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Neurocognitive studies have demonstrated that long-term music training enhances the
processing of unattended sounds. It is not clear, however, whether music training also
modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study
this phenomenon, we examined whether adult musicians display enhanced rapid neural
plasticity compared to non-musicians. More specifically, we compared the modulation of
P1, N1, and P2 responses to standard sounds between four unattended passive blocks.
Among the standard sounds, infrequently presented deviant sounds were presented (the
so-called oddball paradigm). In the middle of the experiment (after two blocks), an active
task was presented. Source analysis for event-related potentials (ERPs) showed that N1
and P2 source activation was selectively decreased in musicians after 15 min of passive
exposure to sounds and that P2 source activation was found to be re-enhanced after the
active task in musicians. Additionally, ERP analysis revealed that in both musicians and
non-musicians, P2 ERP amplitude was enhanced after 15 min of passive exposure but only
at the frontal electrodes. Furthermore, in musicians, the N1 ERP was enhanced after the
active discrimination task but only at the parietal electrodes. Musical training modulates
the rapid neural plasticity reflected in N1 and P2 source activation for unattended regular
standard sounds. Enhanced rapid plasticity of N1 and P2 is likely to reflect faster auditory
perceptual learning in musicians.
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INTRODUCTION
Several neurocognitive studies have demonstrated that long-term
musical training enhances sound processing (for reviews, see
Münte et al., 2002; Tervaniemi, 2009). Enhanced auditory per-
ception in musicians is likely to result from auditory perceptual
learning during several years of intensive, daily music playing.
Auditory perceptual learning refers to an improved ability of the
senses to discriminate differences in the attributes of stimuli. Neu-
rally, the improved discrimination can be observed as rapid plastic
changes in the responses to the learned stimuli. Auditory per-
ceptual learning can occur either through goal-oriented active
practice with feedback and repetition or through passive expo-
sure by encoding event probabilities inherent in the environment
(Goldstone, 1998; Gilbert et al., 2001) such as statistical rules
inherent in speech and in music.

Rapid plasticity refers to the capacity of the neural system to
change its functional properties within tens of minutes to opti-
mize the responsiveness for processing demands. Auditory event-
related potential (ERP) studies on rapid plasticity can provide an
objective evaluation of the effectiveness of learning and rehabilita-
tion on auditory neurocognition. Typical learning-related plastic
changes are enhanced ERP responses (i.e., facilitation) or dimin-
ished responses with or without the capacity to recover for the
auditory stimuli (i.e., habituation and adaptation, respectively).

Auditory ERP components, such as P1, N1, and P2, are ideal
for studying rapid plasticity because although they occur auto-
matically after the presentation of any sound, these components
are also sensitive to training and various top-down effects, such
as active attention and reinforcement (for reviews, see Purdy
et al., 2001; Seitz and Watanabe, 2005). For example, the audi-
tory evoked P1 response, which occurs 50–80 ms after the sound
onset and reflects thalamo-cortical processing and non-specific
gating mechanism, is modulated by the level of attention (Boop
et al., 1994). Although no rapid plasticity has been reported for P1,
long-term musical training modulates P1 (see next paragraph).
The N1 response, peaking at 80–110 ms after sound onset, reflects
acoustic feature detection, and change detection (Näätänen and
Picton, 1987). For sounds, N1 is enhanced during selective atten-
tion tasks (e.g., Hillyard et al., 1973; Woldorff and Hillyard, 1991)
and demonstrates rapid plasticity after 15–40 min of intensive
training (Brattico et al., 2003; Ross and Tremblay, 2009). The
P2 response, which is elicited at 160–200 ms after sound onset,
reflects further stimulus evaluation and classification, and is typ-
ically enhanced after a prolonged training (Reinke et al., 2003;
Bosnyak et al., 2004; Tremblay et al., 2010). Rapid plasticity in
the auditory system can occur without behavioral improvements
in discrimination accuracy or even precede them (e.g., Ross and
Tremblay, 2009). These findings reflect the automaticity of the
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neural system in extracting auditory events even without active
attention to sounds.

Although the effects of long-term music training on neural
auditory processing have been extensively studied (Münte et al.,
2002; Tervaniemi, 2009), little is known about the rapid (short-
term) plasticity in musicians. However, it is possible that the rapid
plasticity for sounds (as described previously for N1 and P2 in
non-musicians) could be enhanced in musicians. Interestingly, the
findings related to the impact of musical training in automatic
processing of sounds, as indicated by the P1, N1, and P2 ERP
components (based on traditional ERP analysis and ERP source
estimates), are not entirely clear. For instance, P1 has been reported
to show larger (P50m: Schneider et al., 2005) and smaller ampli-
tudes (Nikjeh et al., 2009) as well as different lateralizations (P1m:
Kuriki et al., 2006) in musicians compared to non-musicians. In
addition, evidence about N1 has been discrepant. In some stud-
ies, the N1 response was larger or faster in musicians (Baumann
et al., 2008; N1m: Kuriki et al., 2006; omission-related N1: Jongsma
et al., 2005) but not in others (N1m: Schneider et al., 2002; Lütken-
höner et al., 2006). Furthermore, the P2 response was larger in
musicians than in non-musicians during passive listening (Shahin
et al., 2003, 2005) and active discrimination (Jongsma et al., 2005;
P2m: Kuriki et al., 2006, see Baumann et al., 2008). Taken together,
it is not generally agreed upon whether the rapid plasticity of
the P1, N1, and P2 responses in musicians is enhanced compared
to non-musicians and, most importantly, whether passive expo-
sure to sounds is sufficient to produce rapid plasticity or is active
discrimination training necessary.

