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The brain has a large capacity for automatic simultaneous processing and integration of
sensory information. Combining information from different sensory modalities facilitates
our ability to detect, discriminate, and recognize sensory stimuli, and learning is often opti-
mal in a multisensory environment. Currently used multisensory stimulation methods in
stroke rehabilitation include motor imagery, action observation, training with a mirror or in
a virtual environment, and various kinds of music therapy. Non-invasive brain stimulation
has showed promising preliminary results in aphasia and neglect. Patient heterogeneity
and the interaction of age, gender, genes, and environment are discussed. Randomized
controlled longitudinal trials starting earlier post-stroke are needed. The advance in brain
network science and neuroimaging enabling longitudinal studies of structural and functional
networks are likely to have an important impact on patient selection for specific interven-
tions in future stroke rehabilitation. It is proposed that we should pay more attention to
age, gender, and laterality in clinical studies.
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INTRODUCTION
We live in a multisensory environment and the interaction between
our genes and the environment shapes our brains. The brain
has a large capacity for automatic simultaneous processing and
integration of sensory information, and multisensory influences
are integral to primary as well as higher order cortical oper-
ations (Ghazanfar and Schroeder, 2006). Combining informa-
tion from different sensory modalities facilitates our ability to
detect, discriminate, and recognize sensory stimuli (Driver and
Noesselt, 2008; Shams and Seitz, 2008; Gentile et al., 2011).
Non-invasive brain stimulation does not only affect the targeted
local regions but also activity in remote interconnected regions.
Although repetitive transcranial magnetic stimulation (rTMS)
cannot directly target subcortical structures, the activity in thal-
amus can be modulated by stimulation of parietal cortex, an
observation that open up new possibilities for studies of cortical–
subcortical interactions in multisensory processing (Blankenburg
et al., 2008, 2010). Multisensory enhancement of detection sen-
sitivity for low-contrast visual stimuli by sounds reflects a brain
network involving not only established multisensory and sensory-
specific cortex but also visual and auditory thalamus (Noesselt
et al., 2010). Diffusion tensor imaging and tractography have
enhanced the opportunity to study white matter tract networks
and compare structural and functional connectivity in humans
(Ciccarelli et al., 2008). Combining non-invasive brain stimula-
tion with neuroimaging offers an opportunity to study causal
relations between specific brain regions and individual cogni-
tive and perceptual functions (Driver and Noesselt, 2008; Dri-
ver et al., 2009; Bolognini and Maravita, 2011; Zamora-López
et al., 2011). Non-invasive brain stimulation techniques have the
advantage that they can be used both as diagnostic tools and in
treatment.

MIRROR NEURONS, TRAINING WITH A MIRROR, AND
ACTION OBSERVATION
During intracellular recordings in macaque monkeys, premotor
neurons that discharge both in association with performance of a
motor task and when observing a human individual performing
the same action were identified and named mirror neurons
(Gallese et al., 1996). In addition to action understanding, mirror
neurons have also proposed to be fundamental for imitation learn-
ing (Rizzolatti and Craighero, 2004) and for language (Rizzolatti
and Arbid, 1998) and social interactions.

Activation of human primary motor cortex during action
observation was first observed in a neuromagnetic study by Hari
et al. (1998). In a following study on the temporal dynamics of the
cortical representation for action (Nishitani and Hari, 2000), the
left inferior frontal cortex, Brodmann’s area (BA) 44, was activated
first followed within 100–200 ms by activation of the left primary
motor area (BA4) and 150–250 ms later by the right BA4. The data
suggest that that left BA44 is the orchestrator of the human “mir-
ror neuron system” and is strongly involved in action imitation. It
was also shown that the reactivity of the human primary motor
cortex was stronger during observation of live rather than video
motor acts (Järveläinen et al., 2001).

