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Numerical cognition is essential to many 
aspects of life and arithmetic abilities pre-
dict academic achievements better than 
reading (Estrada et al., 2004). Accordingly, 
it is important to understand the building 
blocks of numerical cognition, the neural 
tissue involved, and the developmental tra-
jectories. In the last two decades research has 
made impressive strides forward in study-
ing numerical cognition and brain mecha-
nisms involved in arithmetic. This advance 
was marked by suggestions of a numerical 
core system that can be characterized as 
a set of intuitions for quantities innately 
available to humans (Brannon et al., 2006) 
and animals (Cantlon and Brannon, 2007). 
We suggest that another system, evolved 
to perceive and evaluate non-countable 
dimensions like size or amount of substance 
may be important for the evolution of the 
numerical system and numerical abilities. 
The current opinion article examines this 
idea and the possible interplay between, on 
the one hand perception and evaluation of 
continuous dimensions and, on the other, 
the numerical system.

NeurocogNitive basis for 
quaNtificatioN
Several behavioral effects have been well 
documented in the field of numerical 
cognition. Amongst them are: subitizing, 
counting, and the distance effect. The first 
and second refer to the processes involved 
when participants are asked to enumerate 
– report the number of items in an array. 
Here, performance is best described as a 
biphasic graph: their reaction time (RT) 
rises slowly, between 40 and 100 ms per 
item, up to four items, and then rises steeply 
at a rate of 250–350 ms per item (Jevons, 
1871; Trick and Pylyshyn, 1994). It seems 
that four items (or less) can be grasped 
almost simultaneously with no effort; this 
is termed subitizing (Kaufman et al., 1949). 
In contrast, for five to nine items, partici-
pants are engaged in an effortful counting 

process. The third behavioral effect, the 
distance effect, arises when participants 
are asked to compare two arrays of dots, or 
two numerals. RT decreases with increase in 
the distance between the to-be-compared 
stimuli. This numerical distance effect 
was first reported by Moyer and Landauer 
(1967) who suggested that people convert 
written or auditory numbers into analog 
magnitudes. The effect has been reported by 
many other researchers under various con-
ditions (Banks et al., 1982; Dehaene, 1989; 
Link, 1990; Tzelgov et al., 1992; Schwarz 
and Heinze, 1998). Further research showed 
these effects (e.g., subitizing, counting, and 
distance) can be found in infants and ani-
mals. For example, the numerical distance 
effect has been found in children (Sekuler 
and Mierkiewicz, 1977; Mussolin and Noël, 
2007; Holloway and Ansari, 2008; Landerl 
and Kölle, 2009), and in primates (Brannon, 
2003; Cantlon and Brannon, 2006). In addi-
tion, the various effects are compromised in 
developmental dyscalculia (DD) or math-
ematical learning disability (MLD) (for 
subitizing and counting: Koontz and Berch, 
1996; Geary et al., 1999; Landerl et al., 2004; 
Moeller et al., 2009, for the distance effect: 
Price et al., 2007; Rousselle and Noël, 2007; 
Mussolin et al., 2010). Finally, many reports 
have suggested involvement of the parietal 
lobes and in particular the intraparietal sul-
cus (IPS) in numerical cognition (Dehaene 
et al., 2003; Fias et al., 2003; Ansari et al., 
2006; Cohen Kadosh et al., 2007a).

This accumulated body of results led to a 
widely accepted view of an innate domain-
specific foundation for arithmetic. In par-
ticular, it has been claimed that there is a 
core numerical system, the basis of which is 
the ability to perceive and manipulate dis-
crete quantities (e.g., enumeration of dots) 
(Ansari, 2008; Dehaene, 2009; Butterworth, 
2010; Piazza, 2010). In addition, it has 
been conjectured that arithmetic disability 
involves a domain-specific deficit in the 
capacity to enumerate (Butterworth, 2010; 

Piazza, 2010). However, careful scrutiny of 
the literature suggests that to achieve a com-
prehensive picture of numerical cognition 
other factors need to be examined.