The main objective in the present study was to investigate the
interplay between the short- and long-term effects of auditory per-
ceptual learning. The effects of long-term musical training on the
rapid (short-term) plasticity of unattended standard sounds dur-
ing one session were evaluated. Standard (i.e., non-target) sounds
were regularly presented among irregularly presented deviant
sounds (so-called oddball paradigm). In our previous report based
on the current data set, we found that the rapid plasticity for unat-
tended, infrequently deviating sounds occurred faster in musicians
than in non-musicians (Seppänen et al., submitted). More specif-
ically, only musicians showed a significant habituation of MMN
source activation for deviant sounds before the active discrimi-
nation. We concluded that music training enhances the build-up
of preattentive prediction coding for deviating auditory events.
However, another parallel possibility is that musical expertise
enhances the rapid plasticity also for frequently presented (non-
deviating) standard sounds. Unattended processing of standard
sounds might have a crucial role for predicting auditory events
since the standard sounds help the auditory system to build rules
also for irregular events (e.g., Haenschel et al., 2005; Baldeweg,
2007; Bendixen et al., 2007). To explore this alternative, we exam-
ined whether the rapid plasticity of the P1, N1, and P2 responses
for the standard sounds differed between professional musicians
and non-musicians. This question was studied by comparing the
neural changes in P1, N1, and P2 elicitation for standard sounds
between experimental blocks when participants ignored auditory
stimuli during 1 h of passive exposure to sounds. Based on pre-
vious literature on musicians, our hypothesis was that the rapid
plasticity would be most pronounced for N1 and P2 specifically in

musicians. Further, generally enhanced sound processing in musi-
cians could be linked to an enhanced rapid plasticity for sounds,
such as greater N1 decrease and P2 enhancement between blocks
compared with non-musicians.

Our second question was whether active attention to sounds
is required to induce the rapid plasticity of the P1, N1, and P2
responses. This question was studied by comparing the neural
responses to standard sounds presented before and after the active
auditory discrimination task. Based on the previous findings, we
hypothesized that both musical training and active attention (dur-
ing the active task) modulate the rapid plasticity for standard
sounds. We found that musical training modulated the rapid plas-
ticity of N1 and P2 source activation but not that of P1. Active
attention also modulated the plasticity of N1 and P2.

MATERIALS AND METHODS
ETHICS STATEMENT
Before the experiment, participants gave a written informed con-
sent. The experiment was approved by the Ethics Committee of the
Department of Psychology, University of Helsinki, and conducted
in accordance with the Declaration of Helsinki.

PARTICIPANTS
The participants were musicians (n = 14, nine women,
five men, age range = 21–39, M age = 25 ± 5 SD) and non-
musicians (n = 16, nine women, seven men, age range = 19–31,
M age = 24 ± 3 SD). The musicians had started to play a musical
instrument at the age of 8 years on average (±3 SD) and had played
for a total of 17 years on average. None of the non-musicians had
any professional music training. However, most (12 out of 16 non-
musicians) had played a musical instrument over 1 year during
their first school years as a hobby. Four non-musicians reported
currently playing 0.5–1 h per week. Age did not differ significantly
between groups (t 28 = 0.377, P = 0.71). The musicians had grad-
uated from Finnish universities that provide professional musical
education or were active students in those institutions. The non-
musicians were students from the University of Helsinki, Finland.
The participants were recruited by announcements in the student
email lists and information boards. All participants had normal
hearing and normal or corrected vision. None of the participants
reported a history of neurological or psychiatric disorders. All
participants were Finnish speaking.

PROCEDURE
Experimental sessions were conducted during two separate days.
Here, we report the results for the EEG recording from the first day.
Participants were compensated for their voluntary participation
with movie tickets.

The individual hearing threshold was determined before the
recording by presenting a short excerpt of the experimental stim-
uli binaurally through headphones. During the recordings, the
stimuli were presented binaurally at 50 dB above the individual
threshold while the participant sat on a comfortable chair in an
electrically shielded chamber. Two passive listening blocks (15 min
each) were followed by Active Task 1 (5 min), which was followed
by another two passive listening blocks 3 and 4 and Active Task
2 (5 min) (see Figure 1). This design allowed us to examine the
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FIGURE 1 | EEG design and stimuli.

effects of passive exposure to sounds (i.e., neural changes between
blocks 1 and 2 before the active task) and the effects of active atten-
tion on ERP responses to unattended sounds (i.e., neural changes
between blocks presented before and after the active tasks). In the
passive blocks, participants were instructed to ignore the sounds
and concentrate on a self-selected muted movie with subtitles
while hearing the stimuli. In active conditions, participants were
instructed to press a button whenever they noticed a deviating
sound among the standard sounds. Before the first active task,
both groups had a self-paced short practice (not analyzed) with
examples of each deviant. During the active tasks, half of the par-
ticipants in the musician and the non-musician groups were told
that they would have a visual feedback after each correct answer.
There was no visual feedback to incorrect or missed answers. The
other halves of the groups were instructed to look at the fixa-
tion cross on the screen, but the sound stimuli and the task were
the same as with the feedback group. Because only responses to
standard (and not deviant) sounds are examined in the current
analysis, the feedback manipulation was not analyzed.

