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What determines the laterality of activation in motor cortex for words whose meaning
is related to bodily actions? It has been suggested that the neuronal representation of
the meaning of action-words is shaped by individual experience. However, core language
functions are left-lateralized in the majority of both right- and left-handers. It is still an
open question to what degree connections between left-hemispheric core language areas
and right-hemispheric motor areas can play a role in semantics. We investigated later-
ality of brain activation using fMRI in right- and left-handed participants in response to
visually presented hand-related action-words, namely uni- and bi-manual actions (such as
“throw” and “clap”).These stimulus groups were matched with respect to general (hand-)
action-relatedness, but differed with respect to whether they are usually performed with
the dominant hand or both hands. We may expect generally more left-hemispheric motor
cortex activation for hand-related words in both handedness groups, with possibly more
bilateral activation for left-handers compared to right-handers. In our study, both participant
groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups
also showed a left-lateralized activation pattern to uni-manual words. We argue that this
reflects the effect of left-hemispheric language dominance on the formation of semantic
brain circuits on the basis of Hebbian correlation learning.
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INTRODUCTION
The question of how our experience with the world shapes the
representation of concepts and meaning in the human mind and
brain, or how semantic knowledge is “embodied,” is a matter of
continuous intense debate (Harnad, 1990; Barsalou, 1999; Wil-
son, 2002). In neuroscience, this debate has led to the related
question of whether, and how, perceptual and motor areas of the
brain activate during, and contribute to, semantic and conceptual
processing. Some authors have made the strong claim that these
perceptuo-motor areas are essential elements of semantic repre-
sentations (Barsalou, 1999; Pulvermüller, 1999; Kiefer and Spitzer,
2001; Glenberg and Kaschak, 2002; Kiefer et al., 2008; Kiefer and
Pulvermuller, 2011). It has been suggested that semantic repre-
sentations are stored in widely distributed brain networks, whose
topographies reflect the sensory and motor experiences associ-
ated with concepts during language acquisition (Hebb et al., 1971;
Braitenberg and Pulvermüller, 1992). Although a number of stud-
ies have shown by now that perceptuo-motor systems are activated
during the retrieval of semantic information, the influence of indi-
vidual experience and the type of sensorimotor experience on
these distributed networks is not yet fully understood.

Several studies have already shown that parts of the motor sys-
tem are involved in conceptual processing for objects and words
(Decety and Grezes, 1999; Fadiga and Craighero, 2004; Pulver-
müller, 2005; Martin, 2007; Hauk et al., 2008b; Cattaneo and
Rizzolatti, 2009). Furthermore, there is growing evidence that
experience with actions, for example in basketball players, ice
hockey players, or dancers, shapes the way we understand actions

performed by others (Calvo-Merino et al., 2006; Cross et al., 2006;
Kiefer et al., 2007; Weisberg et al., 2007; Aglioti et al., 2008; Rocca
et al., 2008; Willems and Hagoort, 2009; Hoenig et al., 2011) and
language comprehension as well (Beilock et al., 2008; Lyons et al.,
2010). The effect of experience on word semantics is less clear.
Compelling evidence in favor of embodied semantic representa-
tions stems from experiments on action-words referring to actions
of different effectors (“pick,” “kick,” “lick”; Pulvermüller et al.,
2001; Hauk et al., 2004; Pulvermuller et al., 2009). Although motor
activation during language comprehension has been described as
inconsistent (Postle et al., 2008), a recent review showed surprising
consistencies of semantic-somatotopic activations reported from
different labs for different languages (Kemmerer and Gonzalez-
Castillo, 2010). The model of “somatotopy of action-words” led
to precise functional–anatomical hypotheses that were tested with
most available neuroimaging techniques (Pulvermüller, 2005).

