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Vision identifies objects rapidly and efficiently. In contrast, object recognition by touch is
much slower. Furthermore, haptics usually serially accumulates information from different
parts of objects, whereas vision typically processes object information in parallel. Is hap-
tic object identification slower simply due to sequential information acquisition and the
resulting memory load or due to more fundamental processing differences between the
senses? To compare the time course of visual and haptic object recognition, we slowed
visual processing using a novel, restricted viewing technique. In an electroencephalo-
graphic (EEG) experiment, participants discriminated familiar, nameable from unfamiliar,
unnamable objects both visually and haptically. Analyses focused on the evoked and total
fronto-central theta-band (5–7 Hz; a marker of working memory) and the occipital upper
alpha-band (10–12 Hz; a marker of perceptual processing) locked to the onset of classi-
fication. Decreases in total upper alpha-band activity for haptic identification of objects
indicate a likely processing role of multisensory extrastriate areas. Long-latency modula-
tions of alpha-band activity differentiated between familiar and unfamiliar objects in haptics
but not in vision. In contrast, theta-band activity showed a general increase over time for
the slowed-down visual recognition task only. We conclude that haptic object recognition
relies on common representations with vision but also that there are fundamental differ-
ences between the senses that do not merely arise from differences in their speed of
processing.
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INTRODUCTION
Visual and haptic object recognition display several striking sim-
ilarities. Behavioral evidence indicates that recognition in both
modalities can be affected by comparable changes in stimulus
input such as changes in orientation (Newell et al., 2001; Lacey
et al., 2007; Craddock and Lawson, 2008) or size (Craddock and
Lawson, 2009b). Furthermore, a multitude of studies have shown
overlap of the neural structures involved in visual and haptic object
recognition, with the lateral occipital complex (LOC; e.g., Deib-
ert et al., 1999; Amedi et al., 2001, 2002; James et al., 2002, 2007;
Sathian and Lacey, 2007; Miquee et al., 2008; Tal and Amedi, 2009)
and the intraparietal sulcus (Zhang et al., 2004; Stilla and Sathian,
2008) particularly involved. This has led to the development of
a multisensory model of object recognition (Lacey et al., 2009)
in which a modality-independent representation underpins visual
and haptic object recognition. Nevertheless, there are a number of
key differences between the two modalities that make comparisons
between them problematic, and, as yet, the time course of haptic
identification of objects in representational areas of the brain is
not understood.

Vision acquires information through multiple parallel channels
that provide information on luminance, color, motion, depth, and
other features from encountered scenes. These channels contribute
to fast and accurate detection and identification of objects in the

environment. Visually presented objects typically take around 1 s
to name (e.g., Martinovic et al., 2008; Craddock and Lawson,
2009b), while neural activity differentiates between objects even
earlier. For example, in an intracranial field potential study, Liu
et al. (2009) have shown that it is possible to decode if an object
belonged to one of five categories after approximately 100 ms.
In macaques, optimal object classification performance on the
basis of activity of inferotemporal (IT) neurons is reached around
125 ms after stimulus onset (Hung et al., 2005). Sugase et al. (1999)
have shown that finer discrimination processing of item identity
requires further time, taking about 50 ms longer.

In contrast to vision, haptics involves serial and discrete acqui-
sition of information from different parts of objects (Lederman
and Klatzky, 1987; Lakatos and Marks, 1999). Haptically presented
objects usually require several seconds of exploration before being
correctly named (e.g., Craddock and Lawson, 2008, 2009a). The
slowness of haptic object recognition may stem from fundamental
processing differences, but, alternatively, may be a by-product of
the slow, sequential acquisition of information through touch and
the resulting load on working memory. Grunwald et al. (1999)
investigated neural activity during the retention period between
the initial presentation and recall of novel haptic objects and
during the actual haptic exploration of these objects (Grunwald
et al., 2001) by measuring theta-band activity – slow frequency
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oscillatory activity (5–7 Hz) which can be observed in the human
electroencephalogram (EEG) and has been associated with seman-
tic retrieval (temporal sites; e.g., Bastiaansen et al., 2008), episodic
retrieval (fronto-central sites; for a review see Nyhus and Cur-
ran, 2010) and working memory processing (fronto-central sites;
e.g., Gevins et al., 1997). They found a correlation between the
exploration time of novel objects and levels of central, parietal
and parieto-temporal theta power, in line with the prediction that
working memory integrates stimuli during haptic exploration.

