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drawings of the item named; subjects were instructed to think about 
the item being shown, its properties, purpose, etc. From these brain 
images we generated words pertaining to the relevant concept (e.g., 
“door,”“window,”“home”). This is a simplified form of the descrip-
tion task that ignores syntax and word order, but a very common 
approach in machine learning done on text data (Mitchell, 1997; Blei 
et al., 2003). We show that the quality of the words generated can be 
evaluated quantitatively, by using them to match the brain images 
with corresponding articles from the online encyclopedia Wikipedia.

2 Materials and Methods
2.1 data
We re-used the fMRI data1 from Mitchell et al. (2008) and hence we 
will only provide a summary description of the dataset here. The 
stimuli were line drawings and noun labels of 60 concrete objects from 
12 semantic categories with five exemplars per category, adapted from 
an existing collection (Snodgrass and Vanderwart, 1980); see Figure 1 
for a depiction of the “Table” stimulus. The entire set of 60 stimulus 
items was presented six times, randomly permuting the sequence of 
the 60 item on each presentation. Each item was presented for 3 s, 
followed by a 7 s rest period, during which the participants were 
instructed to fixate. When an item was presented, the participant’s 
task was to think about the properties of the object. To promote their 
consideration of a consistent set of properties across the six presenta-
tions, they were asked to generate a set of properties for each item 
prior to the scanning session (for example, for the item castle, the 
properties might be cold, knights, and stone). Each participant was 
free to choose any properties they wished, and there was no attempt 
to obtain consistency across participants in the choice of properties.

Nine subjects participated in the fMRI study. Functional 
images were acquired on a Siemens Allegra 3.0T scanner at the 
Brain Imaging Research Center of Carnegie Mellon University 
and the University of Pittsburgh using a gradient echo EPI pulse 

1 introduction
Over the last decade, functional magnetic resonance imaging (fMRI) 
has become a primary tool for identifying the neural correlates of 
mental activity. Traditionally, the aim of fMRI experiments has 
been to identify discrete, coherent neuroanatomic regions engaged 
during specific forms of information processing. More recently, it 
has become clear that important information can be extracted from 
fMRI by attending instead to broadly distributed patterns of activa-
tion. The application of machine learning techniques for pattern 
classification (Pereira et al., 2009) has enabled impressive feats of 
“brain reading,” making it possible to infer the semantic category 
of an object viewed by an experimental participant, to track the 
process of memory retrieval, to predict decisions or mistakes, or 
even (controversially) to detect lies (Mitchell et al., 2004; Davatzikos 
et al., 2005; Haynes and Rees, 2006; Norman et al., 2006).

In all of these cases, the key step involves assigning each brain 
image to one in a small set of discrete categories, each occurring 
within both a training set and a test set of images. More recently 
(Mitchell et al., 2008) and (Kay et al., 2008) have extended this 
approach applying sophisticated forward models to predict brain 
activation patterns induced by stimuli from outside the initial train-
ing set, thus enabling a more-open ended form of classification.

Even more strikingly, a few recent studies have demonstrated 
the feasibility of a generative approach to fMRI decoding, where an 
artifact is produced from a brain image. Concrete examples include 
reconstructing a simple visual stimulus (Miyawaki et al., 2008), a 
pattern of dots mentally visualized by the subject (Thirion et al., 
2006) and generating a structural and semantic description of a 
stimulus scene, which could then be used to find a similar scene in 
a very large image database (Naselaris et al., 2009).

The success of this work leads to the question of what may be 
produced from a brain image if the mental content is not amenable 
to pictorial rendering. This paper attempts to answer this question 
by introducing an approach for generating a verbal description of 
mental content. We began with brain images collected while subjects 
read the names of concrete items (e.g., house) while also seeing line 
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sequence with TR = 1000 ms, TE = 30 ms, and a 60° flip angle. 
Seventeen 5-mm thick oblique-axial slices were imaged with a 
gap of 1 mm between slices. The acquisition matrix was 64 × 64 
with 3.125-mm × 3.125-mm × 5-mm voxels. Initial data process-
ing was performed using Statistical Parametric Mapping software 
(SPM2, Wellcome Department of Cognitive Neurology, London, 
UK). The data were corrected for slice timing, motion, and lin-
ear trend, and were temporally filtered using a 190 s cutoff. The 
data were spatially normalized into MNI space and resampled to 
3 mm × 3 mm × 6 mm voxels. The percent signal change (PSC) 
relative to the fixation condition was computed at each voxel for 
each stimulus presentation. A single fMRI mean image was created 
for each of the 360 item presentations by taking the mean of the 
images collected 4, 5, 6, and 7 s after stimulus onset (to account for 
the delay in the hemodynamic response). Each of these images was 
normalized by subtracting its mean and dividing by its SD, both 
across all voxels.

