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Music and the auditory brain: where is the connection?
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Sound processing by the auditory system is understood in unprecedented details, even
compared with sensory coding in the visual system. Nevertheless, we do not understand
yet the way in which some of the simplest perceptual properties of sounds are coded
in neuronal activity. This poses serious difficulties for linking neuronal responses in the
auditory system and music processing, since music operates on abstract representations
of sounds. Paradoxically, although perceptual representations of sounds most probably
occur high in auditory system or even beyond it, neuronal responses are strongly affected
by the temporal organization of sound streams even in subcortical stations. Thus, to the
extent that music is organized sound, it is the organization, rather than the sound, which
is represented first in the auditory brain.
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MUSIC AND THE AUDITORY SYSTEM
When I started studying the auditory system, I claimed that I
wanted to understand why monkeys prefer listening to the Rolling
Stones rather than to Mozart. The monkeys I referred to were,obvi-
ously, not Macaca mulatta, but rather a subspecies of Homo sapiens
that I disliked at the time. However, only today, many years later,
I can perceive the real conceit of the younger me: the assumption
that by studying the auditory system I will be able to understand
the reactions of humans to the fine distinctions that separate Rock
music from classical music. The “fine” should be taken seriously:
a corollary of the argument I want to make in this perspective is
that in terms of our current understanding of auditory processing,
there is not much difference between the two.

Having already said“music,”“auditory processing,”and“under-
standing,” I have to define the scope of my argument. I will not
try to define music beyond the trivial remark that while music has
to do with sounds, not all sound is music. For example, I do not
consider the“music of nature,”sounds in the natural environment,
to be music, in the same sense that a magnificent sunset above the
hills west of Jerusalem is not art. So what I am interested in has
to do with the fact that someone took many sounds and orga-
nized them in some way – music includes not only sound, but also
organization, both in sound space and in time.

Contrary to this vague definition of music, when I say “audi-
tory processing,” I have something very definite in mind – I mean
the biological processes (my bias being toward the electrical ones)
that occur between the vibration of the tympanic membrane at
one end and the spiking activity of neurons in the auditory brain
at the other end. I will almost completely ignore here evidence
from fMRI, which at best can give some hints as to the location
of active neurons; and most evidence from EEG and MEG, which,
while measuring electricity, reflect only distantly the actual spiking
activity of neurons. Thus, my view of auditory processing in this
perspective is unabashedly neuron-centric: by “understanding” I
mean the reduction of (some of) the phenomenology of music

into neural mechanisms, spikes, synaptic currents, ion channels
and all.

Finally, I have to define the parts of the brain I am consider-
ing as auditory. This is a surprisingly hard question. While the
auditory nerve, the multiple brainstem auditory centers with their
intricate analysis of auditory neural signals culminating in the
hugely complex inferior colliculus, the medial geniculate body,
and the primary auditory cortex are all clearly parts of the auditory
brain, there are many other brain areas where there are auditory
responses but which are not considered as auditory. These include,
for example, the amygdala (Quirk et al., 1997), the superior collicu-
lus (Middlebrooks and Knudsen, 1984), the hippocampus (Edeline
et al., 1988), and the cerebellum (Huang and Burkard, 1986), to
name just a few subcortical centers; and many cortical areas that
lie beyond the classical auditory cortex (e.g., Cohen et al., 2004).
For the purpose of this perspective, I will concentrate on the “core”
auditory regions, those parts of the brain that would be considered
as “the” auditory system in a textbook of the nervous system – the
subcortical ascending auditory pathways, primary auditory cortex,
and the surrounding fields.

I should immediately admit the limitations of this strongly
reductionist approach. First, I am limiting myself to (mostly)
data from animal studies. At the early stages of processing that
I am considering, mammalian brains are reasonably similar to
each other so that this is probably not a serious constraint. Sec-
ond, a phenomenon as complex as music cannot be reduced
to the responses of single neurons, but would require study-
ing simultaneously the responses of many neurons distributed
throughout the brain. Even an account as reductionist as the one
I am considering here would require taking into account such
brain-wide networks; however, my argument will be based on evi-
dence from single-neuron responses only. Third, the brain areas I
am considering are rarely those specifically activated by music in
human imaging studies (e.g., Janata, 2005). As I will argue below,
processing of relevance for music is performed in these areas,
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in spite of the generally negative evidence from human imaging
studies.