Alpha-band oscillations (8–12 Hz), which can be seen clearly
in spontaneous EEG during periods with no visual inputs (e.g.,
eyes closed), have long been considered to reflect cortical “idling”
(Berger, 1929; Adrian, 1947), but have more recently been related
to active inhibition of the visual cortex during ongoing cortical
processing (Jensen and Mazaheri, 2010). Prior to Jensen’s influen-
tial work on the alpha-band and gating by inhibition, Klimesch
and colleagues associated alpha-band oscillations with several
cognitive processes. Early work associated upper alpha-band (10–
12 Hz) desynchronization with searching of long-term memory
and retrieval of semantic information (Klimesch, 1999), while
more recent evidence suggests a broader role for upper alpha-
band activity (Klimesch et al., 2007). When participants must
withhold or control a response to a stimulus, there is an event-
related increase and subsequent decrease in alpha-band synchrony.
The initial increase in synchrony is interpreted as inhibitory sup-
pression of perceptual areas exerted by top-down processes; the
subsequent decrease reflects the gradual release of these areas
from inhibition. This pattern is typically observed during complex
cortical processes.

Klimesch and colleagues have extensively studied modulations
of upper alpha-band oscillations during the retention of infor-
mation in visual working memory (for a review, see Freunberger
et al., 2011). Sauseng et al. (2009) have shown that alpha-band
amplitude during the retention period systematically increases
with load and strongly correlates with individual working memory
capacity. Schack et al. (2005) found that alpha-band at right occip-
ital sites coupled in phase with frontal theta-band activity during
the retention period. This is further evidence of an integrative,
large-scale network that inhibits irrelevant visual processes and is
marked by alpha-band amplitude increases. This inhibition pre-
vents the visual processes from interfering with working memory
maintenance, which in turn is marked by theta-band amplitude
increases.

These EEG measures also correlate with evidence from fMRI:
Scheeringa et al. (2009) looked at patterns of theta and alpha-band
activity and blood oxygen level dependent (BOLD) response dur-
ing the retention period in a visual working memory task. Increases
in alpha-band power at posterior right sites were functionally
related to BOLD decreases in primary visual cortex and the poste-
rior part of the middle temporal gyrus, while frontal theta power
increases correlated with the medial prefrontal cortex, posterior
cingulate and left angular gyrus. Thus, examination of oscilla-
tions in the EEG signal during ongoing haptic object recognition
may reflect differences observed in previous fMRI comparisons of
visual and haptic object recognition. In fMRI, studies of the net-
works involved in haptic object recognition have already suggested
that different networks participate in the processing of familiar and

unfamiliar objects. Specifically, for familiar objects visual imagery
may be involved, since the degree of overlap and magnitude of
activation in some areas of the LOC is higher than during hap-
tic recognition of unfamiliar objects (Lacey et al., 2010). Effective
connectivity analyses suggest that there is greater use of top-down
mechanisms during haptic exploration of familiar objects, while
LOC activity during exploration of unfamiliar objects is largely
driven by bottom-up inputs (Deshpande et al., 2010).

An EEG study attempting to examine differences in the time
course of visual and haptic object recognition encounters sev-
eral difficulties. The main problem lies in their vastly different
speeds of processing and in their overall levels of EEG activity.
In order to be able to directly compare the neural markers of
haptic and visual object recognition it is helpful to slow down
visual processing to levels comparable to haptics. We developed
a novel, restricted viewing technique to slow visual processing
(Craddock et al., 2011; for a similar technique in face recognition,
see Dopjans et al., 2012). This technique was then employed in
an EEG experiment in which participants discriminated familiar,
nameable (e.g., a hammer or a cup) from unfamiliar, unnamable
objects both visually and haptically. Analyses focused on early (0–
500 ms) evoked and long-latency (500–2500 ms) total activity in
two bands: theta-band (5–7 Hz; a marker of working memory)
and upper alpha-band (10–12 Hz; a marker of complex percep-
tual processing) locked to the stimulus onset. First, we predicted
that there would be increases in total theta-band activity with time
in both modalities, indicating an increasing working memory load
as exploration continued (Grunwald et al., 1999). Second, we pre-
dicted that there would be decreases in alpha-band activity above
occipital cortices in both vision and haptics; such decreases have
been associated with complex perceptual processing (Klimesch
et al., 2007). We also predicted that there would be differences
between familiar and unfamiliar objects in total upper alpha-band
activity in haptics but not in vision, indicating the operation of
distinct perceptual processes in line with recent fMRI findings on
haptic object recognition (Lacey et al., 2010).