2.2 approach
At the procedural level, our approach followed a set of steps analo-
gous to those employed in Naselaris et al. (2009) to reconstruct visual 
stimuli from fMRI data, but tailored to the task of mapping from 
fMRI to text:

1. We began with a corpus of text – Wikipedia articles – and 
used it to create a topic model (Blei et al., 2003), a latent 
factor representation of each article; this is, in essence, a 
representation of the concept the article is about. The task 
used to obtain our fMRI data entails thinking about the 
concept prompted by a stimulus, and hence we use the 
representation learned from text as an approximation of 
the mental representation of the concept. This is analo-
gous to the way (Naselaris et al., 2009) takes a corpus of 
naturalistic images and represents them in terms of a com-
bination of latent factors representing visual aspects and 
semantic content.

2. Learn a mapping from each latent factor in the model from 
Step 1 to a corresponding brain image that captures how the 
factor gives rise to sub-patterns of distributed brain activity, 
using a training set of brain images.

3. Finally, for each brain image in a new, test set, the mapping 
from Step 2 can be used to infer a weighting over latent factors. 
Given this, the generative model from Step 1 can be inverted in 
order to map from the latent factor representation to text, in 
the shape of a probability distribution over words. In Naselaris 
et al. (2009), the model is inverted and used to assign probabi-
lity to images.

FIguRe 1 | The approach we follow to generate text (bottom) parallels that 
used in Naselaris et al. (2009) (middle, adapted from that paper), by having 
three stages: creating a model of how stimuli will be represented in the 

brain, learning how to predict fMRI data in response to the stimuli, given 
the model, and inverting the process to make a prediction for fMRI data 
not used to fit the model.
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those meanings. We used Wikipedia Extractor2 to remove HTML, 
wiki formatting and annotations and processed the resulting text 
through the morphological analysis tool Morpha3 (Minnen et al., 
2001) to lemmatize all the words to their basic stems (e.g., “taste,” 
“tasted,” “taster,” and “tastes” all become the same word).

The resulting text corpus was processed with topic modeling (Blei 
et al., 2003) software4 to produce several models, excluding words 
that appeared in a single article or were in a stopword list. We ran 
the software varying the number of topics allowed from 10 to 100, in 
increments of 10, setting the a parameter to 25/#topics (as suggested 
in other work modeling a large text corpus for semantic purposes; 
Griffiths et al., 2007, though a range of multiples of the inverse of the 
number of topics yielded comparable experiment results).

The model produced contains a representation of each of the 
3500 articles in terms of the probabilities of each topic being present 
in it; these are our latent factor loadings. To each topic corresponds 
a probability distribution over individual words; the top 10 most 
probable words for each topic are shown in Table 1. Within those 
3500 are 60 articles about the 60 concepts in Mitchell et al. (2008), 
and the factor loadings for these are presented in Figure 2A. Each 
column in the figure corresponds to a topic, each row to an article 
(a small subset of the articles used), with articles grouped into gen-
eral categories, as labeled on the left. Below, the figure shows the 10 
most highly weighted words for three topics. The pattern of topic 
weightings makes clear that the model has captured the category 
structure implicit in the corpus; through unsupervised learning, 
several topics have aligned with specific semantic categories (e.g., 
topic 1 with the vegetable category). The representation is sparse 
but most concepts have multiple topics in their representation.

Topic probabilities for all 3500 concepts and topic word distri-
butions can be examined in detail through am interactive model 
browser available online5.

2.2.2 Learning a mapping between topics and their patterns of brain 
activation
Armed with the topic model, we used ridge regression to establish a 
mapping between each topic and a corresponding pattern of brain 
activation. We averaged the trial brain images described earlier for 
all presentations of each of the 60 concepts in our dataset, yielding 
60 examples images. We use these (selecting a subset of the vox-
els and reserving two images at a time for the test set, as further 
explained below) as prediction targets and the set of topic prob-
abilities describing the corresponding Wikipedia articles (shown 
in Figure 2A) as regression inputs. This decomposes into a set of 
independent regression problems, one per voxel, where the regres-
sion weights are the value of the pattern of activation for each topic 
at that voxel. The regression weights effectively represent each topic 
in terms of a basis image, or representative pattern of brain activa-
tion. This makes it possible to decompose the fMRI image for any 
stimulus object into a set of topic-specific basis images, with com-
bination weights quantifying the contribution of the relevant topic, 
as illustrated in Figure 2B. The regression problems are described 
more rigorously in Section A.3 of the Appendix.

The first step is present also in Mitchell et al. (2008), which 
relies on a postulated semantic representation of the stimulus. In 
contrast with them, the semantic model we use to represent the 
mental content while thinking of a concept is learned from the text 
corpus through unsupervised learning.