The lateralization of word-evoked activity in cortical motor
areas, and the factors that determine it, are still not clear. Con-
sistent results were obtained for activity in the left language-
dominant hemisphere in a range of fMRI studies looking at
words and sentences (Tettamanti et al., 2005; Aziz-Zadeh et al.,
2006; Ruschemeyer et al., 2007; Kemmerer et al., 2008; Boulenger
et al., 2009; Raposo et al., 2009). Also, a transcranial magnetic
stimulation (TMS) study on action-word processing reported
left-hemispheric facilitation of responses to hand-words after
hand–motor cortex stimulation in a lexical decision task, but only
after left- compared to right-hemispheric stimulation (Pulver-
müller et al., 2005a). Tomasino et al. (2008) found a similar effect
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in a mental imagery task, but not in silent reading. Activation to
action-words evoked in the right non-dominant hemisphere has
been less consistent across studies. Hauk et al. (2004) found bilat-
eral activation for all three action-word types. Tettamanti et al.
(2005) reported activation for action-related auditory sentences
only in the left hemisphere, except for an area in right middle tem-
poral cortex activated by hand-related sentences. Aziz-Zadeh et al.
(2006) found a somatotopic pattern for literal visually presented
action-phrases only in the left hemisphere. Similarly, Boulenger
et al. (2009) reported somatotopy for action-sentences only for the
left hemisphere, but for both literal and idiomatic sentences. In the
study of Raposo et al. (2009), hand-words in isolation and in lit-
eral action-sentences activated cortical areas in both hemispheres,
while leg-words activated the left hemisphere only in isolation,
but bilaterally in literal sentence context. Kemmerer et al. (2008)
investigated several sub-categories of action-verbs. They reported
left-lateralized activation in cortical motor areas for “speaking
verbs” and “change-of-state” verbs, the categories “running verbs,”
“hitting verbs,” and “cutting verbs” produced bilateral activation.
Ruschemeyer et al. (2007) found activation for hand-related words
along (post/pre)central gyrus not only in the left hemisphere, but
also in right postcentral gyrus. Electrophysiological studies show
similar inconsistencies. The ERP studies of Pulvermüller et al.
(2001) and Hauk and Pulvermüller (2004) suggested bilateral acti-
vation of motor areas. However, using TMS Pulvermüller et al.
(2005a) found effects on hand- and leg-word processing only in
the left hemisphere, and leg- and face-word-specific activation was
localized to the left hemisphere using magnetoencephalography
(Pulvermüller et al., 2005b).

Two factors are of particular interest with respect to the lateral-
ization of motor cortex activation in action-word comprehension:
(1) General language dominance, i.e., the fact than in most left-
and right-handers core language functions are located in the left
cerebral hemisphere (e.g., Knecht et al., 2000); and (2) indi-
vidual experience with the corresponding actions, i.e., the way
we perform them ourselves or observe them in our environ-
ment. A promising way to study these factors is to test types of
actions that are performed differently between different partici-
pant groups, such as hand-action-words in right- and left-handers.
In a recent study, Willems et al. (2009) presented words relating
to actions commonly performed with the dominant hand to left-
and right-handers, while measuring the BOLD response in a lex-
ical decision task. Based on their results, these authors suggest
that hand-related action-words activated premotor cortex (BA6)
more strongly in the left hemisphere for right-handers, and more
strongly in the right hemisphere for left-handers. This provides
evidence for embodiment of semantic processing, and supports
the view that embodied semantic representations of action-words
depend on the individual experiences with the corresponding
actions. However, peaks of activation were scattered across large
parts of area BA6, in particular in the right hemisphere. It is there-
fore not clear whether it reflected activity specific to hand-actions
in hand-motor cortex. A more fundamental question in this con-
text is whether semantic networks between core areas in the left
hemisphere and right motor cortex in isolation, i.e., not in com-
bination with its left-hemispheric counterpart, are plausible and
possible.

Associationist theories of word meaning assume that semantic
networks for action-words are formed during language develop-
ment by means of Hebbian principles (Hebb et al., 1971; Pul-
vermüller, 2005): Connections between core language areas and
the corresponding cortical motor areas are strengthened when the
child hears the action-word and either performs the action herself
or observes somebody else doing it. With respect to action execu-
tion and observation, there is ample evidence that both activate
similar cortical motor areas (see Rizzolatti and Craighero, 2004;
Cattaneo and Rizzolatti, 2009, for reviews), which is often inter-
preted as support for the theory that we map observed actions
onto our own motor repertoire. Lateralization of this activation
is commonly assumed to be contralateral with respect to the
effector, although lateralization has been reported to be smaller
for complex movements, in particular in left-handers (Solod-
kin et al., 2001). A similar pattern of results was obtained for
action observation in right- and left-handers (Rocca et al., 2008).
Both left- and right-handers activate bilateral motor areas dur-
ing bi-manual action execution (Solodkin et al., 2008). To our
knowledge, bilateral motor cortex activation for left- and right-
handers during observation of bi-manual movements has not been
directly demonstrated yet. However, in the light of the evidence for
uni-manual action observation, and in the context of the mirror
neuron framework, this is a reasonable assumption.

How does this translate to predictions for brain activation
patterns during action-word comprehension? If – as claimed by
the above-mentioned associationist theories – the meaning of
action-words is represented by strengthened connections between
core language areas and motor cortex, then we should expect
stronger connections in the language-dominant left hemisphere.
For uni-manual action-words in right-handers, this leads to a
straightforward prediction: Reading of these words should lead to
left-lateralized activation in motor cortex. For bi-manual words,
we predict that both right- and left-handers should produce more
bilateral activation than for uni-manual words. Language domi-
nance may still result in stronger activation in the left hemisphere,
but the fact that left and right motor cortices are co-activated dur-
ing bi-manual movements may result in an activation of the whole
cell assembly, even if only left motor cortex is directly connected
to core language areas. The most interesting case are uni-manual
action-words for left-handers: Do their neuronal representations
comprise cross-hemispheric connections between language and
motor areas? Correlated activation in left-hemispheric perisylvian
language areas and right-hemispheric hand-motor cortex might
be more difficult to map onto each other, because there are no
direct cortico-cortical links between non-homotopic areas of the
hemispheres. We therefore argue that it is likely that even for left-
handers, we will observe left-lateralized activation to uni-manual
action-words in motor cortex. This would support theories that
assume correlation learning as the basis for the formation of
semantic brain circuits.