STIMULI
During both the passive and active conditions, an oddball par-
adigm was used. In the oddball paradigm, deviant sounds were
presented randomly among frequently presented standard sounds.
The frequency level of the stimuli (based on the standard) was
varied between the blocks to avoid neural fatigue and frequency
specific adaptation. Thus, in different blocks, standard sounds
were harmonically rich tones of 466.16, 493.88, or 523.25 Hz in
fundamental frequency. The sound was composed of two addi-
tional harmonic partials in proportions of 60, 30, and 15%.
Sounds were 150 ms in duration (with 10 ms rise and fall times).
Among the standard sounds, pitch, duration, and sound location
(interaural time and decibel difference), deviations of three dif-
ficulty levels were presented infrequently (not reported here, see
detailed description from Seppänen et al., submitted). Stimulus-
onset-asynchrony (SOA) was 400 ms in both passive and attentive
conditions. Only the passive condition and standard stimuli were
analyzed in this study.

All blocks started with five standard tones that were not ana-
lyzed because of the occurrence of the rapidly decaying orientation
response at the beginning of the stimulation. At least one standard

tone was presented after each deviant sound. In each passive block,
all of the deviant types and their difficulty levels were presented.
Seventy percent of all stimuli were standard sounds. Each deviant
type (pitch, duration, and location) was presented 10% of the
time. The total 10% was further allocated for three difficulty levels
(easy, medium, and difficult). In each passive block, 1,575 stan-
dard sounds were presented. In each active task, the stimuli and
SOA were the same as in the passive conditions, but the number
of trials for each deviant was different for every individual because
the number of deviant stimuli presented depended on how many
correct answers the participant could make. The better the partic-
ipant discriminated the deviating sounds, the more difficult the
active task gradually became. Approximately 525 standard sounds
were presented in each active task. The number of standard sounds
in the active tasks did not differ significantly between musicians
and non-musicians.

Sound files were created using Adobe Audition (Adobe Sys-
tems, Inc., USA) using a sample rate of 44 kHz as 16-bit samples.
Passive blocks with semi-randomized stimuli were generated with
Seqma (developed by Tuomas Teinonen, University of Helsinki).
Presentation (Neurobehavioral Systems, Inc., USA) software was
used for the stimulus presentation.

EEG ACQUISITION AND SIGNAL PROCESSING
The BioSemi ActiveTwo measurement system (BioSemi, The
Netherlands) with a 64-channel cap with active electrodes was
used. Additional electrodes were used to record the signal from the
mastoids behind the auricles, electro-oculography (EOG) below
the lower eyelid of the right eye, and EEG reference on the nose.

EEG data were down-sampled to 512 Hz offline from the online
sampling rate of 2,048 Hz before further processing in the BESA
v5.2 software (MEGIS Software GmbH, Germany). Large muscu-
lar artifacts were first visually checked and removed manually, and
channels with relatively large high-frequency noise compared with
the neighboring channels were interpolated. Automatic adaptive
artifact correction was conducted for the continuous data using
150 μV criteria for horizontal EOG and 250 μV for vertical EOG
(Berg and Scherg, 1994; Ille et al., 2002). Automatic correction uses
a principal component analysis (PCA) to separate spatial (topog-
raphy) components for the artifact and brain signal. Then, the
EEG is reconstructed by subtracting the artifact component of
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the original EEG. Further artifacts (such as blinks) that were not
corrected were excluded based on individual amplitude thresh-
olds (determined by the interactive BESA Artifact scanning tool)
after epoching. The data were divided into the epochs of 500 ms
starting 100 ms before sound onset (=pre-stimulus baseline) and
ending 400 ms after sound onset. Thereafter, the EEG was first
0.5 Hz high-pass filtered and this was then 35 Hz low-pass filtered.
On average, 3–7% of all standard sounds were rejected (musicians:
3–6%, 40–93 trials on average; non-musicians: 3–9%, 43–149 trials
on average) in the passive blocks. The number of rejected ERP tri-
als for the standard sounds was higher for non-musicians than for
musicians in the Passive Block 4 (P = 0.009), but in other blocks,
there were no significant differences. After preprocessing, deviant,
and standard stimuli were averaged separately for each partici-
pant, block, and stimulus. ERPs to deviant tones will be reported
elsewhere. Averaged files were converted into ASCII multiplexed
format for further analysis in Matlab R2008a (The MathWorks,
Inc., USA).

Using custom Matlab scripts, peak latencies for each standard
stimulus in each block were determined from grand average waves
for each group by visual inspection from Fz (P1) and Cz (N1,
P2). Peak latencies were determined between 40 and 90 ms for P1
(maximum) from Fz, 80–140 ms for N1 (minimum) from Cz, and
120–200 ms for P2 (maximum) from Cz. Mean amplitudes for the
standard were computed ±20 ms around the peak latency of the
grand average for each participant, block, and stimulus.

EEG SOURCE ANALYSIS
BESA Research v5.3 (BESA GmbH.) was used for source analysis
with preprocessed grand average data without further filtering.
The BESA realistic head model for adults was used. Regional
sources with three orientations were used to model a single source.
Regional sources are more realistic for source modeling because

these assume multiple active sites in the cortex instead of one
(dipole). However, computationally, they may give redundant
information in a case of basic sensory activation, which typically
requires only one orientation for accurate estimation of the gen-
erator. The four passive experimental blocks (Passive 1, 2, 3, and
4) were collapsed together to make robust models for the stan-
dard stimuli. Separate seed models were used for musicians and
non-musicians. Seed models were calculated for the 40-ms inter-
val, ±20 ms around the local maximum in the global field power
(see fitting intervals Table 1).