2.2.1 Semantic model: topics as latent factors
The approach we used for producing latent factors is called latent 
Dirichlet allocation (LDA), and it can be applied to a text corpus 
to produce a generative probabilistic model; this is known, col-
loquially, as a topic model, as it represents each document by the 
probabilities of various topics being present and each topic by a 
probability distribution over words.

Our use of topic models had a dual motivation. First, as genera-
tive statistical models, topic models support Bayesian inversion, a 
critical operation in the approach described above. Second, it has 
been suggested that the latent representations discovered by topic 
models may bear important similarities with human semantic rep-
resentations (Griffiths et al., 2007). This encourages the idea that 
the latent factors discovered by learning the topic models in our 
study would bear a meaningful relationship to patterns of neural 
activation carrying conceptual information.

There are multiple approaches for learning features from text data, 
with latent semantic analysis (LSA, Landauer and Dumais, 1997) 
being perhaps the best known, and a tradition of using them to per-
form psychological tasks or tests with word stimuli (see Steyvers et al., 
2005; Griffiths et al., 2007; or Murphy et al., 2009) for applications to 
EEG, for instance, Liu et al. (2009) for semantic features learned from 
a matrix of co-occurrences between the 5000 most common words in 
English, to perform the same prediction task as Mitchell et al. (2008). 
The differences between LDA and LSA are discussed in great detail 
in Griffiths et al. (2007), so we will only provide a brief outline here. 
Both methods operate on word-document/paragraph co-occurrence 
matrices. They both place documents in a low-dimensional space, 
by taking advantage of sets of words appearing together in multi-
ple documents. Each dimension corresponds thus to some pattern 
of co-occurrence, a singular vector of the co-occurrence matrix in 
LSA and a topic word probability distribution in LDA. The major 
difference is that LSA is not a generative model and, furthermore, 
the way that singular vectors are created forces them to be orthogo-
nal, a constraint that does not reflect any aspect of the text domain 
but just mathematical convenience. LDA, in contrast, allows one to 
interpret the topic probabilities as the probability that a word came 
from the distribution for a particular topic. LSA places documents 
in an Euclidean space, whereas LDA is placing them in a simplex, 
making the presence of some topics detract from the presence of 
others (something useful for us, as we will show later).

We learned our topic model on a corpus derived from a set of 
3500 Wikipedia pages about concepts deemed concrete or imageable. 
These were selected using classical lists of words (Paivio et al., 1968; 
Battig and Montague, 1969), as well as modern revisions/extensions 
thereof (Clark and Paivio, 2004; Van Overschelde, 2004), and con-
sidering scores of concreteness or imageability, as well as subjective 
editorial ranking if scores were not available. We then identified the 
corresponding Wikipedia article titles (e.g., “airplane” is “Fixed-wing 
aircraft”) and also compiled related articles which were linked to from 
these (e.g., “Aircraft cabin”). If there were words in the original lists 
with multiple meanings we included the articles for at least a few of 

2http://medialab.di.unipi.it/wiki/Wikipedia_extractor
3http://www.informatics.susx.ac.uk/research/groups/nlp/carroll/morph.html
4http://www.cs.princeton.edu/∼blei/topicmodeling.html
5http://www.princeton.edu/∼matthewb/wikipedia
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FIguRe 2 | (A) Topic probabilities for the Wikipedia articles about the 60 concepts 
for which we have fMRI data. Each concept belongs to one of 12 semantic 
categories, and concepts are grouped by category (five animals, five insects, etc.). 
Note that the category structure visible is due to how we sorted the columns for 
display; the model is trained in an unsupervised manner and knows nothing about 
category structure. Note also that there are topics that are not probable for any of 

the concepts, which happens because they are used for other concepts in the 
3500 concept corpus. Below this are the top 10 most probable words in the 
probability distributions associated with three of the topics. (B) The decomposition 
of the brain image for “House” into a weighted combination of topic basis images. 
The weights allow us to combine the corresponding topic word distributions into 
an overall word distribution (top 10 words shown).

21 Law state court legal police crime person act Unite criminal

22 Smoke chocolate light tobacco sign speed cigaret cigar state traffic

23 key lock switch machine needle tube bicycle type knit design

24 Card record information service company product datum process 

program credit

25 State cross head salute plate model symbol portrait scale circus

26 Love sexual god woman people pyramid death sex religion evil

27 Coin gold silver issue currency stamp state dollar value bank

28 Game play player ball team sport rule football hit league

29 Fuel engine gas energy power oil hydrogen heat rocket produce

30 Woman marriage god word christian child term jesus family gender

31 Fiber sheep wool cotton fabric weave hamlet pig produce silk

32 City build house store street town state home road bus

33 Tea tooth pearl kite shoe culture wear tattoo jewelry form

34 Earth sun star planet moon solar time orbit day comet

35 Material wood paint build wall structure construction design size 

window

36 Human social study people culture theory individual nature behavior 

term

37 Power station train signal line locomotive radio steam electric 

frequency

38 Food diamond cook meat bread coffee sauce chicken kitchen eat

39 Measure scale angle [formula theory object unit energy line 

property

40 Music instrument play string band bass sound note player guitar

Table 1 | The top 10 most probable words according to each topic in the 40 topic model used in Figure 2A (topic ordering is slightly different).