MATERIALS AND METHODS
PARTICIPANTS
Nineteen healthy participants with normal or corrected-to-normal
vision received a small honorarium for participating in the study.
Three participants were removed from the sample as technical
problems occurred during the recording, leaving 16 participants
(7 female, 2 left-handed, mean age 26, range 20–45 years). Indi-
vidual written informed consent was obtained and the study was
approved by the ethics committee of the School of Psychology at
the University of Liverpool.

STIMULI AND PROCEDURE
A set of 50 familiar and 50 unfamiliar objects was used. The names
of the familiar objects are given in the Appendix and photographs
of all the objects are provided in the Supplementary Material.
Unfamiliar objects were created by disassembling familiar objects
until they were deemed to be unrecognizable or by gluing together
several parts from different objects or by using rarely encountered
objects such as specialist climbing tools. Examples of the objects
can be seen in Figure 1. Each object was glued to a 20-cm2 ceramic
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FIGURE 1 |The process of generating stimulus images for the visual

object recognition task. (A) Initial photograph of object against a standard
background. (B) Photograph is blurred and the object occluded with black
ellipses. (C) A square aperture revealing original photograph (no blur or
occlusion) is guided across the image by the participant’s finger
movements.

tile and these real objects were presented on haptic trials. In order
to create the visual stimulus set, each object was photographed
along the approximate line-of-sight of a seated viewer, all with the
same background and environmental context. The photographs
were scaled such that the objects subtended approximately the
same visual angle when presented on the touch-screen monitor
as they would do when seen in real life from the same viewing
distance. A blurred version of the photograph with the objects
obscured using a black occluder was then overlaid on the image
(see Figures 1 and 2).

The experiment consisted of a visual block and a haptic block,
each presenting 25 familiar and 25 unfamiliar items. Six differ-
ent items were given as a practice before each block. The order of
blocks was counterbalanced across participants. The task was to
identify the object as familiar (nameable) or unfamiliar (unnam-
able). Allocation of objects to visual and haptic blocks was bal-
anced across participants so that each object was presented visually
and haptically equally often. In both blocks, participants were
instructed not to make head movements or abrupt body move-
ments that could disrupt the EEG electrode setup. They were also
instructed to relax and to refrain from frowning or grinding their
teeth during the EEG recording.

In the haptic task, participants were blindfolded and placed
their hands on mats left and right of the centrally placed object
(see Figure 2). Each object was presented in the same orientation

FIGURE 2 |Trial outlook in the (A) haptic and (B) visual object

identification tasks.

to all participants. The trial began with the first experimenter say-
ing “go.” This signaled the participant to move his hands toward
the object and the second experimenter to send the trial onset
trigger signal for the EEG recording. When the participant had
recognized the object, they said “familiar” or “unfamiliar.” This
signal led the second experimenter to send a trigger that marked
the end of the trial.

In the visual task the trial began when the participants touched
the fixation cross on a 15′′ touch-screen monitor (ELO Touchsys-
tems, USA) set to a resolution of 1024 × 768 pixels. This initiated
both the presentation of the stimulus image and the EEG start
trigger. The index finger of the participant’s dominant hand con-
trolled the position of a square aperture. This appeared just above
their finger and so was initially centered near the fixation cross.
Participants moved their finger over the monitor to view the object
through the aperture (see Figure 2). They pressed the “space” key
with their other hand as soon as they had made their familiar-
ity decision, then typed “f” or “u” for familiar and unfamiliar
objects respectively. The time taken to perform the haptic task
is approximately 5 s (Craddock and Lawson, 2008). The size of
the aperture was therefore chosen to produce a visual recognition
time of approximately 5 s based on the results of a study using the
restricted aperture viewing technique reported by Craddock et al.
(2011).

EEG RECORDING AND DATA PRE-PROCESSING
Electroencephalogram was recorded continuously from 64 loca-
tions using active Ag–AgCl electrodes (BioSemi Active-Two ampli-
fier system; Biosemi, Amsterdam, The Netherlands) placed in an
elastic cap. In this system the“ground”electrodes used in most EEG
amplifiers are replaced by two additional active electrodes, posi-
tioned near to the electrode POz of the international 10–20 system
(Jasper, 1958). These are common mode sense (CMS), which acts
as a recording reference, and driven right leg (DRL), which serves
as ground (Metting Van Rijn et al., 1990, 1991), see Figure 3.