The same motor neuron regions that are activated both when
performing and when observing a movement are also activated
prior to observing another persons action. This observation sug-
gests that the mere knowledge of an upcoming movement is
sufficient to excite one’s own motor system, enabling people to
anticipate, rather than react to, the action of others (Kilner et al.,
2004). These and other studies have let to the suggestion that mir-
ror neurons may be a product of associative learning (Catmur
et al., 2009, 2011; Kilner et al., 2009a,b; Heyes, 2010). The asso-
ciative learning hypothesis proposes that the mirror neurons are
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not innate but plastic, and can be transformed by sensorimotor
learning and experience during life (Heyes, 2010; Catmur et al.,
2011). Brain imaging studies suggest that areas responding to the
observation and performance of actions are more widespread in
the human brain and that multiple regions that process both sen-
sory and motor information have the potential to contribute to
mirror effects.

In a recent fMRI study 20 participants observed identical
actions under different instruction context. A multi-voxel pattern
analysis revealed unique patterns of activation in ventral premotor
cortex and inferior parietal lobule across the difference contexts.
The task was either to understand the actions, to identify the phys-
ical feature of the actions, or passively observe the action. The
results showed that ventral premotor and inferior parietal areas
respond differently to observed actions depending on the mindset
of the observer (Molenberghs et al., 2012a).

A meta-analysis of 125 human fMRI studies that met strict
inclusion and exclusion criteria revealed 14 separate clusters in
which activation have been consistently attributed to brain regions
with mirror properties encompassing 9 different Brodmann areas.
These clusters were located in areas considered to show mir-
roring properties in the macaque such as the inferior parietal
lobule, inferior frontal gyrus, and the adjacent ventral premo-
tor cortex, but also the primary visual cortex, cerebellum, and
parts of the limbic system. The findings suggest a core network
of human brain regions that possess mirror properties associ-
ated with action observation and execution, with additional areas
recruited during tasks that engage non-motor functions such as
auditory, somatosensory, and affective components (Molenberghs
et al., 2012b).

The temporal dynamics of the brain activation during the
observation of a motor act and underlie the observers capacity
to understand what the agent is doing and why, has been stud-
ied with high-density EEG neuroimaging (Ortique et al., 2010).
Two volunteers were presented with two-frame video-clips, the
first showed an object with or without context, the second frame
showed a hand interacting with the object. Visual event-related
potentials were recorded time-locked with the frame showing the
hand–object interaction. The results revealed four major steps
(1) bilateral posterior cortical activation, (2) a strong activation
of the left posterior temporal and inferior parietal cortices with
almost a disappearance of activation in the right hemisphere, (3)
a significant increase of the activations of the right temporal–
parietal region with simultaneously co-activation of some areas
in the left hemisphere, (4) a significant global decrease of corti-
cal activity accompanied by activation in the orbitofrontal cortex.
The interpretation of the authors was that the early left hemisphere
involvement was due to the activation of a lateralized action obser-
vation/action execution network that mediates the understanding
of the goal of object-directed motor acts (mirror mechanism),
and that the successive right-hemisphere activation indicated an
important role in understanding the intention of others.

Actions can be described at multiple levels including the kine-
matic level, the motor level, the goal level and the intention level,
and there are thus multiple levels at which an observed action
can be understood. The action observation network is unlikely
to encode the more abstract levels of understanding such as the

intention and the goal of the action (Kilner, 2011). Kilner argues
that the ability to understand actions at these abstract levels is
most likely encoded in the middle temporal gyrus and the more
anterior regions of the inferior frontal gyrus in a ventral pathway.

That viewing the mirror reflection of movement of the unim-
paired arm could improve functional recovery of the impaired
(not visible) arm following stoke was first shown in a placebo-
controlled pilot study by Altschuler et al. (1999). In training with
a mirror, the patient’s affected hand is hidden behind a mirror.
Sathian et al. (2000) reported a case study using this approach to
stroke rehabilitation in a patient with poor function of an arm due
mainly to somatosensory deficits after stroke. Mirror therapy facil-
itated employment of a motor copy strategy involving bimanual
movements and later “forced use” of the affected arm.