Topic Top 10 words

1 Plant fruit seed grow leaf flower tree sugar produce species

2 Color green light red white blue skin pigment black eye

3 Light drink lamp wine beer bottle water produce valve pipe

4 Drug chemical acid opium cocaine alcohol substance produce form 

reaction

5 School university student child education college degree state train 

Unite

6 Animal species cat wolf breed hunt dog male wild human

7 Water metal form temperature carbon process air element iron salt

8 Vehicle wheel gear car aircraft passenger speed drive truck design

9 Market party state country price government political trade people 

economic

10 Water ice rock river surface form sea ocean wind soil

11 Species bird egg fish insect female ant live feed bee

12 Language book write art century form story character word publish

13 War military force army weapon service submarine soviet world train

14 Blood cause disease patient treatment infection health risk increase 

pain

15 Church bishop pope catholic priest roman soap cardinal religious 

time

16 Cell muscle body brain form tissue human organism bone animal

17 Ship fish boat water vessel sail design build ski bridge

18 Iron blade steel handle head cut hair metal tool nail

19 Film image camera digital shotgun movie lens magazine rifle gun

20 Wear horse woman clothe saddle century dress fashion ride trail

Topic Top 10 words
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do so in a cross-validated fashion, learning the basis images from 
all concepts in training set and generating the distributions for 
those in the test set, as described in more detail below. An illustra-
tive example is presented as part of Figure 3. The data shown are 
based on brain images collected during presentation of the stimuli 
apartment and hammer for one of the participants. The tag clouds 
shown in the figure indicate the words most heavily weighted in 
their respective output distribution. As in this case, text outputs for 
many stimuli appeared strikingly well aligned with the presumptive 
semantic associations of the stimulus item. Full results for all 60 
concepts are available for inspection online (see text footnote 5).

To more objectively evaluate the quality of the text generated 
for each stimulus, we used a classification task where the word dis-
tributions derived from the brain images for each pair of concepts 
(test set) were used to match them with the two corresponding 
Wikipedia pages. The classification was done by considering the 
total probability of all the words in each Wikipedia article under 
each probability distribution, and selecting the article deemed most 
probable.

The idea is illustrated in Figure 3, for the stimuli apartment 
and hammer. The text for each of the corresponding Wikipedia 
articles is presented in colors that indicate the likelihood ratio for 
each word, given the fMRI-derived text for each stimulus. In this 

2.2.3 Predicting topic probabilities from example images
We start by taking known topic probabilities and brain images for 
concepts and learning a basis image for each topic. Each topic defines 
a probability distribution over words, the most probable of which 
are shown under the topic basis images in Figure 2B. Combined, 
they define an overall probability distribution over words for a 
concept (for more details see Section A.2 of the Appendix. The 
process can be reversed and topic probabilities estimated from new, 
previously unseen concept brain images, using the basis images. 
Those topic probabilities can be used to combine the topic word 
probability distributions into a word probability distribution about 
the new image, which is what we use to generate text.

The process of estimating the topic probabilities is a regression 
problem, with the vector of values across all voxels in the new image 
being predicted as a linear combination of the topic basis images; 
it also requires the constraint that regression weights be between 0 
and 1, as they have to be valid probabilities. This is described more 
rigorously in Section A.3 of the Appendix.

3 results
Using the approach described in the previous section, we can gen-
erate word probability distributions – or text output according 
to them – from the brain images of each of the 60 concepts. We 

FIguRe 3 | The inset under each article shows the top words from the 
corresponding brain-derived distribution [10 which are present in the 
article (black) and 10 which are not (gray)]. Each word of the two articles is 
colored to reflect the ratio papartment (word)/phammer(word) between the 

probabilities assigned to it by the brain-derived distributions for concepts 
“apartment” and “hammer” (red means higher probability under 
“apartment,” blue under “hammer,” gray means the word is not considered 
by the text model). 
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The steps are repeated for every possible pair of concepts, and 
the accuracy is the fraction of the pairs where the assignment of 
articles to example images was correct. For voxel selection we used 
the same reproducibility criterion used in Mitchell et al. (2008), 
which identifies voxels whose activation levels across the training 
set examples of each concept bear the same relationship to each 
other over epochs (mathematically, the vector of activation levels 
across the sorted concepts is highly correlated between epochs). 
These voxels came from all across temporal and occipital cortex, 
as shown in Table 2 in the Appendix, indicating that the learned 
basis image associated with a topic is related to both semantic and 
visual aspects of it.