Horizontal and vertical electrooculograms were recorded in
order to correct for blinks and significant eye movements. Elec-
trodes placed on the earlobes served as references for the ini-
tial importing of data into the analysis software. The EEG sig-
nal was sampled at a rate of 256 Hz and was segmented into
onset-locked epochs. Onset-locked epochs started 1000 ms prior
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FIGURE 3 | Electrode sites of interest: the fronto-central, left occipital,

central occipital and right occipital clusters. The two active electrodes
are shown in yellow: CMS is the Common Mode Sense electrode which
acts as a recording reference and DRL is the Driven Right Leg electrode
which serves as a ground.

and lasted 3000 ms following stimulus onset. EEG data pre-
processing was performed using the EEGlab toolbox (Delorme
and Makeig, 2004), followed by time–frequency analysis using
independent Matlab scripts (The Mathworks, Inc, Natick, MA,
USA). Trials with gross artifacts were identified by visual inspec-
tion and removed as were trials with incorrect responses. The
data was then average-referenced and a 40-Hz low-pass filter was
applied.

Further artifact correction was performed using the indepen-
dent component analysis (ICA) incorporated in the ADJUST
plug-in for EEGlab (Mognon et al., 2010). ICA was performed on
shorter trials lasting 1000 ms prior and 1000 ms following stimu-
lus onset. ADJUST identifies artifactual ICA components through
statistical properties characteristic of eye movements, blinks or
noisy electrodes. Shorter trials were used for ICA as the proce-
dure does not converge onto a solution as effectively for trials
that are several seconds in length. The obtained ICA weights from
these short trials were then used to remove artifactual compo-
nents from the full trial data by copying the ICA decomposition to
the 4-s trial epochs. Following this step, the FASTER (Fully Auto-
mated Statistical Thresholding for EEG artifact Rejection) plug-in
for EEGlab (Nolan et al., 2010) was used to detect and interpolate
contaminated channels and perform a further rejection of trials
with excessive artifacts. An average of 21 out of the 25 trials per
condition remained for the final analysis.

Due to the relatively small number of trials, we also assessed
signal-to-noise ratio (SNR) using the approach proposed by
Koenig and Melie-Garcia (2010). This approach assesses SNR
using permutation tests on global field power (GFP). GFP is

equivalent to the SD of the electrode values at each time point
and can thus be taken as an indicator of signal quality. We assessed
the time-points of stable, satisfactory SNR for every condition in
each participant. In most participants, the SNR for every condi-
tion had stabilized before stimulus onset and in the vast majority
of cases1 it had stabilized by 250 ms after stimulus onset.

ANALYSIS OF EVOKED AND TOTAL SPECTRAL CHANGES
Spectral changes in oscillatory activity were analyzed using the
Morlet wavelet approach (Bertrand and Pantev, 1994), which
offers a good compromise between time and frequency resolu-
tion (Tallon-Baudry and Bertrand, 1999). This method provides a
time-varying estimate of signal magnitude in each frequency band
producing a time-by-frequency (TF) representation. In order to
achieve good time and frequency resolution in the lower-frequency
range (5–12 Hz), the wavelet family in this study was defined by
a constant m = f0/σf = 10, with f0 ranging from 0.25 to 25 Hz in
0.25 Hz steps. These wavelets had a frequency-dependent duration
with longer windows at lower frequencies,which is optimal for suc-
cessfully convolving slower oscillatory signals (e.g., at 5 Hz there
are five oscillations per second). Subsequently, this was collapsed
to form 1 Hz-wide wavelets. Time-varying energy in a given fre-
quency band was calculated for each epoch by taking the absolute
value of the convolution of the signal with the wavelet. Evoked and
total (both evoked and induced) frequency activity were analyzed
separately.

Electrode clusters for statistical analysis were identified on the
basis of previous findings (left, right, and central occipital for
upper alpha and fronto-central for theta-band, as reviewed by
Klimesch, 1999; Klimesch et al., 2007; see Figure 3). These were
confirmed by an overview of grand-mean topographical plots. To
depict the topographical distributions of activity, maps of oscilla-
tory responses in the selected frequency windows were calculated
by means of spherical spline interpolations (Perrin et al., 1988)
for all conditions. After the convolution of the signal with the
wavelets, topographical evolution of activity within the theta and
alpha-bands was visually examined using 500 ms windows from
500 ms before stimulus onset to 2500 ms after stimulus onset. The
choice of such relatively long visualization windows was due to
the low temporal resolution of wavelets. Although the averaging
of trials and participants leads to an increase in SNR and thus in
statistical power, the wavelet size is still a limitation when assessing
exact temporal properties of EEG activity. Smearing of the base-
line due to the convolution of the signal with the wavelets is also
often visible in plots of lower-frequency data.