MATERIALS AND METHODS
PARTICIPANTS
Data from 21 healthy native English speakers entered the
analysis, comprising two groups of 10 right-handers (RHds)
and 11 left-handers (LHds), respectively. They had normal or
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corrected-to-normal vision and no history of neurological or
psychiatric disorder. The mean age of all participants was 25.8
(RHds: 24; LHds: 27.4) years (SD 4.8; RHds: 3.8; LHds: 5.2).
Most of the participants were pre-selected from the CBU Volun-
teer Panel. Handedness was then determined by a 10-item version
of the Edinburgh handedness inventory (RHds: 87; LHds: −82;
Oldfield, 1971). Furthermore, handedness was confirmed in a rat-
ing experiment on the 55 uni-manual words that actually occurred
in the experiment (see below for details on stimuli). Participants
were asked “Which hand would you use to perform these actions?”
and could give ratings for each word on a scale from 1 (“always
left”) to 7 (“always right”; 4 for “both”). In this context, “both”
meant that the corresponding action had to be performed using
both hands at the same time. Right-handers had a mean rating of
5.7 (SD 0.4), and left-handers of 2.1 (SD 0.5). Participants were
paid for their participation. Ethical approval was obtained from
the Cambridge Local Research Ethics Committee.

MATERIALS
The word stimuli consisted of 110 hand-action-related English
words, which could be sub-divided into “uni-manual” (UM;
actions most commonly performed with the dominant hand
only, e.g., “throw,” n = 55), and “bi-manual” (BM; actions most
commonly performed with both hands, e.g., “clap,” n = 55), see
Table A1 in Appendix. The experiment also contained 55 leg-
related words (actions that are most commonly performed with
the legs, e.g., “walk”), 100 non-action-related words, and 100 pro-
nounceable pseudowords, which will not be the focus of this study.
165 strings of hash marks (e.g., “####”) were used as a low-level
baseline for the contrasts of interest. They were matched for length
to UM, BM, and leg-words. This resulted in a total of 530 stimuli.

UM and BM words were matched on several relevant psy-
cholinguistic variables by means of two-tailed two-sample t -tests,
obtained from the CELEX psycholinguistic data base [number of
letters, word form/lemma, and bi-/tri-gram frequencies, ortho-
graphic neighborhood size (“Coltheart’s N”)]. In a separate rating
study using a different group of right-handed participants, we
evaluated and matched our stimuli along the dimensions famil-
iarity, imageability, and action-relatedness [e.g., “How familiar is
this word to you, e.g., do you use or hear it frequently? (7 = very
familiar; 1 = not familiar at all)” or “Does this word remind you
of an action you could perform yourself? (1: does not remind me
of an action I can perform myself at all; 7: reminds me very much
of an action I can perform myself)”]. Two-tailed two-sample t -
tests did not reveal any significant differences between UM and
BM words for these variables. The length of UM and BM words
ranged from three to nine letters (average: 5.0 letters). “Manuality”

was assessed for UM and BM words in separate rating studies
before (with different right-handed participants) and after (with
the same participants) the fMRI experiment. Participants were
asked to answer the question “Which hand would you use to per-
form these actions?” on a 7-point scale (1: always left; 4: both;
7: always right). In this context, “both” referred to both hands
simultaneously. The first rating study established that UM words
were significantly more associated with the dominant hand than
BM words (5.4 vs. 4.6, p = 0.001). The post-experiment rating
revealed that this was the case for both right- (5.7 vs. 5.0) and
left-handers (2.1 vs. 2.9) separately, and that UM words differed
between right- and left-handers (5.7 vs. 2.1; all p < 0.001). Inter-
estingly, also BM words differed in their manuality ratings between
right- and left-handers (5.0 vs. 2.9, p < 0.001), indicating that BM
words had a similar bias toward the dominant hand for both par-
ticipant groups. This could be due to the fact that some bi-manual
actions involve a “dominant” and a “non-dominant” hand. For
example, opening a jar requires one rather passive hand holding
the jar, and one actively unscrewing the lid. This may be reflected
in biased ratings toward the dominant hand. The mean values for
the psycholinguistic variables used in the matching process are
presented in Table 1.