Each seed model consisted of four sources based on the previous
literature on P1, N1, and P2: one source in the left and right hemi-
sphere temporal area (near the auditory cortices) with symmetry
constraint and one in the left and right hemisphere frontal cortex
with symmetry constraint (e.g., Picton et al., 1999, for P1: Weisser
et al., 2001; Korzyukov et al., 2007) (for Talairach coordinates, see
Table 1; for the locations of the sources, see Figure 2). Frontal
sources were analyzed because we wanted to examine the effects
of active attention on sound processing, which typically activates
the frontal generators (Picton et al., 1999). As Figure 2 and Table 1
demonstrate, separate seed models for P1, N1, and P2 were rela-
tively similar (c.f. Yvert et al., 2005). We created separate models
for these components because previous studies have shown dif-
ferent localizations and functionality for these components (Hari
et al., 1987; Godey et al., 2001; Ross and Tremblay, 2009). The
exact localization of the brain activity was not the main goal here,
and, thus, regional sources were used to capture the brain activity
originating from a relatively wide area in the range of centimeters.

After calculating the seed models, individual source waveforms
(with peak latency and mean amplitude) and orientations (with
first orientation set at maximum) were computed with a Simplex
algorithm provided by BESA for each ERP and each passive block
separately with the fixed source locations of the corresponding

Table 1 | Fitting intervals (ms), residual variance (%), andTalairach coordinates for grand average seed source models for musicians and

non-musicians.

Modeled ERP Source Musicians Non-musicians

Fitting

interval

(ms)

Residual

variance

(%)

Talairach coordinates

(x, y, z) for the source

Fitting

interval

(ms)

Residual

variance

(%)

Talairach coordinates

(x, y, z) for the source

P1 Right temporal 50–90 2.925 x = 29.5, y = −28.9, z = 10.6 52–92 6.265 x = 42.6, y = −31.0, z = 31.6

Left temporal | | x = −29.5, y = −28.9, z = 10.6 | | x = −42.6, y = −31.0, z = 31.6

Right frontal | | x = 18.2, y = 50.8, z = 19.6 | | x = 16.6, y = 56.5, z = 27.5

Left frontal | | x = −18.2, y = 50.8, z = 19.6 | | x = −16.6, y = 56.5, z = 27.5

N1 Right temporal 97–137 2.987 x = 25.5, y = −17.2, z = 16.1 99–139 2.168 x = 38.8, y = −25.0, z = 27.8

Left temporal | | x = −25.5, y = −17.2, z = 16.1 | | x = −38.8, y = −25.0, z = 27.8

Right frontal | | x = 23.2, y = 61.0, z = 20.1 | | x = 26.1, y = 61.1, z = 25.0

Left frontal | | x = −23.2, y = 61.0, z = 20.1 | | x = −26.1, y = 61.1, z = 25.0

P2 Right temporal 132–172 3.017 x = 22.7, y = −17.2, z = 10.8 134–174 2.221 x = 38.6, y = −31.5, z = 30.5

Left temporal | | x = −22.7, y = −17.2, z = 10.8 | | x = −38.6, y = −31.5, z = 30.5

Right frontal | | x = 9.5, y = 64.6, z = 27.4 | | x = 24.7, y = 38.2, z = 25.3

Left frontal | | x = −9.5, y = 64.6, z = 27.4 | | x = −24.7, y = 38.2, z = 25.3

The Passive Blocks 1, 2, 3, and 4 have been collapsed to produce a single seed model for each group.
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Seed models for P1, N1 and P2 sources

Nonmusicians Musicians

P1 N1 P2 P1 N1 P2

a) 

b) 

c) 

a) 

b) 

c) 

FIGURE 2 | Seed models of musicians and non-musicians for P1, N1, and P2 BESA source analysis. Sources are presented from the (A) sagittal, (B)

vertical, and (C) coronal viewpoints.

seed model and by individually adjusting the latency window to
the maximum when the maximum was at a different time interval.

STATISTICAL DATA ANALYSIS
Repeated measures ANOVAs were used to analyze the ERP changes
for the standard sound. Amplitudes and latencies were analyzed
separately for each component (P1, N1, and P2) using the block
(Passive Blocks 1, 2, 3, and 4), frontality (frontal: F3, Fz, F4, fronto-
central: FC3, FCz, FC4, central: C3, Cz, C4, parietal: P3, Pz, P4) and
laterality (left hemisphere: F3,FC3,C3,P3,middle row: Fz,FCz,Cz,
Pz, right hemisphere: F4, FC4, C4, P4) as repeated measures and
music training (musician, non-musician) as the between-subjects
factor. Statistical analysis for mean (nAm) amplitudes and peak
latencies was conducted with same parameters as with ERPs except
that frontality and laterality were replaced by the factor source (left
frontal, right frontal, left temporal, right temporal). We used only
the maximum orientation for the statistical analysis of all sources.

To determine whether rapid plasticity between blocks was
related to the length of musical training or onset age of playing in
musicians, Pearson correlations were computed. All statistical tests
are reported with the alpha level of 0.05 as the significance crite-
rion. Post hoc tests for repeated measures ANOVAs are reported
with the Bonferroni-adjusted P-values for multiple comparisons
unless otherwise stated. All P-values for ANOVAs are reported
with Greenhouse–Geisser corrected values with uncorrected F-
values. All statistics were computed with the SPSS v16 (SPSS Inc.,
USA) statistical software.

