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metrics of fatigue are required to evaluate risk for performance 
deficits that may lead to accidents, either while driving or in the 
workplace.

One approach that has been used to provide an objective 
assessment of error/accident risk is assessing neuropsychologi-
cal performance prior to beginning a driving or other work shift. 
Neuropsychological tests of continuous performance and reac-
tion time (RT) have proven useful as a convenient and inexpen-
sive method for quantifying speed and accuracy of responses, as 
well as ability to sustain attention over time (Rosvold et al., 1956; 
Dinges and Powell, 1985; Wilkinson, 1990; Weinstein et al., 1999). 
Performance measures derived from these tasks have proven sensi-
tive to changes in alertness as a result of acute sleep deprivation, 
cumulative sleep loss, or daytime drowsiness in sleep deprived (SD) 
patients (Dinges et al., 1997; Dinges and Weaver, 2003; Baulk et al., 
2008). These measures, however, must be taken prior to the work/
driving shift, and thus fail to address the likely increase in risk that 
develops over the course of the following 8–12 h. To address this 
timing issue, many researchers (Sterman et al., 1992; Makeig and 
Jung, 1995; Berka et al., 2004) have begun to integrate neuropsy-
chological testing with integrated electroencephalography (EEG) 
that can continue to monitor the worker throughout the shift and 
identify risk elevation over time.

Significant correlations between EEG indices of cognitive state 
changes and objective performance measures have been seen in stud-
ies conducted in laboratory, simulation, and operational environ-
ments (Brookhuis and de Waard, 1993; Makeig, 1993; Sterman and 

IntroductIon
The management of fatigue is a serious public health and safety 
concern, as impaired vigilance is a primary contributor in many 
transportation and industrial accidents every year. Safety, efficiency, 
productivity, and liability are all impacted by employe alertness. 
Fatigue-related accidents and decreased productivity associated 
with drowsiness are estimated to cost the U.S. over $77 billion each 
year, with annual costs amounting to over $377 billion worldwide 
(Corburn, 1997). The American Academy of Sleep Medicine reports 
that one in every five serious motor vehicle injuries is related to 
driver fatigue, with 80000 drivers falling asleep behind the wheel 
every day, and 250000 sleep-related accidents every year (Drowsy 
Driving Fact Sheet, 2009). Recent research suggests that sleep dep-
rivation also poses a serious risk in the medical community, with 
one report showing that medical residents with less than 4 h of 
sleep a night made more than twice as many errors as residents who 
slept for more than 7 h a night (Baldwin and Daugherty, 2004). 
The effects of even small amounts of sleep loss each night accumu-
late over time, resulting in a “sleep debt” – as sleep debt increases, 
alertness, memory, and decision-making are increasingly impaired 
(Kribbs and Dinges, 1994; Dinges et al., 1997; Weaver et al., 1997; 
Van Dongen et al., 2003). Importantly, individuals become habitu-
ated to this chronic accumulation of fatigue, and are often unaware 
of its negative impact on their performance (Dinges, 2004; Balkin 
et al., 2008). Consequently, subjective estimates of fatigue are unre-
liable, and individuals are typically unable to self-assess the level of 
risk for driving or other activities when fatigued. Thus, objective 
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Mann, 1995; Brookings et al., 1996; Makeig and Jung, 1996; Gevins 
et al., 1997, 1998; Pleydell-Pearce et al., 2003; Wilson, 2004). Thus, 
the EEG-based models of drowsiness detection show great promise 
in providing a means to predict and, ultimately, prevent workplace 
accidents due to sleep loss. Error prediction has been studied recently, 
but most of the resulting algorithms (Balkin et al., 2002; Rajaraman 
et al., 2008) are insufficiently accurate on time scales useful for detec-
tion in field applications (i.e., time scales of days rather than hours/
minutes). In order to provide a useful tool that can predict signifi-
cant performance decrements, any predictive solution must identify 
the states that precede the onset of increased errors or slowed RT 
far enough in advance to allow for an appropriate intervention or 
mitigation, but close enough to the likely error to ensure that the 
risk profile does not change significantly in the interim, leading to 
increased risk over time or excessive false negatives.

In addition to setting the lead time window appropriately, a suc-
cessful algorithm must also address: (1) the variability in perfor-
mance that occurs as individuals choose alternative strategies for 
coping with sleep loss; (2) the feasibility of the algorithm for field 
use (e.g., while driving); and (3) the computational needs of the 
algorithm to ensure that the system can be field deployed. Typically, a 
speed–accuracy tradeoff occurs during sleep deprivation (Forstmann 
et al., 2008; Van Veen et al., 2008; Bogacz et al., 2009; Carp et al., 
2010; Eichele et al., 2010). The tradeoff may involve slowed deci-
sion-making in order to maintain accuracy, or maintaining speed 
while allowing accuracy to be compromised. Thus, both accuracy 
and speed must be addressed when evaluating performance. The 
pattern of performance deficits observed may also be a function of 
motivation, task-related instruction provided, perceived rewards for 
speed or accuracy, or trait differences (Doran et al., 2001; Gray and 
Watson, 2002; Van Dongen et al., 2007; Hsieh et al., 2010). In order 
to accommodate individual differences, the models must account 
for subtle individual changes in the EEG data, as well as the different 
types of performance degradation. Most of the individualized models 
are based on person-dependent training (Olofsen et al., 2004; Van 
Dongen et al., 2007; Rajaraman et al., 2008). Although such models 
can provide highly accurate classifications of cognitive state, they 
may prove impractical in field environments (e.g., for drivers) due 
to the additional time required for personnel to obtain the training 
data, as well as the computer processing time and capacity needed to 
train the models. Lastly, several algorithms (Smith et al., 2002; Liang 
et al., 2005; Lin et al., 2006) for alertness/drowsiness detection require 
20+ EEG channels, requiring processing power not yet available in a 
portable modality for use in industry or on the road.