PROCEDURE
The main experiment was run in two blocks of approximately
11 min duration. Stimuli were presented in an event-related
design, with stimulus duration of 150 ms and a stimulus onset
asynchrony of 2.5 s. Participants were instructed to silently but
attentively read the stimuli. They were not informed about the
purpose of the experiment until after the fMRI session. Stimuli
were presented in a randomized order by means of DMDX soft-
ware and viewed via a back-projection screen located in front of
the scanner and a mirror placed on the head coil. Stimuli fell within
a visual angle of less than 4˚.

The language session was followed by a motor localizer session
of about 8 min duration. Participants were presented visual cues
(each for 20 s) indicating a particular body part (left finger, right
finger, left foot, right foot, tongue), and had to move the corre-
sponding body part (index finger in the case of fingers) for as long
as the cue was on the screen. They were instructed not to move any
other part of the body, in particular not the head. The cue “rest”
indicated that participants should not move at all. Each cue type
was presented four times in randomized order.

IMAGING METHODS
Participants were scanned in a 3-T Siemens (Munich, Ger-
many) Tim Trio magnetic resonance system using a head coil.

Table 1 | Mean values of psycholinguistic variables used in the stimulus matching process.

L Fam Img Act Arm Face Leg WF LF BF TF N MR ML

U 4.9 4.7 4.0 5.1 5.7 2.2 1.8 2.2 31 33568 3623 5.7 5.7 2.1

B 5.1 4.7 4.1 4.9 5.3 2.2 2.1 2.6 37 36240 4558 6.2 5.0 2.9

U, uni-manual words; B, bi-manual words; L, length in letters; Fam, Familiarity; Img, Imageability; Act/Arm/Face/Leg, Action/Arm/Face/Leg-relatedness; WF/LF/BF/TF,

word form/lemma/bigram/tri-gram frequency; N, orthographic neighborhood size (Coltheart’s N); MR/L: manuality for right/left-handers.

Fam, Img, Act, Arm, Face, Leg, MR, and ML were obtained in a subjective rating study; L, WF, LF, BF, TF, and N were obtained from CELEX database.
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Echo-planar imaging (EPI) sequence parameters were TR = 2 s,
TE = 30 ms, and flip angle = 78˚. The functional images con-
sisted of 32 slices covering the whole-brain (slice thickness 3 mm,
interslice distance 0.75 mm, in-plane resolution 3 mm × 3 mm).
Imaging data were processed using SPM5 software (Wellcome
Department of Imaging Neuroscience, London, UK1).

Images were corrected for slice timing and then realigned to
the first image using sinc interpolation. Any non-brain parts
were removed from the T1-weighted structural images by using
a surface-model approach (“skull-stripping”; Smith, 2002). The
EPI images were coregistered to these skull-stripped structural
T1 images by using a mutual information coregistration proce-
dure (Maes et al., 1997). The structural MRI was normalized to
the 152-subject T1 template of the Montreal Neurological Insti-
tute (MNI). The resulting transformation parameters were applied
to the coregistered EPI images. During the spatial normaliza-
tion process, images were resampled with a spatial resolution of
2 mm × 2 mm × 2 mm. Finally, all normalized images were spa-
tially smoothed with a 10-mm full-width half-maximum Gaussian
kernel. This sequence of pre-processing steps was automated using
software tools developed at the Cognition and Brain Sciences
Unit2.

Single-participant statistical contrasts were computed by using
the general linear model based on the canonical hemodynamic
response function (Friston et al., 1998). The hash mark condition
served as a low-level baseline condition for the contrasts of inter-
est. Low-frequency noise was removed with a high-pass filter (time
constant 128 s). Each stimulus type described above was modeled
as a separate event type, i.e., as separate columns of the design
matrix. Group data were analyzed with a random-effects analysis.
For visual display, Figures report results at p = 0.001, uncorrected.
This lenient threshold was chosen for display because we both
wanted to present data at the whole-brain level and we had spe-
cific hypotheses about the pattern of activation in motor cortex.
Stereotaxic coordinates for voxels with maximal z values within
activation clusters are reported in the MNI standard space (which
resembles very closely the standardized space of Talairach and
Tournoux, 1988; see Brett et al., 2002).

A similar sequence of processing steps was applied to the motor
localizer data, except that a high-pass filter had a time constant of
200 s, the duration of stimuli (20 s) was included in the creation of
the design matrix, and activation peaks were localized at a family
wise-error-corrected (FWE) significance threshold of 0.05.

ROI ANALYSIS
Regions of interest were defined and analyzed using the Mars-
bar utility in SPM5 (Brett et al., 2002). Parameter estimates were
extracted for peak voxels within areas of interest, as described
below. The data were smoothed using a Gaussian kernel of 10 mm
FWHM during pre-processing (see above), such that activation
values at individual voxels represent a weighted average of vox-
els within the neighborhood. We therefore did not consider it
necessary to apply ROIs in the shape of spheres or cubes.