RESULTS
Mean amplitudes and peak latencies for P1, N1, and P2 ERPs and
generators for the standard sounds between the four passive blocks
(see Tables A1–A3 in Appendix for supporting information) were
tested in separate repeated measures ANOVAs. Of specific interest
was the interaction between Block and Musical training, which
indicate enhanced rapid plasticity between experimental blocks
as a function of long-term musical training. We found that music

training modulated rapid neural plasticity in N1 and P2 generators
and N1 ERPs.

P1, N1, AND P2 SOURCE ANALYSIS
Rapid plasticity in source activation was observed in musicians for
N1 and P2 components but not for P1 (Figure 3, for a summary
of amplitudes and latencies, see Figure 5). Only in the musicians,
the N1 source activation decreased from Block 1 to 2 (P = 0.041)
(Block × Music training, F 3,84 = 4.41, P = 0.012, η2

p = 0.14). No
other significant differences between blocks were found. Addition-
ally, only in the musicians, the P2 source activation decreased from
Passive Block 1 to Block 2 (P = 0.024) but increased again from
Block 2 to 4 (P = 0.032) (Block × Music training, F 3,84 = 3.93,
P = 0.027, η2

p = 0.12). There were no significant differences from
Block 2 to 3 or from Block 3 to 4. Thus, passive exposure to
sounds produced rapid plasticity of the N1 and P2 sources for
standard sounds even before the active task, but the P2 source
activation recovered after the active auditory discrimination task
in musicians. No plastic effects were observed for source latencies.

In addition to these findings, we found that musicians had
stronger P1 source activation than non-musicians at both tempo-
ral sources (right temporal P = 0.001, left temporal P = 0.003)
but not at the frontal sources (Music training, F 1,28 = 11.31,
P = 0.002, η2

p = 0.29; Source × Music training, F 3,84 = 4.30,

P = 0.022,η2
p = 0.13). In addition, in musicians, both P1 temporal

sources were significantly stronger than both frontal sources (all
sources P < 0.001), whereas in non-musicians temporal sources
were stronger (right temporal P = 0.008, left temporal P = 0.007)
than the left frontal sources (not the right frontal). Further, musi-
cians had stronger N1 source activation at temporal sources
(right temporal P = 0.001, left temporal P = 0.004) but not at
the frontal sources compared to non-musicians (Music train-
ing, F 1,28 = 11.46, P = 0.002, η2

p = 0.29; Source × Music training,

F 3,84 = 9.48, P < 0.001, η2
p = 0.25). Musicians also had stronger

P2 activation than non-musicians, with significantly stronger

Frontiers in Human Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 43 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Seppänen et al. Music training enhances rapid plasticity

0 100 200 300

0

10

20

30

0 100 200 300

0

10

20

30

Non-musiciansMusicians
P1

0 100 200 3000 100 200 300

0

N1

0

Left frontal Left frontal

Left frontal Left frontal

Left frontal Left frontalRight frontal Right frontal

Right frontal Right frontal

Right frontal Right frontal

Left temporalLeft 
temporal

Left temporalLeft temporal

Left temporalLeft 
temporal

Right temporal Right temporal

Right temporal Right temporal

Right 
temporal

Right temporal

Source Waveforms for Standard Sounds   

Non-musiciansMusicians

P2
Non-musiciansMusicians

nAm

Time (msec)

Passive Block 1
Passive Block 2
Passive Block 3
Passive Block 4

Left
frontal 

Right
frontal 

Left
temporal

Right
temporal

0 100 200 300

0

10

20

30

0

10

20

30

nAm

Time (msec)

0 100 200 300

0

10

20

30

0

10

20

30

nAm

Time (msec)
0 100 200 300

Time (msec)

0 100 200 300
Time (msec)

Time (msec)

0 100 200 300 0 100 200 300

0 100 200 3000 100 200 300

P1
P1

N1 N1

P2
P2

FIGURE 3 | Source waveforms for P1, N1, and P2 for standard sounds.

P2 source activations at both temporal sources (both sources
P < 0.001) but not for either frontal source (Music training,

F 1,28 = 17.26, P < 0.001, η2
p = 0.38; Source × Music training,

F 3,84 = 24.60, P < 0.001, η2
p = 0.47).
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P1, N1, AND P2 ERPs
Figure 4 illustrates the grand average waves for the ERPs (see
also Figure 5). In respect to the frontal electrodes, the oppo-
site polarity of the responses in the mastoidal electrodes suggests
the responses were generated in the primary auditory cortex or
nearby. This conclusion was supported by the source analyses
(Figure 3). No plastic effects were observed for the P1 ERP. How-
ever, N1 changes between the passive blocks were modulated by
musical training (Block × Frontality × Laterality × Music train-
ing F 18,504 = 2.28, P = 0.022, η2

p = 0.08). Whereas musicians
had smaller (more positive) N1 in the left frontal (P = 0.047)
and central (P = 0.044) electrodes than non-musicians in the first
block, only in musicians was N1 enhanced (i.e., became more
negative) from Passive Block 1 to 3 but only in the parietal left
(P = 0.054) and right (P = 0.021) hemisphere electrodes. The P2
amplitude was found to be enhanced in both groups from Block
1 to 2 in most frontal electrodes (Block × Frontality, F 9,252 = 3.11,
P = 0.016,η2

p = 0.10, post hoc tests ns.). The P2 amplitude changes
also showed a quadratic pattern (enhancement between successive

passive blocks and decrease after the active task) in both groups in
a lateral comparison (Block × Laterality F 6,168 = 2.87, P = 0.024,
η2

p = 0.09; post hocs ns.). Unlike the P1, N1, and P2 source esti-
mates, there were no main effects of music training for either ERP
component.