While moving the unaffected arm, that patient watches its mir-
ror image as it were the affected arm, and viewing the mirror
reflection facilitates ipsilateral motor cortex excitability (Garry
et al., 2005). In 40 patients, included within 12 months post-stroke,
hand function improved more after mirror therapy in addition
to a conventional rehabilitation program after 4 weeks of treat-
ment and at 6 months follow-up (Yavuzer et al., 2008). Thirty-six
patients with severe hemiparesis because of a first-ever ischemic
stroke in the middle cerebral artery territory were enrolled not
more than 8 weeks after the stroke to an additional protocol of
6 weeks therapy 30 min a day, 5 days a week, with random assign-
ment to either mirror therapy or an equivalent control therapy
(Dohle et al., 2009). The distal functions of the arms improved
more with mirror therapy. Furthermore, mirror therapy enhanced
recovery of surface sensibility and stimulated recovery from hemi-
neglect. Neither of there effects depended on the side of the
damaged hemisphere. In a phase II randomized controlled trial
with 40 chronic stroke patients (mean time post onset 3.9 years)
motor functions improved more in the mirror than in the control
groups (Michielsen et al., 2011). The improvement did not persist
at follow-up, but fMRI results showed a shift in activation balance
within the primary motor cortex toward the affected hemisphere
in the mirror group only (p < 0.05).

Action observation has a positive impact on rehabilitation of
motor deficits and is associated with a significant rise in activity
in the bilateral ventral premotor cortex, bilateral superior tem-
poral gyrus, the supplementary motor area, and the contralateral
supramarginal gyrus in fMRI, thus including regions that are not
including in the mirror hypothesis (Ertelt et al., 2007). An exten-
sive overlap of parietal networks activated during action execution
and observation support that the entire distributed neural network
responsible for the execution of action rather than the concept of
“mirroring” may be needed for the understanding the actions of
others (Tessari et al., 2007). The improvement lasted for at least
8 weeks after the end of the intervention (Ertelt et al., 2007). Dis-
ruptive TMS (1 Hz) over the ventral premotor cortex reduced the
beneficial effect suggesting that the fMRI activation in premotor
cortex during action observation was functionally relevant, at least
for the beneficial effect that action observation exerts over motor
training (Cattaneo et al., 2011). Neurophysiological data support
that action observation is accompanied by specific and differen-
tial changes in cortico-motor excitability within the hand motor
representation in the primary motor cortex (Celnik et al., 2008).
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Patients with parietal damage can show impairments in their
ability to imitate or understand an observed action, but they may
also have difficulties in monitoring early phases of their own move-
ment planning. Both problems may occur after a parietal lesion.
EEG and the readiness potential, RP, a marker of motor prepara-
tion which appears when preparing to observe an action (Kilner
et al., 2004) were registered in patients with parietal lesions and in
patients with a ventral premotor cortex lesion and with neurologi-
cally normal controls in an interesting recent study. All individuals
were requested to watch passively a video showing an actor grasp-
ing a colored object that cued the subjects that the actor was about
to move. Neurologically normal subjects and patients with a ven-
tral premotor cortex lesion exhibited a significant RP prior to the
observed action, whereas no such RP was observed in the patients
with parietal lesions. The results indicate that parietal activity
during action observation does not only or essentially reflect a mir-
roring process but rather involves an anticipatory process that may
arises through prior learning and predictive mechanisms (Fontana
et al., 2012).

Activation patterns in anterior regions of inferior frontal
gyrus suggest dissociable operation when observing and exe-
cuting actions, and caution should be exercised when claim-
ing that activations in many locations during action observa-
tion indicate the operation of mirror neurons (Press et al.,
2012).