1http://www.fil.ion.ucl.ac.uk/spm
2http://imaging.mrc-cbu.cam.ac.uk/imaging/AutomaticAnalysisManual

ROI coordinates were computed based on activation peaks for
uni-manual (UM) and bi-manual (BM) words in the left and right
hemisphere, respectively. Because this revealed several slightly dif-
ferent peak coordinates in the left hemisphere, the mean activation
was used for further analysis. In the left hemisphere, bi-manual
words produced pericentral activation at an FDR-corrected thresh-
old ([−50 −6 50] and [−54 −8 46]). Uni-manual words activated
an area close-by ([−54 −8 46] and sub-cluster [−48 −4 52]),
which was significant at an uncorrected level of p < 0.001 in the
whole-brain analysis, but at a family wise-error-corrected level of
p < 0.05 for a small volume correction within a sphere of 6 mm
radius around the first peak for bi-manual words. As a mean coor-
dinate for the pericentral area of the left hemisphere, this yielded
[−52 −6 48] (note rounding to nearest even number due to spatial
resampling during normalization). In right post/pre-central areas,
only bi-manual words produced marginally significant activation
at FDR-corrected values around the coordinate [60 −4 38], which
was used for analysis, while uni-manual words did not produce
any reliable right-hemispheric activation.

Parameter estimates were subjected to an ANOVA including the
three factors Laterality, Manuality, and Handedness (the latter as
a between-subjects factor). Specific comparisons were performed
using one-tailed paired or two-sample t -tests where appropriate.
The directed hypothesis that the difference between uni-manual
and bi-manual words should be smaller in the left compared to
the right hemisphere was tested by a one-tailed t -test for the
subtraction [Right(uni-manual–bi-manual) − Left(uni-manual–
bi-manual)].

RESULTS
WHOLE-BRAIN ANALYSES
The main intention behind this study was to test specific hypothe-
ses about ROIs in motor cortex. The whole-brain analysis only
served the purpose to define those ROIs. The hypotheses were
then tested using independent contrasts. Results for all hand-
related words against the baseline condition (hash marks), col-
lapsed across right- and left-handers, are presented in Figure 1 and
Table 2. Peak activations occurred mainly in the left hemisphere,
such as in left inferior temporal and fusiform, middle temporal,
and inferior frontal cortex. Activation was also present in left ante-
rior postcentral sulcus, close to the border to pre-central sulcus.
This peak was approximately 19 mm lateral and anterior to the
peak voxel in the right finger localizer task (Table 5), which is
consistent with similar results reported in previous studies: While
we observed a peak at [−50 −8 50], Ruschemeyer et al. (2007)
reported [−44 −15 59] and Tomasino et al. (2007) [−50 −24 56]
for their hand-related action-word categories. The only area sig-
nificantly activated in the right hemisphere was middle temporal
gyrus.

The results for uni-manual and bi-manual words are dis-
played separately in Figure 2 and Tables 3 and 4, again for
all participants combined. Both word groups activated areas in
perisylvian and inferior temporal cortex comparable to those pre-
sented in Figure 1, namely left fusiform and inferior frontal cortex,
as well as middle temporal cortices bilaterally. Importantly, while
both word groups activated left pericentral brain areas, only bi-
manual words produced additional right-lateralized activation.
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Table 2 | Montreal Neurological Institute coordinates and SPM5 group statistics for voxels that were most strongly activated by Hand-Words vs.

Hash Marks.

Label Cluster Voxel MNI

p(cor) k p(unc) p(FWE) p(FDR) p(unc) T x y z

L fusiform 0.001 649 0 0.001 0.001 0.000 8.87 −40 −38 −20

L inf temp 0.032 0.003 0.000 6.72 −48 −42 −16

L inf front (tri) 0.068 224 0.01 0.343 0.024 0.000 5.22 −50 30 4

L mid temp 0.001 626 0 0.378 0.027 0.000 5.15 −56 −66 6

0.417 0.03 0.000 5.07 −64 −30 2

0.502 0.035 0.000 4.92 −62 −38 6

L postcentral 0.474 83 0.095 0.601 0.039 0.000 4.76 −50 −8 50

L postcentral 0.812 38 0.247 0.696 0.041 0.000 4.61 −58 −18 22

L inf front (orb) 0.781 42 0.224 0.871 0.052 0.000 4.29 −38 32 −14

R mid temp 0.864 31 0.295 0.917 0.055 0.000 4.18 56 −30 2

Regions highlighted in bold were used in the ROI analysis.

FIGURE 1 | Results of the whole-brain analysis for the whole group of

subjects (right- and left-handers) and for the contrast Hand-Words

(uni-manual and bi-manual) vs. Hash Marks. Data are presented at a
threshold p < 0.001 uncorrected, cluster size > 20 voxels. MNI coordinates
for peak activations are presented inTable 1.

FIGURE 2 | Results of the whole-brain analysis for the whole group of

subjects (right- and left-handers) and for the contrasts Uni-Manual

Words (green) and Bi-Manual (red) Words vs. Hash Marks, respectively.