Overall classification accuracies for each subject are shown in 
Figure 5, averaged across the results from models using 10–100 
topics to avoid bias; this will be somewhat conservative, as models 
with few topics perform poorly. Results were statistically signifi-
cant for all subjects, with p-values calculated using a conservative 
Monte Carlo procedure being less than 0.01. More details about 
voxel selection and statistical testing are provided in Section A.1 
of the Appendix.

As the figure shows, classification performance was best when 
the comparison was between concepts belonging to different 
semantic categories. This indicates that the text outputs for seman-
tically related concepts tended to be quite similar, which would 
in turn suggest that the topic probability representations giving 
rise to word distributions were similar. This could be because our 

case, each output text matched most closely with the appropriate 
Wikipedia article. This, indeed, was the case for the majority of 
stimulus pairs. Plots comparable to Figure 3 for all concept pairs 
are available online (see text footnote 5).

The classification process is illustrated in Figure 4 and consists 
of the following steps:

1. leave out one pair of concepts (e.g., “apartment” and “ham-
mer”) as test set.

2. use the example images for the remaining 58 concepts, toge-
ther with their respective topic probabilities under the model, 
as the training set to obtain a set of basis images (over 1000 
stable voxels, selected in this training set).

3. for each of the test concepts (for instance, “apartment”):

•	 predict	 the	 probability	 of	 each	 topic	 being	 present	 from	 the	
“apartment” example image.

•	 obtain	an	“apartment”-brain	probability	distribution	for	that	
combination of topic probabilities.

•	 compute	 the	 probability	 of	 “apartment”	 article	 and	 “ham-
mer” article under that distribution, respectively p

apartment
 

(“apartment”) and p
apartment

 (“hammer”).

4. assign the article with highest probability to the corresponding 
test concept, and the other article to the other concept (this 
will be correct or incorrect).

FIguRe 4 | Classification procedure for the “apartment” and “hammer” example images.
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the underlying topic model. The marginal within-category clas-
sification performance may thus reflect the limited granularity 
of our topic models, rather than a fixed limitation of the overall 
technique.

4 discussion
We have introduced a generative, multivariate approach for pro-
ducing text from fMRI data. Even as we draw on aspects of the 
approaches used in Mitchell et al. (2008) and Naselaris et al. (2009), 
our method differs from these in various ways. The most important 
are the fact that we generate text pertaining to mental content, 
rather than a pictorial reconstruction of it, and, furthermore, we 
do this by inverting a model of semantic representations of con-
crete concepts that was learned from text data in an unsupervised 
manner.

data are too noisy to extract different representations for those 
related concepts, or an intrinsic limitation of the semantic model 
we extracted from text.

In order to examine this question, we first considered the pat-
tern of similarity across concepts – correlation of their respective 
topic representations – derived solely from text, shown on the left 
of Figure 6. The right of the figure shows the correlation between 
the topic representations predicted from each pair of brain images 
when they were in the test set. The close resemblance between the 
two matrices indicates that the fMRI-derived text reflected the 
semantic similarity structure inherent in the stimulus set. The high 
correlations apparent in the Wikipedia-based matrix also indi-
cate a possible explanation for the relatively weak within-category 
classification performance we obtained, since our text-generation 
procedure can only pick up on distinctions if they are made by 