DISCUSSION
In this study, we compared the rapid plasticity of P1, N1, and
P2 ERP responses and source activation of musicians and non-
musicians. Specifically, we examined the neural modulation for
regularly presented standard sounds among oddball stimuli dur-
ing 1 h of passive exposure to sounds. We found that professionally
trained musicians had enhanced rapid (within 15–30 min) plastic-
ity of N1 and P2 source activation to unattended standard sounds
during passive exposure. Since the effect was observed already
between first two blocks before the active task, active attention
to or discrimination of the sounds was not necessary for these
effects to emerge. However, in musicians N1 ERPs and P2 source
activation were also modulated by the active attention, enhancing
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these responses after the active task (from blocks before the active
task to blocks after the active task). No rapid plasticity was found
for P1.

Our first aim was to determine whether rapid plasticity of P1,
N1, and P2 responses differentiated musicians and non-musicians.
We found that musical training enhanced rapid plasticity of N1
and P2 responses. Source waveform analysis showed that N1 and
P2 source activation was decreased in the early phase of passive
auditory stimulation (i.e., between the first two 15 min blocks
before the active task) only in musicians. The decreasing N1 and
P2 source activation in musicians may indicate a fast learning
capacity in the auditory system to extract both sound features
and the rules for differentiating the standard sounds from deviant
sounds as well as predicting future auditory events even without
active attention. A previous study showed a rapid (within tens of
minutes) decrease for N1m and an increase of P2m for the same
repeated speech-sound stimuli in non-musicians (Ross and Trem-
blay, 2009). The reason why we did not find similar rapid plasticity
in non-musicians in this study might be because the oddball stim-
uli contain unattended standard sounds that have a particular
functional role of being a comparison template against the devi-
ating sounds (e.g., Bendixen et al., 2007). Instead of processing
the same repeated sound stimuli, the oddball stimuli may require
more processing resources from the auditory system because it

requires the passive extraction of the simple rules (e.g., proba-
bility, deviancy) within an oddball sequence (Korzyukov et al.,
2003; Winkler et al., 2003). Repetition effects for the standard
sounds may well indicate the prediction coding also for the devi-
ating sounds as well as perceptual learning (e.g., Haenschel et al.,
2005; Baldeweg, 2007; Bendixen et al., 2007). Our findings suggest
that this extraction process between standard sounds and deviant
sounds was pronounced in musicians.

Whereas our findings showed rapid plasticity of P2 sources only
in musicians where both the temporal and frontal sources were
statistically collapsed in the ERP analysis, both musicians and non-
musicians showed P2 ERP amplitude enhancement at the frontal
electrodes between the first two blocks. Additionally, we found
that P2 source activation (as well as P1 and N1 source activation)
was overall significantly stronger in the temporal sources in musi-
cians compared with non-musicians. Accordingly, a main effect
of musical training was not found for ERP responses except at
the beginning of the experiment with a differently lateralized and
smaller (more positive) N1 in musicians than non-musicians. P2
enhancement for ERP responses (and not for source waveforms)
may be caused by the summated scalp response from various other
P2 sources that were not modeled here (see Godey et al., 2001).
Hence, the ERP responses reflect the combined activity of all corti-
cal sources due to the volume conductance of the head tissues, and
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even though the unexplained variance in the source model was
within the acceptable limits, some of the smaller sources might
have been omitted from the source model. The separate effects
of musical expertise on the temporal and frontal sources could
also be one explanation (other than the different stimuli and para-
digms used) for the partly contradicting findings on the strength of
the basic ERP components in musicians, as found in the previous
studies (see Introduction).

Our second aim was to investigate whether the active attention
would modulate the rapid neural plasticity of P1, N1, or P2 dif-
ferentially for standard sounds in musicians and non-musicians.
When comparing the blocks before and after the active audi-
tory discrimination task, we found that N1 ERP amplitude was
enhanced (i.e., became more negative) at the parietal electrodes
after the active task only in musicians. In previous ERP stud-
ies, N1 has been shown to decrease for the non-attended sounds
during single-session training (Brattico et al., 2003; Alain and
Snyder, 2008; Ross and Tremblay, 2009), to remain unchanged
(Atienza et al., 2002), or to increase when no deviating sounds
were present (Clapp et al., 2005). Lateralized parietal enhance-
ment is not a typical N1 response (which shows a maximum at
vertex), but in general, changes in the parietal areas may indicate
the automatization of processing due to active attention (Pugh
et al., 1996).