Data are presented at a threshold p < 0.001 uncorrected. MNI coordinates
for peak activations are presented inTables 2 and 3.

For uni-manual words, the smallest distance between an activation
peak for words and the peak voxel for right finger movements was
23 mm. For bi-manual words, this minimal distance was 20 mm
in the left and 29 mm in the right hemisphere. In all cases, word-
related activation was localized lateral and anterior to the localizer
activation. It should also be noted that activations for the local-
izer movements was widespread even at conservative statistical

thresholds (cluster sizes of ∼2200 at 0.05 FWE corrected, see
Table 5).

ROI ANALYSES
Figure 3 presents parameter estimates for peak voxels in left and
right postcentral gyrus, at mean coordinates of activation peaks
obtained for uni-manual and bi-manual words.

In a first step, we attempted to replicate previous results by
Willems et al. (2010). We therefore contrasted activation to uni-
manual words between left and right-handers in LPC and RPC,
respectively. For uni-manual words, we predicted larger activa-
tion for right-handers compared to left-handers in LPC, and
the reverse for RPC. The former prediction was partly sup-
ported by a difference in LPC between left- and right-handers
[t (19) = 1.59, p = 0.064], while the difference in RPC was non-
significant [t (19) = 0.80, p > 0.2]. The difference between left and
right-hemispheric peri-central ROIs (left > right) was marginally
significant for uni-manual words in right-handers (p = 0.076), but
not for left-handers (p = 0.11).

Furthermore, we investigated the effects of handedness and
manuality of action-words in more detail using a more complex
ANOVA design. The ANOVA including the three factors Lateral-
ity, Manuality, and Handedness revealed a marginally significant
interaction Laterality-by-Manuality [F(1,19) = 3.22, p = 0.089].
Interactions including the between-subject factor Handedness
did not reach significance [F(1,19) < 1.2]. We therefore tested
hypotheses regarding uni- and bi-manual words on data com-
bined across left- and right-handers. The directed hypothesis that
the difference between uni-manual and bi-manual words should
be smaller in the left compared to the right hemisphere was con-
firmed [t (20) = 1.86, p < 0.05]. The difference between left and
right-hemispheric ROI activations (left > right) was significant
only for uni-manual words [t (20) = 2.41, p < 0.05], but not for bi-
manual words [t (20) = 1.38, p = 0.18]. Note that the interaction
with Handedness was not significant, and that the analysis for
individual groups has lower statistical power than for the over-
all group. Both ROIs showed activation significantly larger than
zero for bi-manual words, as well as for uni-manual words in LPC
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Table 3 | Montreal Neurological Institute coordinates and SPM5 group statistics for voxels that were most strongly activated by Uni-manual

Words vs. Hash Marks.

Label Cluster Voxel MNI

p(cor) k p(unc) p(FWE) p(FDR) p(unc) T x y z

L fusiform 0.01 964 0.001 0.001 0.001 0.000 8.71 −40 −38 −20

L mid temp 0.99 0.167 0.000 3.78 −52 −62 6

L inf front (tri) 0.175 454 0.011 0.046 0.005 0.000 6.48 −50 32 4

1 0.282 0.000 3.34 −40 32 −12

L mid temp 0.495 277 0.039 0.755 0.067 0.000 4.5 −66 −38 6

R sup temp 1 33 0.455 0.966 0.131 0.000 3.97 44 −40 −18

R mid temp 0.998 52 0.344 0.988 0.165 0.001 3.8 56 −30 2

L Suprmarg 0.996 59 0.313 0.996 0.193 0.001 3.67 −58 −40 26

L postcent 1 21 0.558 1 0.251 0.001 3.45 −54 −8 46

L inf front (op) 1 22 0.548 1 0.342 0.003 3.15 −40 4 24

Regions highlighted in bold were used in the ROI analysis.

Table 4 | Montreal Neurological Institute coordinates and SPM5 group statistics for voxels that were most strongly activated by Bi-manual

Words vs. Hash Marks.

Label Cluster Voxel MNI

p(cor) k p(unc) p(FWE) p(FDR) p(unc) T x y z

L fusiform 0 681 0 0.003 0.004 0.000 8.28 −36 −38 −22

L mid temp 0.375 0.036 0.000 5.18 −48 −44 −16

L fusiform 0.657 0.044 0.000 4.71 −48 −54 −20

L mid temp 0.001 606 0 0.171 0.02 0.000 5.71 −56 −62 6

0.445 0.041 0.000 5.05 −62 −50 6

0.614 0.044 0.000 4.77 −60 −40 10

L parahipp 0.4 93 0.072 0.56 0.044 0.000 4.86 −14 −24 −16

L postcent 0.754 45 0.197 0.784 0.047 0.000 4.5 −50 −6 50

0.935 0.058 0.000 4.15 −56 −6 40

L inf temp 0.851 33 0.267 0.914 0.054 0.000 4.22 −42 −12 −22

L hippocam 0.99 0.078 0.000 3.83 −36 −14 −16

L inf front orb 0.828 36 0.247 0.946 0.059 0.000 4.11 −36 34 −12

R postcent 0.986 8 0.598 0.996 0.085 0.001 3.72 60 −4 38

L inf front tri 0.97 13 0.492 0.996 0.086 0.001 3.71 −46 30 12

Regions highlighted in bold were used in the ROI analysis.