MOTOR IMAGERY
Motor imagery accompanied by a voluntary inhibition of the
actual movement activates regions that are involved in movement
preparation and execution (Lotze and Cohen, 2006). Mental train-
ing has the advantage that it can start early, is easy to use and cost
effective. That mental training can improve motor function and
alter cortical representation areas is well documented in healthy
individuals (Pascual-Leone et al., 2005; Nyberg et al., 2006; Ols-
son et al., 2008). Thirteen consecutively admitted patients between
4 weeks and 1 year post-stroke with stable motor deficits in their
affected upper limbs received 1 h of therapy three times a week
for 6 weeks. During the same period, eight patients participated
in 10-min guided imagery sessions after each therapy session as
well as practicing imagery at home twice each week. Therapy only
remained the same but therapy + imagery group scores improved
significantly (Page et al., 2001a,b). Chronic stroke patients were
trained three times per week for 10 weeks and fMRI was performed
before and after intervention. Post intervention fMRI showed a
significant increase in activation to wrist flexion and extension of
the affected hand in the premotor area and primary motor cortex
on both sides, as well as in superior parietal cortex ipsilateral to
the affected hand (Page et al., 2009). The positive effect remained
3 months after participation of the study (Page et al., 2011). It has
recently been proposed that mental practice might also be of inter-
est for reducing stroke-induced motor speech disorders (Page and
Harnich, 2012).

Combined motor and mental training activate both the motor
and the visual regions in fMRI (Nyberg et al., 2006). In addi-
tion, motor and mental training significant increased in tap-
ping performance on an untrained sequence (transfer), and
fMRI scanning indicated that the transfer effect involved the

cerebellum. The conclusion was that combined motor and men-
tal training improves motor flexibility via connections from both
motor and cognitive systems to the cerebellum (Olsson et al.,
2008).

In a program with home-based motor imagery training for
gait rehabilitation 3 days a week for 6 weeks of patients with post-
stroke hemiparesis, starting 3 months or later after stroke onset,
the gains were largely maintained 3 weeks after the trial (Dunsky
et al., 2008). A recent Cochrane database systemic review con-
cludes that mental practice in combination with other treatment
appears more effective in improving upper extremity function
than the other treatment alone, but that further studies are needed
(Barclay-Goddard et al., 2011).

VIRTUAL REALITY
Virtual reality technologies provide multimodal, interactive, and
realistic 3D environments with a high level of control of the para-
meters and applications that can be adjusted for each user and
combined with other techniques (Broeren et al., 2008; Tsirlin et al.,
2009). Greater change in velocity and walking distance both in the
laboratory and in the community was obtained when the robot
was coupled with virtual environments in gait training (Mirelman
et al., 2008). Mixing several tasks in one session produced better
retention than training only one task, and in acute and sub-acute
stages of recovery it would be more effective to focus rehabilitation
on restoration of impairment and avoid a premature emphasis on
compensation (Huang and Krakauer, 2009; Da Silva Cameirao
et al., 2011). Virtual-reality games may enhance the effect of robot
training on attention, speed, force, precision, and timing in the arm
(Takahashi et al., 2008). A recent meta-analysis to determine the
added benefit of VR technology on upper arm motor recovery con-
cluded that VR and video game applications are potentially useful
technologies that can be combined with conventional rehabilita-
tion for upper arm improvement in motor function (Saposnik
et al., 2011).