AAL ROI P1 P2 P3 P4 P5 P6 P7 P8 P9

Lingual_R 24 51 36 24 40 28 40 46 17

Occipital_inf_L 36 39 27 9 24 24 16 34 22

Occipital_inf_R 11 13 22 5 16 30 15 8 21

Occipital_mid_L 130 67 118 63 67 72 57 94 68

Occipital_mid_R 73 58 54 42 22 17 54 34 37

Occipital_sup_L 15 9 7 49 19 7 12 14 32

Occipital_sup_R 29 23 46 15 17 27 19 20 31

Parahippocampal_L 2 2 1 1 1 6 2 6 1

Parahippocampal_R 4 1 4 1 12 6 7 2 0

Parietal_inf_L 21 23 27 37 13 18 27 25 28

Parietal_inf_R 2 1 0 12 4 2 3 8 8

Parietal_sup_L 19 25 4 19 21 15 12 26 13

Parietal_sup_R 17 36 6 19 8 2 12 18 28

Postcentral_L 30 8 39 20 6 17 17 10 4

Postcentral_R 0 3 4 6 3 15 4 0 14

Precentral_L 6 21 3 46 7 8 33 18 7

Precentral_R 0 1 3 14 2 13 8 1 8

Precuneus_L 1 17 53 9 23 7 18 10 21

Precuneus_R 21 12 27 27 20 3 16 2 16

Supp_motor_Area_L 3 1 0 37 3 9 2 4 0

Supp_motor_Area_R 0 5 2 10 2 12 4 4 2

Supramarginal_L 9 4 12 34 2 8 11 23 10

Supramarginal_R 0 6 0 14 0 9 5 3 4

Temporal_inf_L 13 18 5 5 10 5 12 27 11

Temporal_inf_R 41 16 10 5 19 10 10 10 21

Temporal_mid_L 29 29 12 7 30 30 31 39 28

Temporal_mid_R 24 21 9 8 37 18 14 13 17

Temporal_sup_L 0 1 2 4 5 7 14 17 14

Temporal_sup_R 0 3 1 1 3 6 9 12 3

Not_labeled 50 67 65 65 50 73 80 94 65

Table 2 | Average number of voxels selected from each cortical AAL ROI over all leave-two-out folds.

AAL ROI P1 P2 P3 P4 P5 P6 P7 P8 P9

Angular_L 3 3 7 2 2 7 8 6 1

Angular_R 2 5 7 2 3 4 3 11 15

Calcarine_L 47 56 41 34 63 29 42 53 19

Calcarine_R 38 47 65 50 33 27 25 32 27

Caudate_L 0 0 0 0 1 7 7 1 4

Caudate_R 0 0 0 0 0 7 5 0 4

Cingulum_ant_L 0 4 0 0 7 4 1 4 2

Cingulum_ant_R 0 0 0 2 1 2 0 0 1

Cingulum_mid_L 4 2 2 3 6 2 2 3 6

Cingulum_mid_R 0 3 1 0 4 4 4 1 5

Cuneus_L 0 6 9 26 9 6 7 7 11

Cuneus_R 17 20 23 18 9 22 5 10 14

Frontal_inf_oper_L 7 6 3 15 0 6 9 5 1

Frontal_inf_oper_R 0 2 1 4 1 7 2 6 10

Frontal_inf_orb_L 2 5 1 3 1 9 5 4 8

Frontal_inf_orb_R 0 3 1 2 11 3 1 1 4

Frontal_inf_tri_L 2 22 16 23 9 3 9 6 7

Frontal_inf_tri_R 0 4 1 12 14 19 6 2 12

Frontal_mid_L 3 4 7 3 16 23 13 21 13

Frontal_mid_R 1 1 11 5 9 21 7 2 12

Frontal_sup_L 3 15 6 15 15 20 7 14 12

Frontal_sup_ 

medial_L

1 4 0 0 12 8 4 7 16

Frontal_sup_medial_R 0 1 1 1 3 15 1 4 10

Frontal_sup_R 0 0 5 16 17 15 4 2 11

Fusiform_L 74 50 38 39 50 24 46 35 39

Fusiform_R 94 40 46 44 57 53 54 25 28

Hippocampus_L 0 0 1 0 3 7 9 0 0

Hippocampus_R 0 3 2 1 2 1 10 3 0

Lingual_L 29 30 32 33 34 36 33 38 9
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Given that we do not have to specify verbs to obtain semantic 
features and that we can thus obtain models with any number of 
topics (up to certain practical constraints), there is a lot of room 
for further improvement. One possibility would be to have topics 
correspond to semantic features at a finer grain than “category.” An 
example could be a “made of wood” topic that would place heavy 
probability on words such as “brown,” “grain,” “pine,” “oak,” etc. 
In this situation, there would be far more topics, each spreading 
probability over fewer words; each concept would be represented 
by assigning probability to more of these topics than is currently 
the case. It is conceptually straightforward to modify parameters of 
topic models to yield this and other characteristics in each model, 
and we are currently working on this direction.

The present work serves as a proof of concept, subject to con-
siderable limitations. In order to simplify the problem, we focused 
only on representations of concrete objects. It is therefore an open 
question how the present technique would perform on a wider range 
of semantic content; this would include more abstract concepts and 
relationships between concepts, for instance. The semantic model in 
our case can be learned from any sub-corpus of Wikipedia, so any 
concept for which there is an article can be represented in terms of 
semantic features, regardless of whether it is concrete or abstract. 
It remains to be seen whether the topics learned are reasonable for 
abstract concepts, and that is also a research direction we are pursuing.

A second important simplification was to ignore word order and 
grammatical structure. Although this is a conventional step in text-
analysis research, a practical method for text generation would clearly 
require grammatical structure to be taken into account. In this regard, 
it is interesting to note that there have been  proposals (Griffiths et al., 
2005, 2007; Wallach, 2006) of approaches to enriching topic model 

We have shown that we can generate a probability distribu-
tion over words pertaining to left-out novel brain images and 
that the quality of this distribution can be measured quantita-
tively through a classification task that matches brain images to 
Wikipedia articles. Our results indicate that performance at this 
task is mainly constrained by the quality of the model learned 
from text, suggesting that one might be able to improve within-
category discrimination accuracy by learning a finer-grained 
model.