The active attention task between the passive blocks also influ-
enced the P2 responses. After the initial decrement during the
passive blocks, the P2 source activation was enhanced after the
active task for unattended standard sounds in musicians. Our
results partly contrast Sheehan et al. (2005), where P2 was shown
to be increased in both the training and control groups (both non-
musicians), although behavioral discrimination was improved
only with training. They suggested that P2 would not reflect
perceptual learning, but, instead, inhibitory processes will be rein-
forced for non-relevant standard sounds. Additionally, in Alain
and Snyder (2008) where only non-musicians were studied, P2
ERP was shown to be enhanced between blocks within one ses-
sion. In contrast to these and our findings, Clapp et al. (2005)
did not find P2 changes after exposure to repeated sounds with-
out deviating sounds (and without a requirement of inhibiting
irrelevant sounds) nor in the oddball condition. Yet, it is possi-
ble that an increased inhibition for non-target, standard sounds
could indeed represent a mechanism for auditory perceptual
learning during the oddball paradigm and not just repetition
effects, as suggested by Sheehan et al. (2005). Our findings of
the recovery of P2 might reflect an increased inhibition to unat-
tended standard sounds. The suppression of unattended regular
standard sounds is important for the auditory system, which
optimizes the processing demands by constant active predicting.
This prediction coding is implemented through rapidly extract-
ing the rules for incoming auditory events, including whether
they are different or familiar and relevant or irrelevant. More-
over, simple repetition effects cannot explain the fact that neural
changes often precede or coincide with the behavioral improve-
ment in the discrimination of sounds (e.g., Ross and Tremblay,
2009).

Another explanation for the neural enhancements for the stan-
dard sounds in musicians after the active task could be more

frequent exposure (i.e., having more trials) to the most diffi-
cult deviant target trials during the active task. Active tasks were
adaptive, that is, the better participant could discriminate the
more difficult deviants. In a previous study, we found that musi-
cians discriminated deviating sounds in active tasks better than
non-musicians (Seppänen et al., 2012). There was, however, no
significant difference in the number of standard or deviant trials
in Active task 1, which was used as a probe for the active attention.
Furthermore, only non-musicians demonstrated an improvement
in the behavioral discrimination of difficult deviations, whereas
in musicians, the discrimination remained at the maximum level
(Seppänen et al., 2012). Based on these arguments, it is unlikely
that the present finding of the standard sound enhancement in
musicians would be caused by the more frequent exposure to
deviating sounds during the active task.

Taken together, the previous and current findings show that
P2 is prone to the effects of long-term auditory (musical) train-
ing and rapid plasticity. This is further supported by the fact
that the P2 generators were located in the secondary auditory
cortices where plasticity is considered high (Crowley and Col-
rain, 2004; Jääskeläinen et al., 2007). Additionally, our findings
of enhanced P2 plasticity were found for relatively simple sine
tone complexes, whereas previous studies have proposed that
enhanced P2 in musicians is especially pronounced for musical
timber (P2m for deviants during active discrimination: Kuriki
et al., 2006, P2 and P2m: Shahin et al., 2005). Enhanced P2
for unattended sounds in musicians might reflect not only the
timber but also enhanced attentional mechanisms, with better
inhibition occurring with standard sounds during the oddball
paradigm.

In addition to music training, it is possible that other factors,
such as genetic predispositions and musically enriched homes
in childhood, enhance cognitive skills, and auditory processing.
However, in a previous study, no evidence of pre-existing cognitive,
music, motor, or structural brain differences were found between
children starting instrumental training or control groups at the
pre-training phase (Norton et al., 2005). Furthermore, the length
of music training and the strength of neural processing for sounds
correlate positively in several neurocognitive studies on musicians
(Jäncke, 2009). Finally, in our previous study, we did not find sig-
nificant differences between musicians and non-musicians (with a
slightly larger sample) with standardized attention capacity tests,
although musicians had more variability in their attention task
performance (Seppänen et al., 2012).

CONCLUSION
In the present study, we have shown that professionally trained
musicians had enhanced rapid plasticity of N1 and P2 for unat-
tended standard sounds that were presented regularly among
irregularly presented deviant sounds. Furthermore, we found
that the rapid neural plasticity of N1 and P2 in the audi-
tory system did not require active attention or reinforcement
but had already occurred during unattended, passive exposure
to sounds. Enhanced rapid plasticity for unattended standard
sounds may indicate a faster capacity in the auditory system
to improve perceptual discrimination accuracy for both regu-
lar and irregular auditory events in musicians. Thus, intensive
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and long-term musical training seem to enhance encoding of the
comparison templates (which are standard sounds) rather than
the deviating sounds even when not attending to the sounds.
Present findings suggest that N1 and P2 could be used as indi-
cators for rapid neural plasticity, auditory perceptual learning
and long-term auditory training. Future studies should investi-
gate whether rapid plasticity in musicians expands beyond musi-
cally relevant sounds, such as faster learning of foreign language
phonemes.
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APPENDIX

Table A1 | P1, N1, and P2 source magnitude mean amplitudes (nAm) and SEs of the means (in parentheses) for the standard stimuli from

nose-referenced grand averages.

Group ERP component Source Passive condition

Block 1 Block 2 Block 3 Block 4

Musicians P1 Right temporal 21.10 (2.99) 21.83 (2.51) 19.96 (2.50) 20.95 (2.58)

Left temporal 23.85 (3.07) 19.81 (2.13) 21.70 (2.88) 21.78 (2.65)

Right frontal 15.19 (3.64) 10.13 (1.60) 8.33 (1.13) 10.52 (1.68)

Left temporal 12.22 (2.30) 12.37 (2.11) 10.86 (1.4) 13.55 (2.12)

N1 Right temporal 21.76 (2.25) 19.20 (2.20) 19.96 (2.33) 20.04 (2.29)

Left temporal 20.98 (2.35) 18.86 (2.63) 18.03 (2.17) 21.10 (2.19)

Right frontal 8.51 (1.78) 5.45 (0.87) 5.29 (0.88) 6.14 (0.88)

Left temporal 7.25 (1.02) 6.91 (1.03) 6.14 (1.00) 7.47 (0.84)