This study investigates core elements of an alternative approach 
for managing workplace and driving safety by using continuous 
monitoring of neurophysiology and associated estimators of future 
performance. This effort expands upon previous research designed 
to associate time-locked associations between physiology and per-
formance (Makeig and Jung, 1996; Trujillo et al., 2009). Fatigue 
resulting from a lack of sleep was assessed through the subjects’ 
cognitive performance on a sustained attention task, and perfor-
mance decrements were estimated by an EEG-based algorithm. The 
proposed method aims to overcome the shortcomings of the exist-
ent solutions, in that: (1) it is able to predict increased risk of errors 
5–15 min in advance, limiting the lead time to a period that ensures 
accuracy and time for mitigation; (2) individual coping strategies 

are compensated through the development of a single combined 
cognitive performance metric; (3) the prediction algorithm is 
trained in a person independent setting, but it is still individual-
ized through self-normalization of the EEG data, ensuring that 
individual variability in the EEG is accommodated; (4) the model 
is trained on a large sample size, and evaluated across all subjects to 
ensure generalizability; and (5) the method is not computationally 
expensive, making it suitable for deployment in the field.

MaterIals and Methods
study protocol
A total of 65 subjects were recruited for a 3-day study, including a 
night of partial sleep deprivation. The protocol was approved by 
the independent IRB, Biomedical Research Institute of America 
(San Diego, CA, USA). Prior to enrollment, subjects were screened 
by questionnaires to exclude those likely to have a neurological, 
sleep, or psychiatric disorder. Further exclusion criteria included 
self-report of excessive daytime sleepiness (Epworth >6), excessive 
smoking (more than 10 cigarets/day) or caffeine intake (more than 
5 cups/day), head trauma, and inconsistent sleep patterns (<7.25 h/
night on average). Individuals who qualified signed a consent form 
after receiving instructions for participation.

Participants were asked to complete three sessions: baseline (BL), 
fully rested (FR), and SD. The BL session was scheduled to start 3 h 
after the subject typically awoke based on self-report (i.e., between 
8 a.m. and 10 a.m.). The FR and SD sessions were conducted on 
consecutive days, and began at the same time as the BL session. Three 
tasks (described below) were initially administered in a single 2 h 
cycle during the BL session, and repeated in four 2 h cycles during 
both FR and SD sessions. The four cycles began at approximately 
0900, 1100, 1300, and 1500. Wrist actigraphs were used to ensure 
subjects obtained at least 6 h of sleep each night in the 4-days leading 
up to their BL and FR sessions, and to ensure their compliance with 
the limited sleep requirement on the night prior to the SD sessions. 
In the night between the FR and SD day, subjects were required to 
remain awake 2 h beyond their typical bedtime, and to sleep only 
3.5 h total, and leave telephone voice messages every 30 min of the 
required wake time. As a safety precaution, subjects were provided 
transportation to and from the study site for the SD sessions. A total 
of 50 participants were selected for the model development data set. 
The other subjects were eliminated due to: (a) insufficient or poor 
sleep the night before the BL and/or FR data collection, (b) signs of 
sleepiness during BL and/or FR sessions, (c) excessively poor perfor-
mance on tasks, or (d) failure to leave the phone messages during the 
night of partial sleep deprivation (indicating compliance failure).

Three tasks were repeated across each of the 3 days of the study 
(one cycle for BL, four cycles each for FR and SD): visual passive 
vigilance task (VPVT), auditory passive vigilance task (APVT), and 
3-choice active vigilance task (3CVT). All tasks were administered 
using a PC workstation. During the 5-min of VPVT and APVT, 
subjects were required to press the space bar on the keyboard every 
2 s. Subjects were prompted to maintain the 2-s time intervals by a 
10-cm diameter red circle that appeared in the center of the monitor 
during the VPVT, or by an audio tone during the APVT. The 3CVT 
required subjects to discriminate one primary target (presented 
70% of the time) from two secondary non-target geometric shapes 
that were randomly interspersed over a 20-min test period, for a 
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In order to explore the applicability of alertness quantification 
in performance estimation, we also incorporated the outputs of 
the B-Alert model (Berka et al., 2007; Johnson et al., 2011) into 
the feature vector. The B-Alert model is an individualized model 
that classifies a subject’s cognitive state into one of the four levels of 
alertness (sleep onset, distraction/relaxed wakefulness, low engage-
ment, and high engagement). It utilizes the absolute and relative 
PSD values during VPVT, APVT, and Q1 of the 3CVT BL data to 
derive coefficients for a discriminant function that generates clas-
sification probabilities for each 1 s epoch. The resulting model was 
used to classify the 3CVT data from the four FR and four SD ses-
sions (Johnson et al., 2011). The output probabilities of the B-Alert 
model were then also averaged for each quartile of the 3CVT, and 
added to the feature vector for further analysis.

perforMance MetrIc
To measure speed of processing and number of lapses during the 
3CVT, typical performance metrics used for the neuropsychologi-
cal assessment of the sustained attention have been utilized: RT 
to stimulus, and accuracy (i.e., percent of the correct responses). 
Individual response patterns due to neurobehavioral impairment 
vary in one of three primary ways: (1) both RT and accuracy dete-
riorate; (2) RT is preserved by sacrificing accuracy; or (3) RT is 
sacrificed to preserve accuracy. In order to account for this, we 
combined RT and accuracy in an aggregated performance score 
called F-Measure. F-Measure is often used in information retrieval 
as a unique performance score of the classifier. It is the harmonic 
mean of sensitivity and positive predictive value (PPV):
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where TP is a number of true positives, FN is a number of false 
negatives, and FP is a number of false positives. As there is a typi-
cal tradeoff between number of false negatives and false positives, 
classifiers typically have high sensitivity and low PPV, or vice versa. 
As these two measures have the same range (i.e., they vary between 
0 and 1), they are weighted equally through F-Measure.