With these cautionary notes out of the way, here is the main
argument of this perspective: with our current understanding of
the auditory system, we stand in the paradoxical situation in which
we do not understand “sound,” while we have a strong handle
on “organization.” Thus, the low-level representations of sounds
on which music is based are badly understood, and may in fact
occur only “higher up” in the brain, outside the auditory brain as
defined here. On the other hand, high-level aspects of music, such
as sound organization in time, are strongly reflected within this
same auditory brain.

SOUNDS AND THE AUDITORY BRAIN
I will pursue the first part of my argument in two ways. I will first
argue that we do not quite understand where and how the low-level
properties of sounds, such as pitch and timbre, are represented in
the auditory system. I will then argue that this is really a side effect
of an even larger gap in our understanding – the fact that we do
not understand the relationships between the pressure waves that
cause the tympanic membrane to vibrate, and the introspective
percept we call sound, which is very far removed from both the
physical vibration that initiated it and from the representation of
these vibrations in the auditory system (at least as defined here).

Let us consider sound processing in the auditory system and its
relationships to a fundamental property of sound that is used in
music – pitch. Pitch is without doubt one of the most important
properties of sounds with which humans do music. The major
physical correlate of pitch is periodicity (not frequency!), but this
is not an absolute identification – there are periodic sounds that
do not elicit pitch at their periodicity, and non-periodic sounds
that do elicit pitch (Schnupp et al., 2011, Chapter 3). Most impor-
tantly, pitch represents an abstraction: many different sounds have
the same pitch (e.g., a violin, cello, trumpet, flute, and a piano
all playing the same note, see https://mustelid.physiol.ox.ac.uk/
drupal/?q = topics/same-melody-different-timbre).

This abstract quality of pitch has consequences to our under-
standing of the coding of pitch in the auditory brain. To start with,
it is often argued that since auditory nerve fibers follow the period-
icity of sounds evoking pitch, pitch is coded in the auditory nerve.
I believe that this is seriously wrong.

The heart of the matter is the fact that periodicity may depend
on spectral content in a wide frequency band, while auditory nerve
fibers are narrowly tuned; in general a single auditory nerve fiber
simply does not “hear” enough of the sound in order to respond
to the right periodicity. Thus, a neuron whose best frequency is
200 Hz will respond roughly similarly to a sound with a periodic-
ity of 100 Hz containing a prominent second harmonic and to a
sound with a periodicity of 200 Hz with a prominent fundamen-
tal, and may not respond at all to a sound with a pitch of 200 Hz
which misses its first few harmonics. In other words, the response
of an auditory nerve fiber tuned to 200 Hz is neither sufficient nor
necessary for a sound to be perceived as having a pitch of 200 Hz.

This fact is well known, but is usually handled by claiming that
it is the activity in the whole array of auditory nerve fibers that
represents the pitch of a sound. This claim is in a way true – by
observing the array of auditory nerve fibers, it should certainly

be possible to determine the pitch of a sound. After all, when we
listen to sounds, we extract pitch from the auditory nerve activity
pattern all the time. However, this claim also misses the point, in
two ways.

First, such a claim does not solve the problem of the coding
of pitch. Somewhere in the brain, some structure has to take the
array of activity of the auditory nerve fibers, and use it to extract
the invariant representation of pitch (or so we intuit), so claims
about “population coding” just shove the problem of pitch coding
away without solving it. There is no extra explanatory power in
the claim that the auditory nerve fibers represent pitch relative to
the claim that the pressure vibrations in the air represent pitch.

Second, and possibly even more importantly, the array of audi-
tory nerve fibers represents not only pitch, but also all other
perceptual properties of sounds. The same fibers whose responses
contain information about the pitch also carry information about
timbre and loudness. In fact, in as much as we can talk about
representations in the auditory nerve, the array of auditory nerve
fiber represents very clearly one thing – the physical vibrations of
the tympanic membrane. It does not even represent the abstract
quantity called periodicity, not to mention the perceptual quality
called pitch.