Unilateral spatial neglect is present in almost 50% of patients
with right-hemisphere stroke and has a negative impact on func-
tional recovery after stroke. A virtual reality supermarket has been
used both for assessment and treatment of neglect (Ansuini et al.,
2006; Broeren et al., 2007; Rand et al., 2009). Assessment of spa-
tial attention and neglect with a virtual wheelchair navigation task
has shown promise as a sensitive, efficient measure of real-life
navigation (Buxbaum et al., 2008). A three-dimensional virtual
street program has been developed for assessment and training
extra-personal neglect and enables outdoor mobilization (Kim
et al., 2010). With an fMRI-compatible VR system interfaced
with robots, movement tracking, and sensing glove systems it has
been shown that VR spatial brain processing differs from brain
fMRI in reality and activates additional brain areas (Adamovich
et al., 2009). In evaluation of possible restoration effects caused
by VR training it is therefore important to integrate information
about the brain activation area networks elicited by the training
in VR. Combining VR and fMRI in intact brains has confirmed
differences and commonalities of brain processing in VR and
demonstrated the benefit of fMRI as an evaluation tool for the
mental processes involved in virtual environments (Beck et al.,
2010).
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NEGLECT
Neglect is an important negative prognostic factor. Current con-
cept of neglect is that it is not located to specific region but related
to the attention networks. Connectivity in two largely separate
attention networks located in dorsal and ventral fronto-parietal
areas was assessed at acute and chronic stages of recovery in a
longitudinal study of patients with spatial neglect following right
hemispheric stroke. Connectivity in the ventral network, part of
which was damaged, was diffusely disrupted and showed no recov-
ery. In the structurally intact dorsal network the inter-hemispheric
connectivity in posterior parietal cortex was acutely disrupted
but fully recovered (Corbetta et al., 2005). A longitudinal study
of patients with spatial neglect has further supported a network
view in understanding neglect following right hemispheric stroke
(He et al., 2007). Corbetta and Shulman (2011) have argued that
neglect is better explained by the dysfunction of distributed corti-
cal networks for the control of attention than by structural damage
of specific brain regions. Ventral lesions in right parietal, temporal,
and frontal cortex that cause neglect directly impair non-spatial
functions partly mediated by a ventral fronto-parietal attention
network. Structural damage in ventral cortex also induces phys-
iological abnormalities of task-evoked activity and functional
connectivity in a dorsal fronto-parietal network that controls spa-
tial attention. The anatomy and right-hemisphere dominance of
neglect follow from the anatomy and laterality of the ventral
regions that interact with the laterality of the ventral regions that
interact with the dorsal attention network. This and other stud-
ies indicate that neglect is better explained by the dysfunction of
distributed cortical networks for the control of attention than by
structure damage of specific brain regions (Corbetta and Shulman,
2011; Urbanski et al., 2011). Perception–attention deficits showed
the most variability in the course of recovery making them prime
candidates for intervention (Rengachary et al., 2011).

The aim with non-invasive stimulation for neglect is to reduce
the imbalance between the two hemispheres. Most studies have so
far done this by reducing the activity in the intact posterior pari-
etal cortex with low-frequency TMS. An alternative approach is to
stimulate the damaged side. Both effect of cathodal transcranial
direct current stimulation (tDCS) applied over the intact posterior
parietal cortex and the facilitating effect of anodal tDCS applied
over the damaged posterior parietal cortex reduce symptoms of
visuospatial neglect (Sparing et al., 2009). For extensive reviews
on the different methods used to ameliorating spatial neglect with
TMS and tDCS see Fierro et al., 2006; Cazzoli et al., 2010; Hesse
et al., 2011).

Another non-invasive stimulation that may have a longer effect
is continuous theta-burst stimulation (cTBS). When applied over
the left posterior parietal cortex in 10 sessions over a 2-week period
it accelerated recovery of hemispatial neglect. Hyperexcitability of
the left parieto-frontal circuit was reduced following treatment
with real but not sham cTBS, and the improvement remained
1 month after the treatment (Koch et al., 2012).

The potential role of the emotional state in modulating aware-
ness after stroke has been tested in patients with chronic visual
neglect. The visual awareness increased when tasks were per-
formed under preferred music conditions relative to un-preferred
music or silence (Soto et al., 2009). Emotional responses were

associated with enhanced activity in the orbitofrontal cortex and
cingulate gyrus. Improved awareness of contralateral (left) tar-
gets and a strong functional coupling between emotional areas
and attention related brain regions was noted in spared areas of
the parietal cortex and early visual areas in the right hemisphere.
These findings suggest that positive affect, generated by preferred
music, can enhance attention and decrease visual neglect, most
likely due to enhancing attention.

NON-INVASIVE CORTICAL STIMULATION IN LANGUAGE
Transcranial direct current stimulation over Broca’s region
improves phonetic and semantic fluency in healthy individuals
(Cattaneo et al., 2011). Significant improved naming accuracy has
been obtained with anodal rDCS over the left frontal cortex in
chronic stroke (Baker et al., 2010). Inhibiting the right Broca’s
homolog area by cathodal tDCS also improves picture naming in
patients with chronic aphasia (Kang et al., 2011).