Performance metrics during the 3CVT have different ranges. 
Typical RT range is between 0.4 and 1.5 s, and percent of the cor-
rect responses varies between 0 and 100%. Thus, utilizing the raw 
performance values would have different effects on F-Measure, 
i.e., small changes in RT would be equivalent to significantly larger 
changes in percent of the correct responses. To equalize their influ-
ence, both RT and percent of the correct responses were linearly 
scaled to the same range (0,1) in the experiments. Reversed scoring 
of RT is utilized to form speed of response, which is then com-
bined with accuracy to create a new unique metric that decreases 
with performance decrements. Thus, in our work, the F-Measure 
is defined as the harmonic mean of the scaled values of reversed 
RT (i.e., RT

s
) and percent of correct responses (i.e., accuracy; PC

s
):
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total of 376 trials. Each trial consisted of a single stimulus type 
(target or non-target) presented for 0.2 s. The task comprised four 
consecutive quartiles (Q1–Q4), with different inter-stimulus inter-
vals to increase difficulty of the task, and to challenge the subject’s 
ability to sustain attention. The inter-stimulus interval varied by 
up to 10 s, and increased from 1.5 to 3 s in the first 5 min (Q1), 
to 1.5–6 s in the next 10 min (Q2 and Q3), and, lastly, to 1.5–10 s 
in the final 5 min (Q4). Participants were instructed to respond as 
quickly as possible to each stimulus presented by selecting the left 
arrow to indicate target stimuli, and the right arrow to indicate 
non-target stimuli. Performance measurements included RT to 
stimulus and accuracy (i.e., percent of the correct responses). A 
brief training period was provided prior to the start of the testing 
period to minimize practice effects for the 3CVT.

data recordIng and sIgnal processIng
The B-Alert sensor headset (Advanced Brain Monitoring Inc., 
Carlsbad, CA, USA; Berka et al., 2007; Johnson et al., 2011) was 
used to acquire the EEG data from three referential channels (Fz, 
Cz, and POz) and two bipolar channels (Fz–POz and Cz–POz). The 
sampling rate was 256 samples/s for all channels. Proprietary data 
acquisition software stored the EEG data on the host computer. The 
software additionally incorporated performance outputs from the 
performed sustained attention tasks into the EEG record. Thus, the 
EEG data was synchronized with the stimuli/response events from 
the neuropsychological assessment.

The EEG signals were filtered with a band-pass filter (0.5–65 Hz) 
before the analog-to-digital conversion. In order to remove envi-
ronmental artifacts from the power network, sharp notch filters at 
50, 60, 100, and 120 Hz were applied. The algorithm (Berka et al., 
2007) automatically detected and removed a number of artifacts in 
the time-domain EEG signal, including spikes caused by tapping or 
bumping of the sensors, amplifier saturation, and excursions that 
occur during the onset or recovery of saturations. Eye blinks and 
excessive muscle activity were identified and decontaminated by 
wavelet transform (Berka et al., 2007).

From the decontaminated EEG signal, features were extracted 
on a second-by-second basis and then averaged for each quartile 
of the 3CVT. Decontaminated EEG signal was segmented into 50% 
overlapping, 256 data-point windows called overlays. For each 1 s 
epoch, three consecutive overlays were used to compute the abso-
lute and relative power spectral density (PSD) values. Each overlay 
was multiplied by the Kaiser window (α = 6.0) to reduce the edge 
effect when applying 256-point fast Fourier transformation (FFT). 
The FFT was averaged on the three successive overlays to decrease 
epoch-by-epoch variability. For each channel, the absolute PSD 
values were derived for each 1 Hz bin from 1 to 40 Hz, and trans-
formed to a logarithmic scale. Relative PSD values were derived by 
subtracting the logged PSD for each 1 Hz bin from the total logged 
PSD power in the range from 1 to 40 Hz. Overall, this sums up to 
80 EEG-based features per channel.

To normalize the data for individual variability, the absolute 
and relative PSD quartile data obtained from the 3CVT sessions on 
the FR day and the SD day were z-scored to the respective quartile 
data obtained during the BL 3CVT session. This accommodated 
for individual differences in the EEG data inherent in drowsiness 
detection.
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averaged over all four quartiles, is 0.88, and its STD is 0.04. The 
F-Measure threshold that defines unacceptable (F-Measure < 0.80) 
and acceptable (F-Measure ≥ 0.80) performance was selected as 2 
STD below the mean BL F-Measure value (i.e., 0.88 − 2 × 0.04 = 0.8). 
The chosen threshold between acceptable and unacceptable perfor-
mance represents the 35th percentile, i.e., overall, 35% of the FR 
and SD F-Measure values (Figure 1B) were in the defined range of 
unacceptable performance. Average RT and average accuracy, with 
their STD for unacceptable performance, were 0.87 ± 0.14 s and 
81.1 ± 17.9%, respectively. In the case of acceptable performance, 
average RT and accuracy were 0.62 ± 0.06 s and 96.6 ± 3%.

algorIthM developMent and outcoMe analyses
Two analyses were conducted to assess the capabilities of EEG met-
rics to estimate cognitive performance by developing and compar-
ing two different EEG-based models. The first approach aimed at 
estimating present performance, and the second approach estimated 
future performance. Both methods estimate the F-Measure during 
the quartiles of the 3CVT. The other tasks, VPVT and APVT, are not 
designed to assess RT of subjects, and data from these tasks were 
used only for the B-Alert model. The algorithm utilized the EEG 
data recorded during the FR and SD sessions. The VPVT, APVT, 
and 3CVT EEG data recorded during the BL session were used for 
training of the B-Alert model and, additionally, the 3CVT EEG 
data from the BL session were utilized for normalization purposes 
(i.e., z-scoring) of the 3CVT EEG data during FR and SD sessions.

The following steps were performed during the development 
of our EEG-based algorithm to recognize unacceptable or accept-
able cognitive performance: feature selection, linear regression, and 
grouping into classes.