What about stations higher up in the auditory pathway? There
is a substantial and important work on the coding of pitch in
the brainstem. As in the case of auditory nerve fibers, brainstem
neurons follow the periodicity of the acoustic stimulus, but the
dominant sound representations all the way up to the inferior col-
liculus share with the auditory nerve fibers the narrow width of
tuning of each individual element and the high sensitivity to many
(if not all) properties of sounds. Thus, while periodic sounds evoke
strong periodic activity in the brainstem (e.g., Winter et al., 2001),
there is no convincing evidence that the brainstem (even the infe-
rior colliculus) has an explicit representation of pitch (Reviewed
in Schnupp et al., 2011, Chapter 3). In fact, the most convincing
suggestions for the structure(s) that perform this abstraction, from
sounds to their pitch, are far up in the auditory hierarchy, certainly
above primary auditory cortex, both in humans (Patterson et al.,
2002; Hall and Plack, 2009) and in non-human primates (Bendor
and Wang, 2005). This is, in a way, a rather surprising finding.
Sounds go all the way from the periphery to primary auditory
cortex and above without an explicit assignment of pitch. And
without a pitch representation, it is hard to see how music can be
represented.

I believe, however, that the gap between music and the cur-
rent understanding of the auditory system is much wider than this
upside-down result. In my discussion of pitch coding, I ignored
a crucial facet of real-world sounds: contrary to most auditory
experiments (including many of mine), we usually hear more than
one “sound” at each moment in time. For example, while typing
this manuscript, I hear the low rumble of the power supplies of the
many computers in my lab, a merle singing outside the window of
my office, and the tick tack of the keys I hit while typing. My audi-
tory nerve fibers carry information about the mixture, not about
any particular component of it. There is an important corollary
here – at the level of the auditory nerve, many pitches may be
present concurrently. In as much as this is music, these different
pitches have at least some individual existence. However, it is hard
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to think of ways of identifying the different pitches without at the
same time also separating out the different bits of sounds that
sum up to produce the mixture at the ear (Schnupp et al., 2011,
Chapter 6).

This argument puts in the foreground the need to understand
the transformation that occurs in the brain between the physical
stimuli and the “objects of perception,” those things that carry the
perceptual properties we attribute to sounds such as pitch, timbre,
spatial location, and so on. Music is done to a significant degree
with these “objects of perception” – the individual tones compos-
ing a chord, melody as separate from its accompaniment, and so on
and so forth. In the last 10 years or so, electrophysiologists study-
ing the auditory brain came to appreciate the great importance of
a loose collection of processing tasks called auditory scene analysis
(ASA) whose goal is to form these objects of perception (Bregman,
1990). In fact, I consider ASA, in a wide enough sense, as the major
processing task of the auditory system. Thus, understanding how
neurons do ASA is a necessary step toward understanding music
in the brain.

So, how much do we understand ASA in neuronal terms?
Consider one important advance in understanding the imple-
mentation of ASA in the brain: the recent spate of work on
streaming. In a typical streaming experiment, two sounds are pre-
sented alternately to the subject. If the difference between the two
sounds (e.g., frequency separation between two pure tones) is large
enough, and/or if they are played fast enough, the sequence of
sounds breaks down perceptually into two “things,” each contain-
ing one of the two sounds (hear the illustration at https://mustelid.
physiol.ox.ac.uk/drupal/?q = topics/streaming-galloping-rhythm-
paradigm). Bregman (1990) named the two “things” streams. The
groundbreaking work of Fishman et al. (2001) led to a neural
account for the breakdown process of the single sequence of pure
tones into two streams: they showed that under conditions in
which a single sequence is heard, neurons in auditory cortex of
macaques tend to respond to both tones, while when a breakdown
occurs they tend to respond to either one tone or the other. Using
these ideas, Micheyl et al. (2005) showed that the dynamics of the
breakdown process in human listeners can be accounted for by
the dynamics of neural responses in auditory cortex of macaques.
Recently, Elhilali et al. (2009) remarked that there should be also
an important role for the temporal incoherence of the neuronal
responses to the two tones in the two-stream condition, adding yet
another component to the neural model of streaming.