careful examiNatioN of core 
quaNtificatioN
A survey of the literature raises several 
interesting observations; (1) similar to 
their sensitivity to discrete quantities (e.g., 
enumeration of dots), infants show sensi-
tivity to non-countable continuous dimen-
sions like area (Brannon et al., 2006), line 
length (de Hevia and Spelke, 2010), and 
size (Lourenco and Longo, 2010). Mix et al. 
(2002) surveyed the literature on quantifi-
cation in infancy and early childhood and 
suggested that the literature provides no 
clear-cut evidence that infants use numbers 
to perform quantitative tasks. Moreover, 
they summarized that there is evidence 
that infants respond to amount of sub-
stance, rather than discrete numbers, in 
what had seemed to be numerical tasks. (2) 
Developmental trajectories similar to those 
with numbers (i.e., the size of the distance 
effect has been found to decrease over devel-
opmental time Sekuler and Mierkiewicz, 
1977) have been shown in other areas (see 
example for the Stroop effect reported by 
Schiller, 1966) and seem to rely on domain-
general rather than domain-specific abilities 
(Holloway and Ansari, 2008). During devel-
opment, language may provide a medium 
that bridges between core domain-specific 
systems (Munkholm, 2001; Spelke, 2003; 
Platt and Spelke, 2009). Last but not least, 
(3) numbers are intimately associated 
with non-countable dimensions (e.g., size, 
brightness). Numerical values and physi-
cal sizes interfere with one another – the 
size congruity effect (Henik and Tzelgov, 
1982; Tzelgov et al., 1992; Cohen Kadosh 
et al., 2008c) and the same apply to the 
relationship between numbers and bright-
ness (Cohen Kadosh and Henik, 2006). 
Importantly, Lourenco and Longo (2010) 
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basis of monocular distance cues, is auto-
matic and modulates numerical processing. 
It is possible that size is processed very early 
both in terms of visual feature extraction 
and in terms of timing in the visual stream. 
This information is fed forward to the pari-
etal lobes (and other brain structures) to 
serve other systems and goals (e.g., the dor-
sal brain system).

In a recent article, Piazza (2010) 
reviewed two early pre-verbal systems: 
the approximate number system (ANS) 
and the object tracking system (OTS). She 
suggests that children are equipped with 
both systems before symbolic learning 
takes place, each system is based on dedi-
cated neural circuits, and each undergoes 
a separate developmental trajectory. Piazza 
concludes that the ANS rather than the OTS 
is crucial for the development of numeri-
cal cognition. The ANS represents numbers 
in an approximate fashion. However, the 
ANS (and OTS) involves enumeration of 
discrete quantities and obeys Weber’s law. 
The current proposal focuses on the abil-
ity to evaluate and perceive continuous 
and non-countable properties. Needless 
to say, evaluation of continuous variables 
is approximate by definition. Similarly, 
Gebuis and Gevers (2011) recently sug-
gested that continuous visual properties, 
like area subtended by dot arrays, modulate 
performance that was earlier suggested to 
rely on numerosity.

a precursor of the Numerical 
system?
We suggest that routines and neural struc-
tures built for size judgments were made 
available to other systems (e.g., language), 
through evolution, due to the need to 
develop an exact numerical system. We 
have focused on the existence of non-
countable representations and the ability 
to perceive and evaluate sizes or amounts. 
We suggest that the ability to perceive and 
evaluate sizes might be a more primitive 
system that was exploited, throughout the 
years, as the basis for the development of 
the number sense and numerical abilities. 
Whether this system was “…hi-jacked to 
perform judgments along a new dimension 
(e.g., number)” (Cantlon et al., 2009), was 
shaped by cultural needs (Dehaene, 2005; 
Dehaene and Cohen, 2007), or became 
accessible to the numerical system through 
evolution (Rozin, 1976) is not clear. But 

with  numbers like brightness and height 
(Rubinsten and Henik, 2005). Hence, it is 
conceivable that the basis of DD or MLD or 
its precursor lies with a difficulty in process-
ing and evaluation of sizes or amounts. In 
a recent article, Bugden and Ansari (2011) 
examined the relationship between the size 
congruity effect and math performance 
in first and second grade children. They 
reported that size congruity did not pre-
dict math performance. This is not in line 
with our expectations. However, this might 
be due to the restriction of the range of the 
predictor (i.e., size congruity) or math 
performance or both. Alternatively, it is 
possible that size congruity might predict 
performance in older children because of 
its dependence on math proficiency.