The EEG PSDs and B-Alert probabilities from the 3CVT quar-
tiles were used to estimate present (i.e., Qi to Qi, i = 1..4) and 
future (Q1 to Qi, i = 2..4) performance for each 3CVT session. 
As a large number of features were extracted from the EEG data, 
statistical model selection procedure was applied to select the 
most predictive variables. Step-wise regression analysis was uti-
lized to down-select from 400 EEG data values per quartile (i.e., 
40 absolute and 40 relative PSD values from each of five EEG 
channels) and mean B-Alert probabilities, those variables most 
predictive in estimating the performance on the 3CVT defined 
by F-Measure (using data from both FR and SD data collections). 
In each step of step-wise regression analysis, a set of F-tests was 
performed as the selection criteria to determine the explanatory 
power of variables and select which variables to include, and 
which to exclude from the model. The maximum p-value for a 
variable to be added to the model was 0.05, and the minimum 
p-value for a variable to be removed from the model was 0.1. 
Furthermore, the singularity criterion was utilized during each 
step of feature selection to preclude the entry of the variables 
whose squared correlation with the variables already in the model 
exceeds a certain value (p = 10−8).

The predictive variables were then used to fit a linear regression 
model to estimate the F-Measure. Thus, in all following experiments, 
F-Measure is the dependent variable, and the variables selected by 
step-wise analysis are used as independent variables. Furthermore, 
all observations in the dataset and selected variables were equally 
treated without usage of weighting or priors. The  models were 

The scaling was performed in the following manner:

RT
RT

S = −
−

1 5

1 5 0 4

.

. .  
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where RT and PC are the raw values of the utilized performance 
metrics.

Based on the F-Measure, two classes of performance are defined: 
unacceptable performance and acceptable performance. Figure 1A 
presents the mean and STD of F-Measure for each quartile of the BL 
sessions, averaged over all subjects (n = 50). The mean BL F-Measure, 

A

B

C

Figure 1 | Performance on the 3CVT. (A) F-Measure (mean ± STD) per 
quartile (Q1–Q4) for the BL sessions, (B) F-Measure (mean ± STD) for each 
cycle of the FR and SD sessions, (C) F-Measure (mean ± SEM) for each 3CVT 
quartile (Q1–Q4) over the FR and SD sessions.
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results
In this section the following results are presented: (1) performance 
on each of the 3CVT quartiles over the FR and SD sessions and its 
sensitivity to sleep loss, (2) the most predictive variables selected 
by step-wise analysis, (3) evaluation of the trained linear regres-
sion models that estimate F-Measure, (4) prediction accuracy 
of grouping the estimated F-Measure values into the previously 
defined classes of unacceptable and acceptable performance, and 
(5) analysis of the borderline cases.

cognItIve perforMance on the 3cvt
The study protocol included a night of partial sleep deprivation. In 
order to assess the sensitivity of the subjects’ performance on the 
3CVT to sleep loss, a statistical test was utilized to compare perfor-
mance decrements (collapsed over all four quartiles of the 20-min 
task) over the four 2 h cycles for each condition. A 2 (FR, SD) × 4 
(cycles) repeated measure ANOVA showed a significant main 
effect of condition (i.e., FR vs. SD) on performance (i.e., observed 
F-Measure), F(1,98) = 34.177, p < 0.0001, but no interaction effect 
or main effect of cycle. Post hoc analysis indicated that sleep loss was 
associated with poorer performance at each time point (i.e., cycle).

In contrast, performance (i.e., the observed F-Measure) decre-
ments within the 20-min long 3CVT were in evidence. Figure 1C 
shows F-Measure (mean ± SEM) on each of the 3CVT 5 min 
quartiles for the FR and SD sessions (collapsed across cycles). A 
2 (FR, SD) × 4 (quartile) analysis revealed an interaction of con-
dition × quartile [F(3,396) = 16.56, p < 0.0001], as well as main 
effects of condition [F(1,398) = 91.85, p < 0.0001] and quartile 
[F(3,396) = 146.96, p < 0.0001]. Furthermore, performance decre-
ments between FR and SD sessions were larger on later quartiles 
of the task (i.e., Q3 and Q4 – the last 10 min of the 20-min task). 
This is presumably due to the inability to sustain attention over 
longer periods of time when SD. Lastly, there was more variance 
in performance during the SD sessions compared to the FR ses-
sions. We further investigated the tendency of the performance 
decrement within the same day by examining the cycle’s effect on 
the last quartile (Q4) of the 3CVT (i.e., the quartile on which the 
largest drop in performance was seen). This analysis mirrored the 
statistical analysis over all quartiles in that a significant effect of 
condition was found [F(1,198) = 2.59, p < 0.0001], but not for cycle 
(p > 0.05). Taken together, these analyses indicate that performance 
decrements occur within the 20-min 3CVT, but not over repeated 
cycles throughout the day. 

trained using the least squares approach. This minimized the sum 
of squared distances between the observed and the estimated per-
formance (i.e., F-Measure) by the linear approximation.

As the aim of the algorithm is to detect cognitive performance 
decrements, the estimated F-Measure was then stratified into the 
target class of unacceptable performance and the non-target class 
of acceptable performance using a threshold of 0.80. In this way, 
the accuracy of the model with respect to sensitivity, specificity, and 
positive and NPV was determined. Furthermore, a sensitivity analy-
sis was conducted to assess the impact of borderline cases when 
the classes of estimated and observed performance disagreed, but 
the observed F-Measure was within 0.05 or 0.075 of the threshold.

Figure 2 shows the input and output for both the present per-
formance and future performance models. To assess present perfor-
mance, four regression equations, one for each quartile (Q1–Q4), 
were developed using variables from each respective quartile that 
were most predictive in estimating performance on that same quar-
tile across the FR and SD sessions:

f F ii i iPP-Q Q QEEG Measure: , ..→ − = 1 4
 

(6)

The second model estimates performance on Q2–Q4 based on 
the EEG data from Q1 (i.e., estimating future performance). Thus, 
three equations were developed using EEG variables from Q1 to 
estimate performance during the remaining three quartiles Q2–Q4:

f F ii iFP-Q Q QEEG Measure: , ..1 2 4→ − =
 

(7)