Sub-acute stroke patients with non-fluent aphasia were ran-
domly divided into three groups that received either anodal
tDCS applied to the left superior temporal gyrus, sham tDCS, or
cathodal tDCS to the right superior temporal gyrus. All patients
received conventional speech and language therapy and all patients
improved. However, auditory verbal comprehension improved
significantly more in patients treated with a cathode, as compared
to patients in the other groups (You et al., 2011).

Low-frequency (1 Hz) rTMS applied to the homolog to Broca’s
area 20 min per day for 10 days have been used in a series of stud-
ies applied to the homolog to Broca’s area. Sustained language
improvement up to 8 months subsequent to TMS stimulation were
observed in 12 non-fluent persons with aphasia 2–6 years post-
stroke (Barwood et al., 2011a). In a following study, six real and
six sham placebo stimulations were applied with effect only in
the real stimulation groups (Barwood et al., 2011b). The electro-
physiological correlates associated with the application of rTMS
were studied by recording the semantic based N400 ERP measures
at baseline, 1 week and 2 months subsequent to stimulation. The
N400 ERP represents the capacity of rTMS to modulate neuronal
language networks and measures of lexical–semantic function in
participants with non-fluent aphasia. No difference was observed
between baseline and 1 week but significant effect was obtained
at 2 months. The authors proposed that time may be an impor-
tant factor in brain reorganization subsequent to rTMS (Barwood
et al., 2011c).

Melodic intonation therapy for severe non-fluent aphasia is an
old method that has been systematically applied and evaluated
in recent years (Norton et al., 2009). It includes three compo-
nents; melodic intonation, intense training 1.5 h/day 5 days a week
for several weeks, and simultaneous rhythmic tapping with the
left hand (corresponding to the right unaffected hemisphere) to
prime the sensorimotor and premotor cortices on the right side
for articulation. It may lead to remodeling of the right arcuate
fasciculus, a fiber bundle that combines the anterior and posterior
language area in the left hemisphere, indicating that plasticity can
be induced in the contralateral homolog tract in the unaffected
hemisphere (Schlaug et al., 2009). Combining melodic intona-
tion therapy with anodal tDCS in the posterior inferior frontal
gyrus of the right-hemisphere enhanced the beneficial effect of
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the training (Hamilton et al., 2011; Vines et al., 2011). For an
extensive review on non-invasive brain stimulation in post-stroke
aphasia, see Schlaug et al. (2011).

ACTION, GESTURES, AND LANGUAGE
Action, gestures, and language are closely related in the human
brain (Rizzolatti and Arbid, 1998; Nishitani et al., 2005; Gentilucci
and Corballis, 2006; Corballis, 2009). Broca’s area, that tradi-
tionally was looked upon as an exclusive language area, is now
considered to detect and represent complex hierarchical depen-
dencies regardless of modalities of use including gestures, action,
and music (Fadiga et al., 2009). It has been proposed to play an
important role both in semantic retrieval or selection as part of
a language comprehension system, and in action recognition as
part of a mirror or observation–execution matching system (Skip-
per et al., 2007a). A network analysis of neuroimaging data has
shown that interactions involving Broca’s area and other corti-
cal areas are weakest when spoken language was accompanied by
meaningful speech-associated gestures, and strongest when spo-
ken language was accompanied by self-grooming hand movement
or by no hand movements (Skipper et al., 2007b). Symbolic ges-
tures and spoken language are processed by a common neural
system (Xu et al., 2009) and gestures may facilitate word retrieval
in aphasia (Raymer et al., 2006). Being able to see the face and
hand movements of a speaker facilitates language comprehen-
sion. Audiovisual speech perception activates network of brain
regions that include cortical motor areas involved in planning
and executing of speech production. When gesture accompany
speech, the motor system interact with language comprehen-
sion areas to determine the meaning of the gestures, suggesting
that the cortical networks underlying language comprehension
are being dynamically organized by the type of contextual infor-
mation available to listeners during face to face communication
(Skipper et al., 2009). Co-speech gestures influence neural activity
in brain regions associated with processing semantic information
(Dick et al., 2009). Audiovisual comprehension activates the same
fronto-temporo-parietal network of regions known for their con-
tribution to speech production and perception. However, there
are age-related differences in the functional interaction among
these regions (Dick et al., 2010). Speech and co-speech gestures
are usually produced together and gestures and not unambigu-
ously understood without speech. On the contrary, pantomimes
are not necessarily produced together with speech and can be
easily understood without speech. Posterior STS/MTG and LIFG
are differentially involved in multimodal integration, crucially
depending upon the semantic relationship between the input
streams. IMITATE, an intensive computer-based treatment for
aphasia based on action observation and imitation, has been
introduced but no results are available at this time (Lee et al.,
2010).