Baseline activity (from −500 to 0 ms) was subtracted prior
to statistical comparisons. Evoked activity was analyzed only in
the early window (0–500 ms). Both the visual and haptic tasks
involved exploratory movements that would likely diverge after
the initial exploratory period. Thus, evoked activity would be
more pronounced than the induced components in this relatively
early window only. Evoked theta-band activity was analyzed using
a two-way repeated measures ANOVA with the factors familiar-
ity and modality, while evoked upper alpha-band activity was

1In three participants, visual unfamiliar conditions suffered from intermittent
noisiness even after 250 ms.
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analyzed with a three-way repeated measures ANOVA with the
factors modality, familiarity, and electrode site.

Total activity was analyzed in time windows of 500 ms span-
ning from 500 to 2500 ms. Total theta-band activity at fronto-
central sites was analyzed using a three-way repeated measures
ANOVA with the factors modality (visual or haptic), object
familiarity (familiar or unfamiliar) and time window (500–
1000, 1000–1500, 1500–2000, 2000–2500 ms), while total upper
alpha-band activity was analyzed using a four-way repeated
measures ANOVA with the factors modality (visual or haptic),
object familiarity (familiar or unfamiliar), time window (500–
1000, 1000–1500, 1500–2000, 2000–2500 ms) and electrode site
(right, left, occipital). Greenhouse-Geisser correction was used
where necessary. Repeated-measures ANOVA, Tukey’s HSD, and
Bonferroni-corrected paired t -tests were used for post-hoc testing.

RESULTS
BEHAVIORAL DATA
Response times and percentage errors were analyzed using a
repeated measures ANOVA with the factors modality (visual
or haptic) and object familiarity (familiar or unfamiliar). Only
response times on correct trials were included in the analysis.

There was a main effect of response modality for errors
[F(1,15) = 18.557, p = 0.001, η2

p = 0.55] but not for RTs

[F(1,15) = 0.730, p = 0.4, η2
p = 0.05]. Responses on visual tri-

als (7288 ms; 17% errors) were of similar speed but less accurate
than responses on haptic trials (7774 ms; 9%). There was a main
effect for familiarity for both RTs [F(1,15) = 54.338, p < 0.001,
η2

p = 0.78] and errors [F(1,15) = 43.504, p < 0.001, η2
p = 0.74].

Responses were both faster and more accurate to familiar objects
(5429 ms; 6%) than to unfamiliar objects (9633 ms; 20%).

There was also an interaction between modality and object
familiarity for RTs [F(1,15) = 8.505, p = 0.01, η2

p = 0.36] and

errors [F(1,15) = 24.887, p < 0.001, η2
p = 0.62], see Figure 4.

Post hoc Tukey’s HSD tests showed that familiar objects were rec-
ognized with similar speed and accuracy in both vision (5629 ms,
6% errors) and haptics (5228 ms, 6%). However, RTs increased
more for unfamiliar objects in haptics (10319 ms) than in vision
(8946 ms), while errors were higher in vision (27%) than in
haptics (12%).

TOTAL ACTIVITY
Figures 5 and 6 show topographical plots of total theta-band
(5–7 Hz) and upper alpha-band (10–12 Hz) activity respectively.
Figure 7 shows the time courses of activity in these bands.

Total theta-band activity was analyzed at fronto-central sites
across four time windows (0.5–1, 1–1.5, 1.5–2, and 2–2.5 s). Over-
all, theta-band activity was higher in visual than in haptic object
recognition [F(1,15) = 18.71, p < 0.001, η2

p = 0.55]. There was
also an interaction between modality and time [F(3,45) = 4.85,
p < 0.05,η2

p = 0.24]. However,post hoc Tukey’s HSD tests reflected
only the main effect of modality, with no significant change in
theta amplitude between any two time windows in either modality.
Other effects and interactions were not significant (p > 0.1).

In the upper alpha-band, the focus of analysis was on activ-
ity at occipital sites. There was a main effect of time window
[F(3,45) = 13.43, p < 0.001, η2

p = 0.47], consistent with our pre-
diction that alpha amplitude would decrease over time. There

FIGURE 5 |Topographical plots of total theta-band (5–7 Hz) activity for

the (A) visual and (B) haptic object recognition tasks. Plots are
displayed in 500 ms time segments, from −500 to 2500 ms, with the black
line indicating stimulus onset. “U” stands for unfamiliar and “F” for familiar
objects. Note: same scale for vision and haptics.

FIGURE 4 | Behavioral data. Percentage of errors and reaction times for
correctly identified objects are shown, with error bars indicating

within-participant confidence intervals based on the MSE of the interaction
between modality and object familiarity (Jarmasz and Hollands, 2009).
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FIGURE 6 |Topographical plots of total upper alpha-band (10–12 Hz)

activity for the (A) visual and (B) haptic object recognition tasks. Plots
are displayed in 500 ms time segments, from −500 to 2500 ms, with the
black line indicating stimulus onset. “U” stands for unfamiliar and “F” for
familiar objects. Note: same scale for vision and haptics.