The trained linear regression models were evaluated in two dif-
ferent ways, by auto-validation during the model development, 
and by cross-validation. Auto-validation entails testing the model 
on the data on which it was trained. Cross-validation assesses the 
generalization capabilities of the model by testing it on the data 
that was not used for training. In order to examine the feasibility of 
using the subject independent training, we performed leave-one-
subject-out cross-validation of the linear regression models. First, 
the most explanatory variables were selected through step-wise 
analysis including all subjects’ FR and SD data. Afterward, in each 
cross-validation round, new regression coefficients for the previ-
ously selected variables were derived with one subject removed 
from the data set, and then the resulting regression model was 
applied to the removed subject’s data. The procedure was repeated 
for each subject in the study, and the results averaged across all 
cross-validation rounds.

f ( ) d l f ( ) d l

E E G Q1 F-Measure Q1

F-Measure Q2

fPP-Q1

fPP-Q2

Present performance (PP) models

E E G Q2

fFP2

Future performance (FP) models

E E G Q1 F-Measure Q2

F-Measure Q3

F-Measure Q4

fPP-Q3

fPP-Q4

E E G Q3

E E G Q4

fFP3

fFP4

E E G Q1

E E G Q1

F-Measure Q3

F-Measure Q4

Figure 2 | input and output for the present performance (PP) and future performance (FP) linear regression models.
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the future performance decrements), as the B-Alert classification 
probabilities for Sleep Onset and Distraction were selected by step-
wise regression for the future performance model.

regressIon results
Figure 3 provides regression plots (i.e., the observed and esti-
mated F-Measure values) for the model that estimates present 
performance for all four quartiles across the FR and the SD ses-
sions. Both the model development (left) and cross-validation 
(right) results are shown. The relationship between the observed 
and estimated performance was examined using Pearson’s cor-
relation analysis. The Pearson correlations for the model devel-
opment were strong (greater than 0.80) and relatively consistent 
across the quartiles. Performance on Q2 and Q3 (r = 0.89 and 
r = 0.85, respectively) was slightly better than on Q1 and Q4 
(r = 0.83 and r = 0.82, respectively). Cross-validation confirmed 
this pattern of results. The goodness of fit of the cross-valida-
tion regression models did not decrease significantly (10% on 
average), and it was still in a moderate to strong range (i.e., r2  
[0.58–0.70]).

varIable selectIon results
Table 1 shows the variables selected by step-wise analysis for esti-
mation of the present performance for each of the 3CVT quartiles. 
Similarly, Table 2 shows the most predictive variables for estimation 
of the future performance, i.e., estimation of F-Measure on Q2–Q4 
based on the data from Q1. The amount of variance explained 
with these variables ranges between 67 and 80% for the present 
performance, and between 53 and 63% for the future performance.

Most of the selected EEG features for estimation of the present 
performance came from the Fz–POz and Cz–POz channels. For 
the future performance estimation, the most informative features 
were found in the Fz–POz channel and the POz channel. Analysis 
of the selected EEG features per frequency bands showed that the 
majority of the selected features were from the Delta and Alpha 
frequency bands in both cases.

The B-Alert classification probabilities for Sleep Onset, 
Distraction, and Low Engagement were selected for estimation 
of the present performance. Even though the B-Alert model was 
originally developed for drowsiness detection (Berka et al., 2004), 
it also proved useful for drowsiness prediction (i.e.,  estimation of 

Table 1 | List of variables used to estimate present performance by quartile.

Channel Absolute/relative Q1 Q2 Q3 Q4 

 PSD Hz-Bins Hz-Bins Hz-Bins Hz-Bins

Fz–POz Absolute 3,8,10,21,28,33,39 1,2,4,10,23,33 8,10,12,16,32,36 25,31,32

 Relative 3,8,10,24,25,26 3,7,8,10,27,30 6,8,9,10,12,16,19,39 40

Cz–POz Absolute – 5,32,33,35,39,40 2,3,14,34 18,22,35,37

 Relative 2,16,18,19 11,14 9,11,30,31,32 7,8

Fz Absolute 20,24,25,40 7,14 17,26 7,12,19

 Relative 8,29,39 4,9,31,37,38,39 9,12 23

Cz Absolute 2,3,21 1,10,11,33 2,10 14,19,22

 Relative 1,36 16,27,32 28 26

POz Absolute 1,3,36 1,6,9 1 16,17,34

 Relative 15,26 2,13 6,9,12,16,33,37 9

B-Alert probabilities  Sleep onset Sleep onset Sleep onset Sleep onset

  Distraction  Low engagement

Table 2 | List of variables from quartile 1 (Q1) used to estimate future performance by quartile.

Channel Absolute/relative Q2 Q3 Q4 

 PSD Hz-Bins Hz-Bins Hz-Bins

Fz–POz Absolute 16,23 16,26,34,39 3,8,10,11,25,26

 Relative 3,5,6,9 3,9,11 9,12

Cz–POz Absolute 34,35 6 1,2,7

 Relative 11,37 37 –

Fz Absolute – – 7,10

 Relative 7,36 9 –

Cz Absolute 2,6 3 3,4,13,14

 Relative 14,20,23,36 20 11

POz Absolute 11,15,17 10 15,16,34

 Relative 1,13,16 1,2,11,13 1,10,13,35,37

B-Alert probabilities  Sleep onset Sleep onset –

  Distraction 
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variables to account for performance variability across subjects was 
relatively compromised in the case of the cross-validation models 
(approximately 10%).

predIctIon accuracy
After grouping the observed and estimated F-Measure values into 
the classes of unacceptable (target class) and acceptable (non-
target class) performance using the threshold of 0.8, the following 

Similarly, in Figure 4, regression plots for the model that 
 estimates future performance (i.e., F-Measure on Q2–Q4 based on 
the EEG data from Q1) are shown. Again, both the model develop-
ment (left) and cross-validation (right) results are shown. In this 
case, the Pearson correlations between observed and estimated per-
formance were slightly weaker for the model development (r = 0.79, 
0.73, and 0.75 for Q2, Q3, and Q4, respectively) and greater than 
0.65 for the cross-validation models. The capability of the EEG 
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Figure 3 | Correlation plots between observed and estimated F-Measure for present performance by quartile. (A) The model development results, and (B) 
the cross-validation results.
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were better distinguished from acceptable performance in the EEG 
spectral content and, as F-Measure was decreasing over the course 
of the 3CVT (see Figure 1C), it was better recognized during the 
later quartiles of the task.