Table 5 | Montreal Neurological Institute coordinates and SPM5 statistics for most strongly activated voxels in pre-central gyrus and

supplementary motor area to left and right finger movements during the motor localizer scan.

Cluster Voxel MNI

Label p(cor) k p(unc) p(FWE) p(FDR) T x y z

Left finger R precent 0.000 2363 0.000 0.000 0.000 14.36 44 −14 60

0.000 0.000 11.48 34 −16 68

R SMA 0.000 609 0.000 0.000 0.000 10.44 8 −4 54

Right finger L precent 0.000 2229 0.000 0.000 0.000 12.34 −38 −20 58

0.000 0.000 11.88 −28 −16 70

L SMA 0.000 0.000 9.39 −4 −6 56
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FIGURE 3 | Parameter estimates (arbitrary units) for peak voxels in left

(LPC) and right (RPC) pericentral cortex, for all subjects (uni-manual and

bi-manual words separately; left) and for left- and right-handers

separately (uni-manual words only; right). The difference marked by the
solid bracket was significant (p < 0.05), the one marked by the dashed bracket
approached significance (p < 0.1).

[all t (20) > 3.3, p < 0.01], but not for uni-manual words in RPC
[t (20) = 0.8, p > 0.4].

DISCUSSION
We investigated to what degree lateralization of activation in
motor cortex during action-word reading is determined by indi-
vidual experience and language dominance. We presented right-
and left-handed participants with words referring to uni-manual
(“throw”) and bi-manual (“clap”) actions in a silent reading par-
adigm, and analyzed the BOLD signal with respect to laterality
in motor/premotor cortex. For bi-manual words, both partici-
pant groups activated motor cortex bilaterally. Importantly, both
groups also showed the same left-lateralized activation pattern to
uni-manual words. We argue that this reflects the effect of left-
hemispheric language dominance on the formation of semantic
brain circuits on the basis of Hebbian correlation learning.

Motor cortex activation in response to action-words and a
significant difference between uni-manual and bi-manual action-
words are in line with previous studies on action observation,
which have shown that action representations involve the motor
system and are shaped by individual experience (Calvo-Merino
et al., 2006; Cross et al., 2006; Aglioti et al., 2008; Beilock et al., 2008;
Rocca et al., 2008; Willems and Hagoort, 2009; Lyons et al., 2010).
We have extended the evidence to word semantics, employing two
very specific word categories and participant groups. While in pre-
vious studies brain activation distinguished between words refer-
ring to different effectors (hand, face, leg; Hauk et al., 2004; Tetta-
manti et al., 2005; Aziz-Zadeh et al., 2006; Boulenger et al., 2009),
the present study extends these findings to more specific sub-
groups of action-words for the same effector type, namely uni- and
bi-manual action-words. This further confirms that aspects of the
meaning of action-words are reflected in activation of the motor
system (Pulvermüller, 2005). Previously, it has been argued that
cell assemblies representing action-semantics are formed when
children simultaneously perform an action and hear the word
referring to it (e.g., Pulvermüller, 1999). Recent fMRI data have
shown that motor activation to action-words already occurs dur-
ing early development (James and Maouene, 2009). A more recent
study suggests that this motor activation in children is present for

words associated with previously observed as well as performed
actions, although the latter produced larger activation than the
former (James and Swain, 2011). Children were tested shortly after
the learning phase, and thus it is as yet unclear how memory con-
solidation may affect these sensory–motor activation patterns. The
investigation of semantic brain networks in the developing brain
promises to be an exciting research area in the future.

The activation peaks for uni- and bi-manual action-words
around the central sulcus were classified as “postcentral” by our
anatomical labeling system (AAL; Tzourio-Mazoyer et al., 2002).
However, the activation extended into both post- and pre-central
sulcus, and the peaks were about 2 cm anterior–lateral to those
obtained in the motor localizer scan for finger movements. This
may reflect the fact that most actions are usually accompanied by
somatosensory experiences, which are also part of their seman-
tic representations. Similarly, the movements performed by our
participants during the localizer scans probably also evoked brain
activation in somatosensory areas, which may have shifted acti-
vation peaks to more posterior locations. A similar activation
pattern has been observed in previous studies (Hauk et al., 2004;
Boulenger et al., 2009). Furthermore, different types of action-
words (e.g., “hitting” and “cutting” verbs) have been reported to
activate different parts of motor cortex (Kemmerer et al., 2008).
Small movements of the index finger, as used in our localizer
scans, are unlikely to be representative for all kinds of hand/arm
movements, and should only be considered as an approximate
landmark. A similar argument has been made in a previous study,
where face-word activation was anterior to tongue movement
activation (Hauk et al., 2004). Future studies should investigate
the variability of action-word activation across word types and
participant groups in more detail.