FIguRe 5 | Average classification accuracy across models using 10 to 100 
topics, for each of 9 subjects (chance level is 0.5); the accuracy is broken 
down into classification of concept pairs where concepts are in different 
categories (“Between”) and pairs where the category is the same 
(“Within”). Error bars are across numbers of topics, chance level is 0.5.

FIguRe 6 | Left: Similarity between the topic probability representations 
of each concept learned solely from text, with concepts grouped by 
semantic category. Right: Similarity between the topic probability 
representations predicted from the brain images for each pair of concepts, 
when they were being used as the test set, for the two best subjects with the 

highest classification accuracy. These were obtained using a 40 topic model, 
the general pattern is similar for the other subjects. Note that the 
representations for concepts in the same category are similar when obtained 
from brain images and that this is also the case when those representations 
are derived from text.
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Furthermore, we would be using one ad hoc distribution (over 
semantic features) to combine other ad hoc distributions (over 
words). Whereas this is not necessarily a problem, it should be 
contrasted with the straightforward process of estimating topic 
probabilities for each concept and word distributions for each topic 
and then using these by inverting the model.

If this approach can be further developed, it may offer an 
advance over previous efforts to decode patterns of neural acti-
vation into language outputs, either letter-by-letter (Birbaumer, 
2006) or word-by-word (Kellis et al., 2010), with possible clinical 
implications for conditions such as locked-in syndrome (Owen 
et al., 2006; this would require showing generalization beyond a 
single experiment, of course).
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 representations by considering word dependency and order. Integrating 
such a modeling approach into the present approach to fMRI analysis 
might support more transparently meaningful text outputs.

It would be possible to use the semantic features defined in 
Mitchell et al. (2008) to both generate words and classify articles. 
One would need to tally, for each of the 25 verbs, which words occur 
within a five token window of it; this vector of counts would then 
have to be normalized into a probability distribution. Given a vector 
of semantic feature values, we would again normalize the vector 
to be a probability distribution. To classify, we would have to take 
the further step of combining the word probability distributions 
of all the verbs according to their respective probabilities in the 
normalized semantic feature vector. This distribution would then 
be used to compute the probability of each article.

We think that this could work for generating words, to some 
extent. These would, however be restricted to words occurring close 
to the verb in text, rather than any words pertaining to the concept 
the verb is associated with; these words might come from any-
where in an article about the concept, in our approach. This issue 
would also affect the probability distributions over words associ-
ated with each verb, which are necessary for doing  classification. 
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a.2 topic Models
The construction of our corpus is described in detail in the Section 
2. Here we provide a brief description of key aspects of topic mod-
els (Blei et al., 2003) for the purposes of this paper, which pertain 
to the LDA software we used (http://www.cs.princeton.edu/∼blei/
topicmodeling.html).

Latent Dirichlet allocation models each document w (a col-
lection of words) as coming from a process where the number of 
words N and the probabilities of each topic being present u are 
drawn. Each word w is produced by selecting a topic z (according 
to probabilities u), and drawing from the topic-specific probability 
distribution p(w|z) over words. In the process of learning a model 
of our corpus, a vector of topic probabilities is produced for each 
article/concept, and the topic-specific distributions are learned. 
The topic probabilities are what we use as the low-dimensional 
representation of each concept.

Given the probabilities u for a concept, we can combine the 
topic-specific distributions over words into a single distribution

p w p w topic p w topic K k( | ) ( | ) ... ( | )θ θ θ= + +1 1

i.e., the more probable a topic is the more bearing it has in 
 determining what the probability of a word is. In the paper this 
is used to convert the topic probabilities estimated from a test set 
brain image into a word distribution corresponding to that image.

Note also that, since the topic probabilities add up to 1, the pres-
ence of one topic trades off with the presence of the others, some-
thing that is desirable if expressing one brain image as a combination 
of basis images (otherwise one might expect to have multiple ways 
for the same basis images to be combined to yield a similar result).