The differences between the model development and cross-val-
idation results were notably small, suggesting that the models were 
not over-fitted. For the model that estimates present performance, 
averaged results per quartile dropped between 2.5% (specificity 
and NPV) and 4% (sensitivity and PPV). Similarly, the decrease 
in averaged performance per quartile for the model that estimates 
future performance ranged from 3.3% (specificity and PPV), over 
4% (negative predictive value), to 4.6% (sensitivity).

analysIs of the borderlIne cases
As estimation of future performance, i.e., performance on Q4 of 
the 3CVT (based on the EEG data from Q1 of the same task), is 
the most beneficial from the application point of view, and, as the 
obtained results were very promising, a deeper analysis of this pre-
diction model is presented.

Table 5 displays a summary of the number of misclassified 
cases in which the observed and estimated F-Measure disa-
greed based on the F-Measure cut-off of 0.80. The second and 
the third rows contain the number of misclassifications that 

 measures were calculated: sensitivity, specificity, positive and nega-
tive predictive value with the 95% confidence intervals for both the 
present and future performance models. The results are shown in 
Tables 3 and 4. Again, the model development and cross-validation 
results are displayed.

The present performance models (Table 3) tended to more 
consistently estimate unacceptable performance during all four 
quartiles of the 3CVT [i.e., relatively similar sensitivity (≈83%) 
and PPV (≈70%)], while acceptable performance was recognized 
less accurately during later quartiles of the 3CVT (i.e., specificity 
and NPV decreased later in the task by 28 and 20%, respectively).

The results of the EEG models that estimate future perfor-
mance are presented in Table 4. Difficulties in recognizing accept-
able performance later in the task, apparent during estimation of 
present performance, also occurred during estimation of future 
performance. Interestingly, in this case, estimation of unacceptable 
performance was improved later in the task (Q3 and Q4), and the 
model that estimates future performance occasionally obtained 
higher sensitivity and PPV than the present performance model.

Overall, the algorithm achieved better results when the cognitive 
performance (i.e., F-Measure) was poorer, i.e., future performance 
decrements were better estimated in Q3 and Q4 than in Q2. This 
is presumably due to the fact that the lower values of F-Measure 
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Figure 4 | Correlation plots between observed and estimated F-Measure for future performance by quartile. (A) The model development results, and (B) the 
cross-validation results.
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Table 4 | Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence intervals of the eeg-based 

future performance models after grouping the observed and estimated F-Measure into classes of unacceptable (F-Measure < 0.80) and acceptable 

(F-Measure ≥ 0.80) performance.

Quartile Sensitivity Specificity PPV NPV

MoDeL DeVeLoPMeNT

2 0.76 (0.68–0.84) 0.82 (0.77–0.86) 0.60 (0.52–0.68) 0.90 (0.87–0.94)

3 0.83 (0.78–0.88) 0.62 (0.56–0.69) 0.65 (0.59–0.71) 0.81 (0.75–0.87)

4 0.85 (0.80–0.90) 0.63 (0.56–0.70) 0.70 (0.65–0.76) 0.81 (0.74–0.87)

CroSS-VALiDATioN

2 0.69 (0.60–0.78) 0.81 (0.77–0.86) 0.57 (0.49–0.66) 0.88 (0.84–0.92)

3 0.81 (0.75–0.87) 0.58 (0.51–0.65) 0.62 (0.56–0.68) 0.78 (0.72–0.85)

4 0.80 (0.75–0.86) 0.58 (0.51–0.65) 0.66 (0.60–0.72) 0.74 (0.67–0.81)

Table 3 | Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence intervals of the eeg-based 

present performance model after grouping the observed and estimated F-Measure into classes of unacceptable (F-Measure < 0.80) and acceptable 

(F-Measure ≥ 0.80) performance.

Quartile Sensitivity Specificity PPV NPV

MoDeL DeVeLoPMeNT

1 0.85 (0.76–0.95) 0.92 (0.89–0.95) 0.64 (0.53–0.74) 0.98 (0.96–0.99)

2 0.82 (0.75–0.89) 0.87 (0.83–0.91) 0.70 (0.62–0.78) 0.93 (0.90–0.96)

3 0.83 (0.77–0.88) 0.74 (0.69–0.80) 0.73 (0.67–0.79) 0.83 (0.78–0.89)

4 0.83 (0.78–0.88) 0.64 (0.57–0.71) 0.70 (0.64–0.76) 0.78 (0.72–0.85)

CroSS-VALiDATioN

1 0.78 (0.67–0.89) 0.90 (0.87–0.94) 0.57 (0.45–0.68) 0.96 (0.94–0.98)

2 0.80 (0.73–0.88) 0.86 (0.82–0.90) 0.68 (0.60–0.76) 0.92 (0.89–0.95)

3 0.78 (0.72–0.84) 0.70 (0.63–0.76) 0.68 (0.62–0.75) 0.79 (0.73–0.85)

4 0.81 (0.75–0.86) 0.61 (0.54–0.68) 0.68 (0.62–0.74) 0.75 (0.69–0.82)

remained after the observed F-Measure that fell within 0.05 or 
0.075 from the F-Measure cut-off were discarded, respectively. 
The last column shows the overall percentage of the misclas-
sified cases. Results show that a greater number of misclas-

sifications occurred during the FR sessions than during the 
SD sessions, with approximately 80% more quartiles misclas-
sified in the former case, both for the model development and 
cross-validation models. Conversely, there was approximately 

Table 5 | Number of misclassifications before and after edge effect removal.