While these are significant advances in the process of linking
the perceptual phenomenon of streaming with neural responses, it
is important to realize that these studies did not find a neural rep-
resentation of streams. The neurons studied by Fishman, Micheyl,
Elhilali and their colleagues just responded to the individual
sounds in the sequence. Instead, these studies demonstrate prop-
erties of neural responses that may be used by a hypothetical (but
at this point possibly mythical) next layer to create streams. Thus,
important as they are, these studies do not solve the issue of the
representation of streams in the auditory system.

To the best of my knowledge, there is only one non-trivial
example of the end-product of ASA in neural hardware: the
specific responses of neurons in cat auditory cortex to the back-
ground components of natural sounds (Bar-Yosef and Nelken,

2007; Nelken and Bar-Yosef, 2008). In these experiments, short
segments of natural recordings of bird songs have been used. These
segments were digitally processed to remove the bird songs, pre-
serving only the background rustling. Many neurons responded
to the natural sound with similar responses to those they emitted
when presented with the background alone, but responded dif-
ferently when presented with the clean bird song. These neurons
respond to one bit of the sound independently of the presence of
other bits of sounds, which may be substantially louder inside their
frequency response area. Unfortunately, the neural mechanisms
leading to such responses have not been worked out.

ORGANIZATION AND THE AUDITORY BRAIN
Here comes what is, for me, the most surprising twist in the plot.
There is in fact significant amount of processing in the auditory
brain which I find highly relevant for music. However, it does not
have much to do with the “sound” of music, but rather with the
“organization” of music.

The phenomena I want to emphasize here occur at a time scales
of seconds to minutes. Responses of neurons to sounds turn out to
depend on the recent history of sound presentations. Early clues
to these effects have been known for many years. For example,
Condon and Weinberger (1991) showed a strong depression in
the response to a frequency that pipped continuously for a few
minutes, but this depression did not generalize to other, nearby
tone frequencies, and therefore did not represent a “fatigue” of the
neuronal responses.

It was however the introduction of the oddball paradigm into
single-neuron studies by Ulanovsky et al. (2003) that really ener-
gized the study of context sensitivity in the auditory system. The
oddball paradigm has been extensively used in human studies
(Naatanen et al., 2007) to study the important component of
the auditory event-related potentials called mismatch negativity
(MMN). Ulanovsky et al. (2003) adapted this paradigm to single-
neuron studies. In a typical oddball experiment, two tones are
presented in a sequence, one common and one rare. In a different
sequence, the two tones are again presented but with their roles
reversed. The typical result of such experiments is that the response
to the same tone may be substantially larger when rare than when
common. This effect, named “stimulus-specific adaptation” (SSA,
Ulanovsky et al., 2003) when considered in the context of single-
neuron responses, has been now studied by a large number of
groups and shown to be present in auditory cortex of anesthetized
cats (Ulanovsky et al., 2003); awake rats (Von Der Behrens et al.,
2009); the inferior colliculus of rats (Malmierca et al., 2009); and
the medial geniculate body of rats and mice (Anderson et al., 2009;
Antunes et al., 2010).

Stimulus-specific adaptation is relevant to music because it
shows that the responses of neurons to the same sound depend on
the organization of its recent past. In the case of oddball sequences,
this is a rather simple dependency – the less common the sound,
the larger the response it evokes. However, recent work in my lab-
oratory (Taaseh et al., 2011) compared the responses evoked by
the same tones in a number of different sequences, showing for
example that the responses to a rare tone played with a common
sound are shaped by different mechanisms than the responses to a
tone that is rare, but played together with many different sounds,
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all of whom are rare. Similarly, the responses to the two tones in an
oddball sequence depend on whether the sequence is regular, with
fixed intervals between presentations of the rare tone, or whether
the sequence is random, with a fixed probability of presentation
of the rare tone. Thus, the neuronal responses in auditory cortex
do not depend only on the probability of the tones, but also on
fine details of their order (Nelken et al., 2010). Furthermore, SSA
is not limited to pure tones – frozen tokens of white noise evoke
SSA when played in an oddball configuration (Nelken et al., 2010).
Thus, SSA in primary auditory cortex of anesthetized rats seems
to engage mechanisms that are sensitive to the detailed history of
the sound sequence, and not only to the rarity of the rare pure
frequency tone.