FIGURE 7 |Time courses of grand-mean total activity. (A) Theta-band
activity at fronto-central sites. (B) Upper alpha-band activity at central
occipital sites. (C) Upper alpha-band activity at left occipital sites. (D) Upper
alpha-band activity at right occipital sites. Note: different scales for
theta-band (A) and upper alpha-band activity (B–D). Error bars indicate SE
of the mean at every time-sample. VU, visual unfamiliar; VF, visual familiar;
HU, haptic unfamiliar; HF, haptic familiar. The blue square indicates the
analysis window.

was also an overall difference between the visual and haptic
modalities [F(1,15) = 10.92, p < 0.005, η2

p = 0.42], with strong
desynchronization in haptics, and a main effect of electrode site
[F(2,30) = 4.42, p < 0.05, η2

p = 0.23], which was driven by a ten-
dency for higher activity at left sites compared to central sites [left
vs. central, t (15) = −2.35, p = 0.1; all other ps > 0.1]. There was
no main effect of familiarity [F(1,15) = 3.17, p = 0.1, η2

p = 0.17].
Importantly, there was a three-way interaction between modal-

ity, familiarity, and time window [F(3,45) = 3.97, p < 0.05,

η2
p = 0.21]. Since this interaction appeared to reflect diverg-

ing activity patterns between vision and haptics (see Figure 6),
we examined this interaction using separate repeated measures
ANOVAs on the effects of familiarity and time window in each
modality. There were no significant main effects or interactions
in vision (all ps > 0.1); thus, alpha-band amplitude in the visual
condition did not decrease over time and did not differ between
familiar and unfamiliar objects. However, in haptics there was both
a main effect of time [F(3,45) = 14.14, p < 0.01] and an inter-
action between time and familiarity [F(3,45) = 5.03, p < 0.01],
but no main effect of familiarity (p > 0.1). Tukey’s HSD tests on
the interaction showed that this was due to a steeper and deeper
decline in amplitudes in the familiar condition than in the unfa-
miliar condition. Alpha amplitude did not differ between familiar
and unfamiliar objects in the 500- to 1000-ms window. However,
while it decreased in the 1000- to 1500-ms time window in both
conditions, it also began to diverge according to familiarity: there
was a greater amplitude decrease in the familiar condition. The
difference between the familiar and unfamiliar conditions was
maintained throughout the following time windows, as ampli-
tudes declined further in the 1500- to 2000-ms window before
stabilizing in the 2000- to 2500-ms window.

Although there were significant two-way interactions between
modality and time window [F(3,45) = 13.48, p < 0.001, η2

p =
0.47] and familiarity and time window [F(3,45) = 4.47, p < 0.05,
η2

p = 0.23], the drivers of these interactions are better described
by the three-way interaction above, and thus they are not analyzed
further.

There was also a significant interaction between electrode site
and modality [F(2,30) = 4.22, p < 0.05, η2

p = 0.22]. However,
post hoc t -tests could not clarify this interaction.

EVOKED ACTIVITY
Figures 8 and 9 show topographical plots and line plots of evoked
theta-band (5–7 Hz) and upper alpha-band (10–12 Hz) activity
respectively. The focus of analysis was on the early time window
0–500 ms after stimulus onset2.

Theta-band activity at fronto-central sites differed by modal-
ity [F(1,15) = 39.70, p < 0.001] but not by object familiarity
[F(1,15) = 1.66, n.s.]. There was no interaction between these two
factors [F(1,15) = 1.56, n.s.].

Upper alpha-band activity did not show any significant dif-
ferences on any of the three factors: modality [F(1,15) = 1.99,
n.s.], familiarity [F(1,15) = 0.56, n.s.] or electrode cluster
[F(2,30) = 2.42, n.s.]. None of the interactions were signifi-
cant, although there was a trend for a three-way interaction
[F(2,30) = 3.73, p = 0.06]. Post hoc tests were not able to indicate a
source for this potential interaction, as they were all insignificant.

DISCUSSION
The study examined the time course of neural activity char-
acteristic of haptic object recognition and compared it with

2Note that participants need around 500 ms to start touching the object, whereas the
process of moving the finger into the object area may have been faster in the visual
condition. This may have influenced the time course of activations, in particular in
these early time windows.
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FIGURE 8 |Topographical plots of evoked theta-band [(A); 5–7 Hz] and

upper alpha-band [(B); 10–12 Hz] activity for the visual and haptic

object recognition tasks. Plots are displayed in 500 ms time segments,
from −500 to 1000 ms, with the black line indicating stimulus onset. VU,
visual unfamiliar; VF, visual familiar; HU, haptic unfamiliar; HF, haptic familiar.
Note: different scales for the bands.