 Model development

Session Fully rested Sleep deprived overall percentage of misclassified

 1 2 3 4 1 2 3 4 

With edge effect 15 18 21 14 9 9 8 9 25.75

Edge effect 0.05 removed 6 6 9 6 1 1 6 5 10.00

Edge effect 0.075 removed 3 4 5 1 0 0 3 1 4.25

 Cross-validation

Session Fully rested Sleep deprived overall percentage of misclassified

 1 2 3 4 1 2 3 4 

With edge effect 17 22 23 16 12 10 9 14 30.75

Edge effect 0.05 removed 8 9 10 8 4 2 6 7 13.50

Edge effect 0.075 removed 4 5 6 3 1 1 3 3 6.50
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to be computationally simple enough to allow it to be applied in 
driving and industrial applications without excessive processing 
power. In the following, we summarize how each of these criteria 
were met, contrast the proposed algorithm to the related work, 
and discuss the limitations of the proposed algorithm and future 
work directions.
Predicting future performance.  Previous studies have demonstrated 
a causal relationship between the concurrent level of alertness and 
performance on tasks ranging from simple RT to complex decision-
making (Doran et al., 2001; Kamdar et al., 2004). The purpose of this 
study was to extend this one step further by examining whether the 
EEG data can be used to estimate future cognitive performance. An 
emphasis was placed on predicting significant performance decre-
ments, in terms of a large number of errors and/or slower RT, due 
to drowsiness caused by partial sleep deprivation. Overall, strong 
association between observed and estimated performance was seen. 
For the present performance model, after grouping the observed 
and estimated F-Measure into classes of acceptable and unaccep-
table performance, the achieved results were rather high (sensitiv-
ity 78–85%, PPV 57–73%, specificity 61–92%, and NPV 75–98%). 
Thus, the developed algorithm has proven to be robust against the 
false positives and false negatives that typically limit the adoption of 
the drowsiness prediction algorithms into real-world applications. 
The model that estimates future performance was able to group 
performance into unacceptable and acceptable performance almost 
as accurately as the present performance model. The obtained results 
were in a similar range (sensitivity 69–85%, PPV 57–70%, specificity 
58–82%, and NPV 74–90%). These results support the hypothesis 
that the EEG data can be successfully used to predict future perfor-
mance. The achieved prediction period of up to 10–15 min should 
provide sufficient time to intervene, and thereby prevent potential 
accidents in a number of real-world scenarios.
Combined performance metric.  To the best of our knowledge, RT 
and accuracy are treated separately in all previous studies. We devel-
oped an appropriate performance metric, F-Measure, to ensure 
that all coping strategies were accommodated and equalized in the 
algorithm. It takes into account performance decrements due to 
both slower responses to stimuli and less accurate responses and 
it is, therefore, sensitive to a typical speed–accuracy tradeoff that 
has been reported and studied in related literature (Forstmann 
et al., 2008; Van Veen et al., 2008; Bogacz et al., 2009; Carp et al., 
2010; Eichele et al., 2010). Thus, the combined performance metric 
utilized in our work accounted for individual differences in dealing 
with drowsiness.
Algorithm individualization.  Most of the previous work proposed 
individualized models by using person specific EEG data for train-
ing a model (i.e., person-dependent training). The models devel-
oped in our study utilized person-independent training (i.e., data 
from all subjects were used for training), but they were still indi-
vidualized through normalization of the EEG data with respect 
to the subjects’ BL session. This way, individual EEG variability 
inherent in performance decrements associated with sleep depri-
vation was addressed.
Size of the training dataset.  The proposed model was developed on a 
large sample size (50 subjects) and cross-validated across all subjects 
to assess the generalization ability of the model. Cross-validation 
results did not show any signs of overfitting.

the same number of misclassified quartiles in the morning (first 
two sessions) and afternoon sessions (last two sessions) on both 
days of the study.

During the model development and cross-validation, 25.75 and 
30.75% of the quartiles were originally misclassified, respectively. 
Still, the majority of the misclassified quartiles were within 0.05–
0.075 of the F-Measure cut-off between acceptable and unaccep-
table performance. After discarding borderline cases, the number 
of misclassifications was decreased by 15.75 and 21.5% in the case 
of auto-validation and ±0.05/±0.075 edge effect removal, respec-
tively, and by 17.25 and 24.25% in the case of leave-one-subject-out 
cross-validation and ±0.05/±0.075 edge effect removal, respectively.

As there were many misclassified borderline cases in which the 
difference between the observed F-Measure and a cut-off of 0.80 
was within a ±0.05/±0.075 range, we assessed the necessary changes 
in RT and accuracy for these borderline cases. As F-Measure com-
bines two performance measures (i.e., RT and accuracy), one of 
the measures was kept fixed in order to determine the necessary 
changes in another measure. Thus, all ±0.05/±0.075 borderline 
cases in the dataset were analyzed in this manner and the average 
necessary changes in accuracy and RT were small. When keeping 
RT fixed, accuracy had to be changed on average by 7% for ±0.05 
edge effect, and by 10% for ±0.075 edge effect, so that F-Measure 
became 0.80. Likewise, when keeping accuracy fixed, in order to 
make the F-Measure equal 0.80, RT had to be changed on average 
by 0.04 s for ±0.05 edge effect, and by 0.06 s for ±0.075 edge effect.

Thus, tuning of the F-Measure threshold might bring further 
improvement. The F-Measure threshold should respect two crite-
ria. On the one hand, it should allow for good recognition results 
after grouping the observed and estimated F-Measure values into 
the classes of unacceptable and acceptable performance. At the same 
time, it should provide a useful detection of fatigue, i.e., it should not 
allow too slow RT or too low accuracy to be included in the accept-
able performance. Decreasing the threshold would generally improve 
the recognition results, but at some point definition of unaccepta-
ble performance would not be strict enough. The lower boundary 
we considered for F-Measure threshold is 0.78 that is based on the 
average values of RT and accuracy in the dataset (FR and SD ses-
sions) increased, i.e., decreased by 2 STD, respectively. In that case, 
the range of the unacceptable performance recognition results was 
slightly higher than when the threshold of 0.8 was used: sensitivity 
71–83%, specificity 65–88%, PPV 58–69%, and NPV 80–93%.