SO WHAT?
The auditory brain shows little evidence of sound representations
in terms of their perceptual qualities, and, even worse, does not
even seem to represent sounds at all, at least in the usual every-
day sense of the use of the word “sound.” Instead, the auditory
brain seems to represent, quite well, the physical vibrations of the
tympanic membrane. At the level of the auditory cortex there are
some hints of representations that either emphasize features of
sounds that can be used later to create “objects of perception”
or “streams” (I am vague on purpose), or even already separates

sound mixtures into their components. It is in this sense that clas-
sical and Rock music are not that different from each other. Most
low-level descriptors of the two would not be too far from each
other – overall spectral range (with a possible advantage to Rock
music at very low frequencies), typical rates of spectral and tem-
poral modulations, and all of these other properties that modulate
the responses of auditory neurons in the early parts of the auditory
brain.

While we struggle with the nature of sound representations in
the auditory brain, it is singularly easy to observe the signature of
sound organization on the neural responses, starting as early as
the inferior colliculus. Thus, organization is reflected in the neural
responses of the auditory brain more strongly, and at earlier stages,
than sounds (in the sense of “objects of perception”). This is non-
intuitive (at least to me). Taken to the extreme, this state of affairs
may mean that in the “organized sound” that music may be, we
may have easier time accounting for the “organized” than for the
“sound” within the confines of the auditory brain. Thus, it may
well be that when brains process music, organization comes first,
and sound only follows.

ACKNOWLEDGMENTS
This work was supported in part of grants from the Israeli Science
Foundation (ISF) and the German-Israeli Foundation (GIF).

REFERENCES
Anderson, L. A., Christianson, G. B.,

and Linden, J. F. (2009). Stimulus-
specific adaptation occurs in the
auditory thalamus. J. Neurosci. 29,
7359–7363.

Antunes, F. M., Nelken, I., Covey,
E., and Malmierca, M. S. (2010).
Stimulus-specific adaptation in the
auditory thalamus of the anes-
thetized rat. PLoS ONE 5, e14071.
doi:10.1371/journal.pone.0014071

Bar-Yosef, O., and Nelken, I. (2007).
The effects of background noise
on the neural responses to natural
sounds in cat primary auditory cor-
tex. Front. Comput. Neurosci. 1:3.
doi:10.3389/neuro.10.003.2007

Bendor, D., and Wang, X. (2005). The
neuronal representation of pitch in
primate auditory cortex. Nature 436,
1161–1165.

Bregman, A. S. (1990). Auditory Scene
Analysis: The Perceptual Organiza-
tion of Sound. Cambridge, MA: MIT
Press.

Cohen, Y. E., Cohen, I. S., and Gif-
ford, G. W. III. (2004). Modulation
of LIP activity by predictive audi-
tory and visual cues. Cereb. Cortex
14, 1287–1301.

Condon, C. D., and Weinberger,
N. M. (1991). Habituation pro-
duces frequency-specific plasticity of
receptive fields in the auditory cor-
tex. Behav. Neurosci. 105, 416–430.

Edeline, J. M., Dutrieux, G., and
Neuenschwander-El Massioui,
N. (1988). Multiunit changes in
hippocampus and medial geniculate

body in free-behaving rats during
acquisition and retention of a
conditioned response to a tone.
Behav. Neural Biol. 50, 61–79.

Elhilali, M., Ma, L., Micheyl, C., Oxen-
ham,A. J., and Shamma, S. A. (2009).
Temporal coherence in the percep-
tual organization and cortical repre-
sentation of auditory scenes. Neuron
61, 317–329.

Fishman, Y. I., Reser, D. H., Arezzo, J.
C., and Steinschneider, M. (2001).
Neural correlates of auditory stream
segregation in primary auditory cor-
tex of the awake monkey. Hear. Res.
151, 167–187.

Hall, D. A., and Plack, C. J. (2009).
Pitch processing sites in the human
auditory brain. Cereb. Cortex 19,
576–585.