FIGURE 9 |Time courses of grand-mean evoked activity. (A) Theta-band
activity at fronto-central sites. (B) Upper alpha-band activity at central
occipital sites. (C) Upper alpha-band activity at left occipital sites. (D) Upper
alpha-band activity at right occipital sites. Note: different scales for
theta-band (A) and upper alpha-band activity (B–D). Error bars indicate SE
of the mean at every time-sample. VU, visual unfamiliar; VF, visual familiar;
HU, haptic unfamiliar; HF, haptic familiar. The blue square indicates the
analysis window.

the time course of slowed-down visual object recognition. Our
main interest was on differential patterns of theta and alpha-
band activity when recognizing familiar as opposed to unfamil-
iar objects in haptics and in vision. We observed long-latency
changes in total upper alpha-band activity at occipital sites that
differed over time between familiar and unfamiliar objects when
presented haptically but not when presented visually. We also

observed higher theta-band activity in vision but not in haptics
at fronto-central sites.

Theoretically, the most interesting finding concerns the likely
involvement of perceptual occipital cortices relatively early in hap-
tic object recognition. Total occipital upper alpha-band activity
stayed around baseline levels in vision but decreased relative to
baseline in haptics. This suggests that occipital cortices are involved
in the recognition of objects for both vision and haptics. However,
this interpretation is complicated by a lack of alpha-band desyn-
chronization relative to baseline in our visual task. The lack of
desynchronization may have been a by-product of the task, due to
the enforced stage-by-stage dynamics of vision which was used to
artificially slow down the recognition.

An initial increase and subsequent decrease in alpha-band
amplitude is characteristic of complex perceptual processing
(Klimesch et al., 2007). The initial increase in evoked upper alpha-
band activity is thought to reflect a phase-resetting of alpha-band
activity to prepare the visual cortex for efficient processing of
new information. This could be achieved by inhibiting ongoing
patterns of alpha-band activity, a process that is reported to be
linked with an evoked amplitude increase after stimulus presen-
tation (Min et al., 2007). However, due to the different timing
of finger movements across trials, this evoked increase/decrease
pattern would have translated into induced activity, with every
finger movement triggering a new visual onset and thus a rapid
increase and subsequent decrease in visual alpha-activity. These
increases and decreases would therefore largely cancel each other
out in grand-mean total activity. Nevertheless, by comparing the
patterns observed in haptic upper alpha-band activity with previ-
ous findings of visual upper alpha-band activity, we conclude that
occipital cortices are involved early in haptic processing. This is
consistent with models of object recognition in which vision and
haptics share common object representations that are encoded in
shape-specific extrastriate regions such as LOC (e.g., Amedi et al.,
2001; Amedi et al., 2002; Zhang et al., 2004; Stilla and Sathian,
2008; Lacey et al., 2009).

A prominent finding concerned the large differences in activity
between vision and haptics. The setup for the two conditions was
necessarily different: participants were blindfolded and moving
both arms in response to an auditory cue as opposed to starting by
pressing the finger of the dominant hand on the screen, followed
by coordinated eye and hand movements over the screen. This
complicates drawing any conclusions from modality differences,
as they could be confounded by performance differences between
tasks. In contrast differences between modalities that involve dif-
ferences between responses to familiar and unfamiliar objects, and
their respective time courses are more interpretable.

There were differences between vision and haptics in the evo-
lution of occipital total upper alpha-band activity when discrim-
inating familiar, nameable objects from unfamiliar, unnamable
objects. Total upper alpha-band desynchronization kept increasing
in haptics, in particular for familiar objects. This increase, shown
to be dominant between 1000 and 2000 ms after stimulus onset is
consistent with greater involvement of visual cortices for familiar
objects. This is consistent with the fMRI studies described in the
introduction, which suggested that the networks involved in hap-
tic recognition of familiar objects show greater overlap with visual
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object recognition and have stronger top-down input than those
involved in haptic recognition of unfamiliar objects (Deshpande
et al., 2010; Lacey et al., 2010). Thus, greater desynchronization for
haptically explored familiar objects may be due to larger top-down
inputs, which impact in particular on measures of total alpha-band
activity.