dIscussIon
The current study sought to develop a method for predicting cog-
nitive performance decrements. In order to achieve this goal, a 
partial sleep deprivation was performed to deteriorate the subjects’ 
performance and the EEG data were utilized to provide insight into 
brain activity. The objective was to meet the following criteria: (1) 
The algorithm had to predict risk/errors within a time window that 
ensures accuracy (i.e., reduces false negatives and accommodates 
changing risk over time), while allowing time for intervention 
or mitigation; (2) The approach had to address the variability in 
coping strategies that occur across individuals as they become 
fatigued; (3) The algorithm had to accommodate individual vari-
ability in the EEG data; (4) The model had to be trained on a large 
dataset to avoid overfitting; and (5) The resulting algorithm had 
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“Cognitive Performance on the 3CVT” has also shown there was no 
significant time of day effect on F-Measure, as the lack of a main 
effect for the cycles indicated that there is no significant drop in 
performance across the 3CVT cycles throughout the day of test-
ing. These findings are consistent with others that have found that, 
despite a clear mid-afternoon dip evident in sleep propensity (Dijk 
et al., 1992; Van Dongen et al., 2007), there is no clear evidence of 
a consistent mid-afternoon dip in performance measures due to 
numerous masking factors. Thus, we do not incorporate circadian 
rhythm process into the model.

The current algorithm is less effective in recognizing perfor-
mance under the FR than the SD conditions. One potential explana-
tion for this is the individual variability inherent in performance, 
with some persons learning a task more quickly and accurately than 
others. Furthermore, there was also potential lack of motivation 
on the FR day, as they already performed the same task during the 
BL session. Thus, poor performance in such cases was not affected 
by drowsiness, and the proposed EEG-based algorithm could not 
recognize such changes. Additionally, recent studies indicate that 
individual vulnerability to sleep deprivation with respect to perfor-
mance varies greatly, and a few different phenotypes can be identi-
fied (Doran et al., 2001; Van Dongen and Dinges, 2001; Rajaraman 
et al., 2008; King et al., 2009). While some individuals are impervi-
ous to sleep deprivation and perform within normal performance 
measures even after 40 h without sleep, some are highly vulner-
able and cannot retain high performance. In order to ensure broad 
adoption of the developed algorithm in vehicular and industrial 
environments, future development will aim to reduce the number 
of misclassifications associated with rested conditions by taking into 
account personal differences in objective performance measures. 
This issue could potentially be overcome by normalization of an 
individual’s performance (i.e., the corresponding F-Measure) with 
respect to the BL session.

The ability to predict significant cognitive performance decre-
ments well in advance could have immense value in the military, 
transportation industry (e.g., airline pilots, railroad operators, and 
surface or underwater ship operators), and any other shift-work 
jobs. The EEG-derived estimators of cognitive performance pre-
sented in this paper were sensitive to performance decrements due 
to either slower RT or less accurate responses. In the future, we 
plan to validate the models on a new independent dataset and to 
further improve the models by taking into account different levels 
of vulnerability to sleep deprivation, and individual speed–accuracy 
tradeoff strategies.

acknowledgMents
This work was supported by NIH contracts N44-NS92367, 
N43-NS62344, N43-NS72367, and grant R43-NS35387. The 
authors would also like to thank Ms. Stephanie Korszen for her 
excellent editing advice.

Computational costs. Many researchers have attempted to develop 
EEG-based drowsiness detection algorithms ranging from EEG 
PSD bandwidth comparisons (Liang et al., 2005; Sing et al., 2005), 
over multivariate linear regression (Chiou et al., 2006), artificial 
neural networks (Vuckovic et al., 2002; Wilson and Russell, 2003; 
Subasi and Ercelebi, 2005), and unsupervised approaches (Pal et al., 
2008) to principle component analysis (Fu et al., 2008). Most of 
these algorithms, however, are computationally expensive due to 
their complexity and/or number of EEG channels required. The 
algorithm proposed in this study, based on five EEG channels and a 
linear regression approach using PSDs, will need minimal process-
ing power to allow for different applications in real-world settings.

A body of fatigue-related research has been conducted using a 
10-min psychomotor vigilance task in which performance is based 
on reaction to a single type of stimuli, e.g., PVT-192 (Dinges et al., 
1997). This approach requires that workers regularly step out of 
their regular role to complete the test, or complete it prior to an 
8- to 12-h shift, leaving risk changes over time within the shift unad-
dressed. The current study proposed an alternative approach. Using 
the 3CVT, we demonstrated that EEG alone (once individualized to 
a baseline, a 20-min procedure) can be used to predict risk/errors. 
Future studies will be required in order to validate the models 
developed on the 3CVT in other real-world tasks, such as driving.

Furthermore, the 20-min 3CVT improved the capability to 
detect subtle compromises in sustained attention which only 
become apparent as time on task is extended. Performance on the 
20-min 3CVT substantially decreased within the 20-min of the task, 
with Q4 having greater performance decrements than Q1, due to 
the lack of motivation or inability to concentrate for a relatively 
long period of time. Our results support this, as the developed 
algorithm can better estimate future performance decrements, i.e., 
the class of unacceptable performance, during the third and fourth 
quartile of the 3CVT than during the second quartile of the 3CVT, 
most likely because of the larger performance decrements between 
the FR and SD sessions on later quartiles of the task. Interestingly, 
the future performance model is trained on the first quartile of 
the 3CVT with relatively short inter-stimulus interval, yet it can 
still accurately estimate performance on the other quartiles of the 
3CVT with larger inter-stimulus intervals.

Previous models often take into account circadian rhythm effect 
by, for example, incorporating a two-process model (sleep homeo-
stasis and circadian process) of sleep regulation (Van Dongen et al., 
2007; Rajaraman et al., 2008). In our dataset, however, there is no 
clear circadian rhythm effect on the performance measures. The 
third and the fourth session on both the FR and the SD day were 
typically recorded during the mid-afternoon circadian rhythm 
dip. Even so, previous analysis (Johnson et al., 2011) has shown 
there was no significant overall difference in performance measures 
(i.e., RT and percent of correct responses) between morning and 
afternoon sessions in the dataset. The statistical analysis in Section 
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