Huang, C. M., and Burkard, R. (1986).
Frequency sensitivities of auditory
neurons in the cerebellum of the cat.
Brain Res. 371, 101–108.

Janata, P. (2005). Brain networks that
track musical structure. Ann. N. Y.
Acad. Sci. 1060, 111–124.

Malmierca, M. S., Cristaudo, S.,
Perez-Gonzalez, D., and Covey, E.
(2009). Stimulus-specific adapta-
tion in the inferior colliculus of
the anesthetized rat. J. Neurosci. 29,
5483–5493.

Micheyl, C., Tian, B., Carlyon, R. P., and
Rauschecker, J. P. (2005). Percep-
tual organization of tone sequences
in the auditory cortex of awake
macaques. Neuron 48, 139–148.

Middlebrooks, J. C., and Knudsen, E. I.
(1984). A neural code for auditory

space in the cat’s superior colliculus.
J. Neurosci. 4, 2621–2634.

Naatanen, R., Paavilainen, P., Rinne,
T., and Alho, K. (2007). The mis-
match negativity (MMN) in basic
research of central auditory process-
ing: a review. Clin. Neurophysiol. 118,
2544–2590.

Nelken, I., and Bar-Yosef, O. (2008).
Neurons and objects: the case of
auditory cortex. Front. Neurosci. 2:1.
doi:10.3389/neuro.01.009.2008

Nelken, I., Yaron, A., and Taaseh,
N. I. H. (2010). “Responses to
sound sequences in auditory cortex:
beyond the oddball paradigm,” in
40th Annual Meeting of the Society
for Neuroscience, San Diego, CA.

Patterson, R. D., Uppenkamp, S., John-
srude, I. S., and Griffiths, T. D.
(2002). The processing of tem-
poral pitch and melody informa-
tion in auditory cortex. Neuron 36,
767–776.

Quirk, G. J., Armony, J. L., and
Ledoux, J. E. (1997). Fear condi-
tioning enhances different temporal
components of tone-evoked spike
trains in auditory cortex and lateral
amygdala. Neuron 19, 613–624.

Schnupp, J., Nelken, I., and King, A. J.
(2011). Auditory Neuroscience: Mak-
ing Sense of Sound. Cambridge, MA:
MIT Press.

Taaseh, N., Yaron, A., and Nelken,
I. (2011). Stimulus-specific adap-
tation and deviance detection in
the rat auditory cortex. PLoS
ONE 6: e23369. doi: 10.1371/jour-
nal.pone.0023369

Ulanovsky, N., Las, L., and
Nelken, I. (2003). Processing of
low-probability sounds by cor-
tical neurons. Nat. Neurosci. 6,
391–398.

Von Der Behrens, W., Bauerle, P., Kossl,
M., and Gaese, B. H. (2009). Cor-
relating stimulus-specific adaptation
of cortical neurons and local field
potentials in the awake rat. J. Neu-
rosci. 29, 13837–13849.

Winter, I. M., Wiegrebe, L., and Patter-
son, R. D. (2001). The temporal rep-
resentation of the delay of iterated
rippled noise in the ventral cochlear
nucleus of the guinea-pig. J. Physiol.
(Lond.) 537, 553–566.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 19 May 2011; accepted: 10 Sep-
tember 2011; published online: 27 Sep-
tember 2011.
Citation: Nelken I (2011) Music and
the auditory brain: where is the connec-
tion? Front. Hum. Neurosci. 5:106. doi:
10.3389/fnhum.2011.00106
Copyright © 2011 Nelken. This is an
open-access article subject to a non-
exclusive license between the authors and
Frontiers Media SA, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and other Frontiers
conditions are complied with.

Frontiers in Human Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 106 | 4

http://dx.doi.org/10.1371/journal.pone.0014071
http://dx.doi.org/10.3389/neuro.10.003.2007
http://dx.doi.org/10.3389/neuro.01.009.2008
http://dx.doi.org/10.3389/fnhum.2011.00106
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Music and the auditory brain: where is the connection?
	Music and the auditory system
	Sounds and the auditory brain
	Organization and the auditory brain
	So what?
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