In total theta-band activity at fronto-central sites, the general
pattern of activity across time also differed between the modal-
ities. While activity had increased relative to baseline in vision,
in haptics theta-band activity remained steady below baseline in
the period between 500 and 2500 ms after stimulus onset. Grun-
wald et al. (1999, 2001) observed increasing theta-band power
during the maintenance period of a haptic memory task and dur-
ing active haptic exploration, and suggested that working memory
was necessary to maintain representations of individual object
parts. However, participants in Grunwald’s study explored sunken
reliefs more akin to two-dimensional line drawings than the real,
three-dimensional objects here, and were required to reproduce
those relief patterns after exploration. This may have required a
higher working memory load than that needed here, where partici-
pants could explore objects normally and only had to try to identify
them. Under normal exploration conditions, haptics may integrate
information from sequential explorations in a more efficient man-
ner than when many of the normal sources of information such as
depth cues (Lawson and Bracken, 2011) are removed. The absence
of familiarity effects indicates that the theta-band activity reflects
task demands rather than stimulus identity differences.

Rapid representational processes may have been better reflected
by gamma-band activity, which has been extensively studied in
object representation (for recent reviews see Tallon-Baudry, 2009;
Martinovic and Busch, 2011; Rieder et al., 2011), or in the phase–
phase or phase–amplitude coupling between low and high fre-
quency activity (Canolty and Knight, 2010). However, the focus
of this study was solely on theta (5–7) Hz and upper alpha-band
(10–12 Hz) activity. These lower-frequency bands are less affected
by muscular artifacts in the EEG which result from the partici-
pant’s preparation and execution of movements. Such activity still
occurs in the alpha and beta bands and presents itself around cen-
tral left and right sites (the so-called mu rhythm; Pineda, 2005).
However, it is not likely that the occipital alpha-band modulations
observed in this study were due to the mu rhythm. Visual occipital
alpha-band activity generally has sources in the calcarine sulci and
parieto-occipital areas whereas mu rhythms are seen at fronto-
central sites, most often lateralized above the central electrodes C3
and C4, and have sources in the Rolandic fissure (for a review see
Niedermeyer, 1997).

Although alpha-band can be modulated by low-level stimu-
lus features (e.g., spatial frequency in vision, see Fründ et al.,
2007) it is not clear if low-level features of haptic objects could

cause the modulation that we observed. Surface properties such
as texture, size or hardness play an important role in recogniz-
ing real objects (for a discussion, see Lawson and Bracken, 2011),
but the familiar and unfamiliar stimuli used here were approxi-
mately matched for materials and shapes. There is considerable
evidence that parieto-occipital alpha-band oscillations affect per-
ception (Romei et al., 2010) and that they are influenced by early
top-down inputs (Sauseng et al., 2005; Thut et al., 2006). Thus
the differences between the evolution of activity for familiar and
unfamiliar objects that appear between 1000 and 2000 ms after
stimulus onset may be related to a differential interface of bottom-
up and top-down processes in the two networks recently identified
by fMRI studies (Deshpande et al., 2010).

Taken together, the observed modulations of theta and alpha-
band activity suggest a dominant role for perceptual rather than
working memory processes when trying to haptically recognize
objects. It may imply that any working memory resources used
during haptic recognition are different to those used during
slowed-down visual recognition or haptic exploration of complex
two-dimensional objects (Grunwald et al., 2001). Additionally, in
our behavioral data, there were no between modality differences
in performance for familiar objects, but participants were slower
and less accurate for haptically explored unfamiliar objects than
for visually explored unfamiliar objects.

Ours is the first EEG study to directly compare visual and
haptic object recognition. We have found clear evidence of the
involvement of occipital cortices in haptic object recognition. We
found that in the period between 1000 and 2000 ms after stim-
ulus onset the occipital cortices are more active in familiar than
in unfamiliar haptic object recognition. Our results provide some
indication of the time course of activations in the occipital cor-
tices, complementing the findings of recent fMRI studies on the
involvement of multisensory extrastriate areas in haptic object
recognition (Deshpande et al., 2010; Lacey et al., 2010), and are
thus both consistent with and extend the prevailing view that
visual and haptic object recognition share similar resources and
neural substrates.
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APPENDIX

Bulldog clip Fork Light bulb Plug Tap

Calculator Glasses Measuring jug Safety razor Tape measure

Camera Grater Medicine bottle Salt cellar Teapot

Candle Hairbrush Mouse (computer) Scissors Tin opener

Cassette tape Hammer Mug Screwdriver Toothbrush

Clock Hole punch Padlock Shoe Torch

Comb Jar Paintbrush Sieve Whisk

Corkscrew Key Peg Spanner Whistle

Dustpan Knife Pen Spoon Wine glass

Food box Ladle Pliers Stapler Wooden spoon
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