It is a general shortcoming of fMRI data that they cannot distin-
guish between different processing stages, such as early semantic
processing and post-access mental imagery, due to their low tem-
poral resolution. A recent fMRI study has demonstrated that
action-words in a lexical decision task produce activation patterns
in motor areas that are non-overlapping with activation patterns
in a mental imagery task (Willems et al., 2010). This demonstrates
that motor areas may play different roles in imagery and semantics,
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and it implies that motor cortex activation in non-imagery tasks
cannot be fully explained as reflecting imagery alone. Further fMRI
studies have explicitly addressed the issue of mental imagery in
fMRI designs, e.g., using priming (Wheatley et al., 2005; Gold et al.,
2006) and category-specific word-frequency effects (Hauk et al.,
2008a). The most direct way to disentangle early and late semantic
and imagery processes is to use fast electrophysiological methods
such as EEG and MEG (Hauk and Pulvermüller, 2004; Hauk et al.,
2008b; Kiefer et al., 2008; Amsel, 2011). This research has shown
that motor system activation to action-words emerges as early as
the earliest semantically related brain responses reported so far,
thus arguing against a post-understanding, imagery role of such
activity (for discussion, see Pulvermuller and Fadiga, 2010).

We could only partly confirm previous results reporting differ-
ential activation to uni-manual action-words in left- and right-
handers (Willems et al., 2010): In right-handers, activation in left
motor regions to uni-manual words was stronger compared to left-
handers. This result supports the idea that the way we perform
actions ourselves affects the neuronal representation of action-
words (Willems et al., 2009). However, the reverse effect in the right
hemisphere did not reach significance in the present study. We
would like to point out that we here contrasted two types of action-
words that were matched with respect to general action-relatedness
as well as hand-action-relatedness. We also used a passive reading
task, which did not require any motor response or encourage our
participants to engage in mental imagery or focus their atten-
tion on action-related aspects of our stimuli. We therefore suggest
that the small differences we observed between left- and right-
handers are due to different lateralization patterns during learning,
when subjects use and perceive words during movement execution,

action observation, or action imagery (Solodkin et al., 2001;
Kloppel et al., 2007; Rocca et al., 2008). Whereas the predominating
left-hemispheric activation in perisylvian language areas together
with left-hemispheric motor systems activation in right-handers
can be mapped by way of strong neuroanatomical links between
the language and the motor systems of the left hemisphere, the
predominantly right-hemispheric hand-motor activations in left-
handers and their co-occurring predominantly left-perisylvian
language activations are more difficult to map by way of cortico-
cortical connectivity, as neuroanatomical links between these non-
homotopic motor regions in the hemispheres do not exist. This
laterality difference explains the strong uni-manual action-word
response in right-handers and the comparatively weak one seen in
left-handers and is also consistent with the hemisphere main effect
observed across groups. Therefore, we submit that the difference
in lateralization between uni-manual and bi-manual words, across
participant groups, may reflect the joint effect of language domi-
nance on the formation of cell assemblies between core language
areas and the motor system (Pulvermuller and Fadiga, 2010) and
that of correlation of neuronal activity within vs. between cortical
hemispheres.
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Hauk and Pulvermüller Action-words in left- and right-handers

APPENDIX

Table A1 | Uni- and bi-manual action-words used in the present study.

Bi-manual Uni-manual

Assemble Anoint

Bind Carve

Blot Catch

Build Clinch

Bury Clobber

Capture Crush

Caress Cut

Carry Dab

Clap Dial

Collect Dig

Compose Dissect

Crochet Fasten

Cuddle Fiddle

Cultivate Fix

Dunk Flick

Fetch Fling

Fold Fondle

Frisk Forge

Fumble Gouge

Gather Grab

Grapple Grate

Hang Grind

Heave Grope

Hoist Hack

Hug Hold

Knead Inscribe

Knit Jab

Lift Mix

Mangle Paint

Mend Peel

Mop Pluck

Mow Pour

Pass Prod

Pat Prune

Pinch Rattle

Rake Scoop

Roll Scrape

Scrunch Scratch

Sculpt Sew

Seize Shave

Shoo Shear

Shut Shove

Snap Skim

Squeeze Slap

Strangle Smudge

Swat Snatch

Sweep Spread

Switch Stir

Tickle Strum

Tinker Tug

Twiddle Tweak

Bi-manual Uni-manual

Wash Whittle

Weave Wipe

Wrap Wrench

Wring Yank
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