a.3 Basis iMage decoMposition
The procedure depicted in Figure 4 has two steps that require solv-
ing optimization problems. The first is learning a set of basis images, 
given example images for 58 concepts and their respective topic 

a. appendix

a.1 classification experiMent
A.1.1 Selection of stable voxels
The reproducibility criterion we used identifies voxels whose acti-
vation levels across the training set examples of each concept bear 
the same relationship to each other over epochs (mathematically, 
the vector of activation levels across the sorted concepts is highly 
correlated between epochs). As pointed out elsewhere (Mitchell 
et al., 2008), we do not expect all – or even most – of the activa-
tion to be differentially task related, rather than uniformly present 
across conditions, or consistent between the various presentations 
of the same noun stimulus. We chose to use 1000 rather than 500 
reproducible voxels, as the results were somewhat better (and still 
comparable with 2000 voxels, say), but it’s legitimate to consider 
how sensitive the results are to this choice. Given that the repro-
ducibility criterion for selecting voxels is essentially a correlation 
computation, one can find a threshold at which the null hypothesis 
of there being no correlation has a given p-value, using the Fisher 
transformation. For instance, given that 59 voxel values are com-
pared across 6 × 5 per pairs of runs, observed correlation r = 0.1 has 
a p-value of 0.01 if the true correlation r = 0. Using this threshold 
gives us a different number of voxels in each subject, ranging from 
approximately 200 to well over 2000, but the results are still very 
similar to those obtained with 1000 voxels.

The voxels selected come from regions of interest (ROIs) all 
across temporal and occipital lobes, as shown in Table 2 with labels 
from the AAL atlas (Tzourio-Mazoyer et al., 2002); this indicates 
that we are using both visual and semantic information in learning 
the relationship between topic probabilities and brain activation.

A.1.2 Testing dependent classification results in our situation
In the experiment described in the paper we have one classification 
decision for each possible pair of concepts (1770 in total). Those 
decisions are not independent, as each concept appears in 59 pairs. 
The expected accuracy under the null hypothesis that the classifica-
tion was being made at random is still 50%, but the variance is not 
what the same as in the case where examples are independent (see 
Pereira et al., 2009 for details about the usual procedure). So how 
can we get this distribution?

The ideal would be to use a permutation test, but the whole 
process for each permutation takes at least a few minutes, so doing 
enough permutations to get a low p-value is too computation-
ally expensive. Instead we simulated a distribution of classifica-
tion results under the null hypothesis, introducing dependencies 
between them, with one simulation run proceeding as follows. 
For each concept pair (i,j), we draw a number from a uniform 
distribution in the [0,1] interval and take that to be the similarity 
score for the article j under the brain distribution for concept i. 
We then use these as the scores for matching, using the algorithm 
described earlier.

Figure A1 has a histogram of the accuracy results from a simula-
tion with 1000000 iterations. Based on the percentiles of this distri-
bution, the p-values for our classification results would be similar 
to those obtained with a binomial distribution if we had approxi-
mately 150 independent classification decisions. The p-values under 
this distribution of the results averaging across multiple topics are 
below 0.00001 for eight of nine subjects, and 0.003 for subject 8.
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FIguRe A1 | Distribution of classification results under our simulated 
null hypothesis.
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A.3.3 Predict topic probabilities given example images and basis 
images
Predicting the topic probability vector z = Z

i,:
 for an example 

x = X
i
,
:
 is a regression problem where x′ is predicted from B′ using 

regression coefficients z′. The prediction of the topic probability 
vector is done under the additional constraint that the values 
need to be greater than or equal to 0 and add up to 1, as they are 
probabilities. We used CVX (Grant and Boyd, 2009) to solve for 
topic vector z:

max || ,: ||β Xi B

j j

j
j

−

=∑

z 2

0

1

Subject to:

∀ >=z

z

 probabilities. The second is predicting the topic probabilities present 
in an example image, given a set of basis images. The following sections 
provide notation and a formal description of these two problems.

A.3.1 Notation
As each example is a 3D image divided into a grid of voxels, it can 
be unfolded into a vector x with as many entries as voxels contain-
ing cortex. A dataset is a n × m matrix X where row i is the example 
vector x

i
. Each example x will be expressed as a linear combina-

tion of basis images b
1
, …, b

K
 of the same dimensionality, with 

the weights given by the topic probability vector z = [z
1
, …, z

K
], as 

depicted on the top of Figure A2. The low-dimensional representa-
tion of dataset X is a n × K matrix Z where row i is a vector z

i
 and 

the corresponding basis images are a K × m matrix B, where row k 
corresponds to basis image b

k
, as shown on the bottom of Figure A2.

A.3.2 Learn basis images given example images and topic 
probabilities
Learning the basis images given X and Z can be decomposed into 
a set of independent regression problems, one per voxel j, i.e., the 
values of voxel j across all examples, X(:,j), are predicted from Z 
using regression coefficients b = B(:,j), which are the values of 
voxel j across basis images. Any situation where linear regression 
was infeasible because the square matrix in the normal equations 
was not invertible was addressed by using a ridge term with the 
trade-off parameter set to 1. Hence, for voxel j, we solve:

max || || || ||:,

b

b lX Zj − +( )2 2z

FIguRe A2 | Top: each brain image can be written as a row vector, and 
the combination as a linear combination of three row vectors. Bottom: A 
dataset contains many such patterns, forming a matrix X where rows are 
examples and whose low-dimensional representation is a matrix Z.
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