P2 Right temporal 25.59 (2.61) 22.05 (1.79) 21.49 (1.86) 23.74 (2.48)

Left temporal 25.07 (2.96) 20.62 (2.38) 23.29 (2.86) 23.95 (2.49)

Right frontal 10.91 (2.07) 7.96 (1.09) 6.56 (0.71) 9.18 (1.91)

Left temporal 10.76 (2.30) 8.17 (1.80) 6.91 (0.86) 9.70 (1.81)

Non-musicians P1 Right temporal 12.48 (1.33) 11.96 (0.95) 12.53 (1.06) 12.11 (0.99)

Left temporal 12.10 (1.54) 12.29 (1.27) 13.23 (1.17) 14.22 (1.45)

Right frontal 8.75 (1.19) 7.97 (0.72) 8.00 (0.78) 6.60 (0.58)

Left temporal 8.28 (1.60) 8.17 (1.12) 9.38 (1.16) 8.13 (0.80)

N1 Right temporal 10.55 (0.99) 11.53 (1.24) 11.44 (1.15) 11.97 (1.17)

Left temporal 11.56 (1.08) 12.41 (1.16) 12.90 (1.14) 12.93 (1.81)

Right frontal 5.54 (0.84) 5.74 (0.64) 5.05 (0.45) 4.40 (0.55)

Left temporal 5.43 (0.96) 5.78 (0.96) 6.00 (0.80) 5.64 (0.87)

P2 Right temporal 9.33 (1.05) 10.33 (1.12) 10.58 (1.03) 10.82 (0.96)

Left temporal 11.04 (1.43) 11.36 (1.38) 11.80 (1.38) 12.14 (1.23)

Right frontal 9.21 (1.62) 7.87 (0.73) 8.09 (0.64) 8.57 (0.62)

Left temporal 9.19 (1.61) 9.49 (1.43) 10.79 (1.35) 9.54 (1.01)
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Table A2 | P1, N1, and P2 source peak latencies (ms) and SEs of the means (in parentheses) for the standard stimuli from nose-referenced grand

averages.

Group ERP component Source Passive condition

Block 1 Block 2 Block 3 Block 4

Musicians P1 Right temporal 77 (3) 75 (3) 76 (2) 75 (3)

Left temporal 72 (3) 74 (2) 73 (3) 76 (3)

Right frontal 74 (3) 70 (3) 74 (3) 69 (4)

Left temporal 71 (4) 77 (3) 77 (3) 77 (3)

N1 Right temporal 117 (5) 112 (5) 113 (5) 112 (5)

Left temporal 118 (4) 112 (4) 118 (4) 116 (4)

Right frontal 112 (4) 120 (4) 110 (4) 112 (4)

Left temporal 113 (4) 119 (4) 112 (3) 120 (5)

P2 Right temporal 150 (3) 151 (2) 154 (3) 154 (3)

Left temporal 152 (3) 150 (3) 151 (3) 149 (3)

Right frontal 155 (3) 152 (3) 150 (3) 151 (3)

Left temporal 161 (3) 153 (4) 152 (4) 153 (3)

Non-musicians P1 Right temporal 73 (2) 75 (3) 75 (2) 75 (3)

Left temporal 77 (2) 75 (3) 75 (3) 77 (2)

Right frontal 76 (3) 76 (3) 76 (3) 70 (3)

Left temporal 71 (3) 74 (3) 71 (3) 76 (4)

N1 Right temporal 117 (4) 114 (5) 118 (5) 118 (5)

Left temporal 120 (5) 117 (4) 121 (4) 114 (5)

Right frontal 122 (4) 119 (4) 119 (4) 116 (4)

Left temporal 116 (4) 108 (4) 118 (4) 114 (4)

P2 Right temporal 154 (3) 154 (2) 155 (3) 156 (2)

Left temporal 153 (3) 153 (3) 153 (2) 152 (3)

Right frontal 156 (3) 154 (3) 155 (3) 158 (2)

Left temporal 154 (4) 155 (3) 156 (2) 154 (3)

Table A3 | P1, N1, and P2 event-related potential mean amplitudes (microvolt) and peak latencies (ms) and their SEs of the means (in

parentheses) for the standard stimuli from nose-referenced grand averages.

Group ERP component Block 1 Block 2 Block 3 Block 4

Musicians P1 Amplitude 2.04 (0.35) 1.77 (0.24) 1.51 (0.26) 1.77 (0.26)

Latency 65 (3) 69 (3) 67 (2) 66 (2)

N1 Amplitude 0.72 (0.23) 0.63 (0.26) 0.51 (0.35) 0.63 (0.32)

Latency 104 (7) 114 (7) 112 (7) 103 (7)

P2 Amplitude 1.23 (0.16) 1.36 (0.15) 1.16 (0.18) 1.38 (0.14)

Latency 152 (3) 151 (3) 153 (3) 154 (3)

Non-musicians P1 Amplitude 2.02 (0.27) 2.04 (0.34) 1.74 (0.35) 1.49 (0.33)

Latency 68 (2) 67 (2) 67 (3) 65 (2)

N1 Amplitude 0.15 (0.23) 0.26 (0.19) 0.32 (0.17) 0.28 (0.25)

Latency 89 (5) 104 (7) 108 (7) 109 (7)

P2 Amplitude 0.97 (0.23) 1.07 (0.21) 1.07 (0.19) 0.98 (0.20)

Latency 158 (3) 152 (3) 156 (2) 157 (3)
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