satiety, eating behavior as well as energy expenditure and possesses 
direct connections to the reward system (Philpot et al., 2005). We 
hypothesize that these differences between lean and obese subjects 
in both the hedonic and homeostatic control systems may reflect 
one key feature of obesity, namely a bias in eating behavior toward 
more hedonic food choices where energy-intake exceeds the actual 
homeostatic demand.

In women only, we additionally show correlations between GMV 
and measures of obesity (BMI as well as central leptin-levels) in 
the dorsal striatum (i.e., left putamen) and in the right DLPFC. 
Interestingly, these structures play important, complimentary roles 
in habitual (automatic) and goal-directed (cognitive) control of 
behavior in motivational contexts: The mOFC and NAcc signal the 
preference for and the expected value of reward, the putamen in 
the dorsolateral striatum is thought to code (amongst many other 
functions) behavioral contingencies to obtain a specific reward, and 
the DLPFC provides goal-directed cognitive control over behavior 
(Jimura et al., 2010). Goal-directed behavior is characterized by a 
strong dependency between the likelihood of the response and the 
anticipated outcome (e.g., Daw et al., 2005). In contrast, habitual 
(or automatic) behavior is characterized by a strong link between 
a stimulus (e.g., food) and a response (e.g., its consumption). In 
this case, the probability of the response is barely influenced by the 
outcome of the action itself, whether it may be in the short term 
(satiation) or long-term (obesity).

Recently, Tricomi et al. (2009) investigated the neural basis of 
the emergence of habitual behavior in humans. They applied a 
paradigm well known to elicit habit-like behavior in animals, and 
showed that basal ganglia activations (notably in the dorsal puta-
men, see also Yin and Knowlton, 2006) increased across training, 
suggestive of a role in a progressive reinforcement learning process. 
The functional role of the putamen in this context may be to estab-
lish cue-driven sensory-motor loops, and thus to help automate 
excessively learned behavior. Furthermore, action-outcome repre-
sentations in the mOFC also continued to increase in anticipation 
of reward throughout all sessions. These results show that habitual 
responding does not result from a decrease in the anticipation 
of reward outcomes across learning, but from strengthening of 
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the distribution of genders across lean and obese groups was not 
explicitly balanced, which may influence the results (Pannacciulli 
et al., 2006, 2007).

Because our study was cross-sectional, we are not able to make 
inferences about whether our findings reflect the cause or effect of 
obesity. It is evenly likely that brain structure predicts the devel-
opment of obesity or that obesity, accompanied by altered eating 
behavior, causes brain structure to change. In the future, longitu-
dinal studies may answer this open question.

In summary, we suggest that in both genders, differences of 
both the hedonic and homeostatic control systems may reflect 
a bias in eating behavior. Only in women, we show that obesity 
modulates the behavioral preference for salient immediate rewards 
in the face of negative long-term consequences. Since behavio-
ral experiments and structural MRI were carried out on different 
samples (see Materials and Methods) we could not directly relate 
these behavioral differences to the structural alterations. However, 
we hypothesize that the additional structural differences seen in 
obese women can be interpreted as a reflection of behavior paral-
leling obesity, namely that behavioral control is progressively domi-
nated by habit-like behavior as opposed to goal-directed actions. 
Furthermore, our findings may be important for the recognition 
of obesity as a form of addiction. Additional studies of gender dif-
ferences in behavioral control will be important for investigating 
the etiology of eating and body-weight disorders and for designing 
gender-appropriate treatments (Raji et al., 2010).
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