Imaging data as well as behavioral results 
led to suggestions that “…countable and 
uncountable quantity…should be repre-
sented with the same kind of symbols (men-
tal magnitudes)…to determine behaviorally 
important decisions” (Gelman and Gallistel, 
2000), and that important computational 
demands of an action system (reaching, 
grasping) are the basis for the involve-
ment of the parietal lobes in comparative 
judgment tasks (Walsh, 2003). Namely, it 
has been suggested that the parietal lobes 
reflect computational demands of the brain 
dorsal system involved in perception for 
action (Goodale et al., 1991; Goodale, 2000). 
However, Cantlon et al. (2009) have recently 
suggested that the ability to evaluate magni-
tudes (e.g., size) might underlie the devel-
opment of the numerical system. This is in 
line with the general view suggested in the 
current proposal. Namely, the evolution of 
the dorsal brain system might have been 
dependent on the ability to compute size 
and size differences. A neurocognitive sys-
tem that handles this aspect of cognition 
(evaluation of size or amount) might have 
been instrumental for the development of 
the occipito-parietal dorsal brain system 
(perception for action). This same sys-
tem (evaluation of size or amount) helped 
develop or improve the numerical system.

Interestingly, recent works on perception 
of objects using various size and distance 
illusions suggested that perceived rather 
than retinal size modulates activation of 
early visual areas (i.e., v1; Murray et al., 
2006; Sterzer and Rees, 2006; Fang et al., 
2008). Moreover, according to Goldfarb 
and Tzelgov (2005), perceiving size, on the 

reported a size congruity effect in infants 
that were 9 months old. They presented 
convincing evidence for an intimate rela-
tionship between numerosity and size; 
infants who learned to expect an asso-
ciation between color and size of objects 
also expected to see a similar association 
between color and numerosity. Moreover, 
the size congruity effect is compromised 
in DD (Rubinsten and Henik, 2005, 2006).

This short review of the literature sug-
gests that other factors might contribute to 
the development of the number sense. In 
particular, it is possible that the need and 
ability to evaluate non-countable dimen-
sions (e.g., sizes or amounts) helped to 
develop or to improve the domain-specific 
“core knowledge” of arithmetic, which 
extracts numerosity of sets (Dehaene, 2009).

sizes, amouNts, aNd the 
Numerical system
The size congruity effect is depend-
ent on numerical proficiency. Irrelevant 
numerical values will not affect relevant 
physical-size judgments unless the par-
ticipant is proficient with the numerical 
system. Consequently, it was found that 
the size congruity effect develops with age 
(Rubinsten et al., 2002). In recent years this 
effect was employed to study proficiency 
with the number system and automaticity 
(i.e., processing even when not part of a 
task requirement) in numerical processing 
(Rubinsten et al., 2002; Cohen Kadosh et al., 
2007a; Szucs and Soltesz, 2007). Recent 
research indicates that it involves the IPS: 
It was found to be deficient in a patient 
who suffered from a brain injury in the IPS 
(Ashkenazi et al., 2008) and imaging stud-
ies (fMRI) have shown that it is correlated 
with IPS activation (Cohen Kadosh et al., 
2007a, 2008b; Szucs and Soltesz, 2007). 
Interestingly, other aspects of objects like 
brightness (Cohen Kadosh et al., 2008a), 
ordinal position, and time also involved 
the IPS (Simon et al., 2002; Walsh, 2003; 
Cantlon et al., 2009).

Those with DD show deficient process-
ing in size congruity (Rubinsten and Henik, 
2005, 2006) and temporary lesioning of 
the IPS by transcranial magnetic stimula-
tion (TMS) produce a DD-like pattern of 
the size congruity effect (Cohen Kadosh 
et al., 2007b). Importantly, DD subjects 
show deficiency not only in size congruity 
but also in other dimensions that interact 
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