MUSIC THERAPY
Music is a multimodal stimulus that activates many brain struc-
tures related to sensory processing, attention, and memory, and
can stimulate complex cognition and multisensory integration
(Zatorre et al., 2007; Koelsch, 2009; Thaut et al., 2009). The modu-
lar view of music processing with music-specific neuronal regions

and networks is challenged by the alternative view that there is a
significant overlap between neuronal structures used for language
and music processing. There are evidence for shared neural pro-
cessing resources between the phonological/semantic aspects of
language and the melodic/harmonic aspects of music (Patel, 2003,
2008; Koelsch et al., 2004; Patel and Iversen, 2007; Besson et al.,
2011).

Listening to rhythm activates motor and premotor cortices
(Zatorre et al., 2007; Chen et al., 2008; Bengtsson et al., 2009),
and rhythmic auditory stimulation and musical motor feedback
can improve gait and arm training (Schauer and Mauritz, 2003;
Thaut et al., 2007). Music-supported finger and arm training
that significantly improved function is accompanied by electro-
physiological changes, indicating better cortical connectivity and
improved activation of the motor cortex (Altenmüller et al., 2009).
In a community-based stroke intervention program combining
rhythmic music and a specialized rehabilitation program during
8 weeks starting 44 days post-stroke, gait velocity, symmetry, and
stride length improved more than in the control groups. Stroke
patients reported more positive moods and increased frequency
and quality of interpersonal relationships compared to the control
group (Jeong and Kim, 2007).

Daily listening to self-selected music may improve verbal mem-
ory and attention after stroke (Särkämö et al., 2008). Musical
training has extensive effects on the brain. One aspect that may be
relevant for stroke rehabilitation is that musicians have enhanced
subcortical auditory and audiovisual processing of speech and
music (Musacchia et al., 2007, 2009). Musical experience shapes
brainstem encoding of linguistic pitch patterns (Wong et al.,
2007), and musical training results in enhanced ability to hear
speech in background noise (Parbery-Clark et al., 2009; Shahin,
2011; Strait and Kraus, 2011). Auditory attention is important
for the development and maintenance of language-related skills,
and musical training may aid in the prevention, habilitation,
and remediation of individuals with a wide range of attention-
based language, listening, and learning impairments (Strait and
Kraus, 2011). The capacity to hear speech-in-noise is reduced in
aging (Musacchia et al., 2009; Zamora-López et al., 2009). Sig-
nificant improvements in speech-in-noise perception have been
obtained in adult individuals with no prior music training with
a training program that incorporated cognitively based listen-
ing exercises to improve speech-in-noise perception (Song et al.,
2011). The beneficial effect was retained 6 months after the end
of the study. Problem with hearing speech-in-noise is common
after stroke and has considerable social consequences. It would
be interesting to study if a similar program would have any effect
post-stroke.

A bi-hemispheric network for vocal production is activated
regardless of whether the words/phrases are intoned or spoken
(Ozdemis et al., 2006), and words and melody are intertwined in
perception of sung words. Some patients with aphasia are able
to sing the text of a song while they are unable to speak the
same text. The familiarity with the song seems to be important
(Straube et al., 2008). Singing in synchrony with an auditory
model (choral singing) is more effective than choral speech in
improving word intelligibility (Racette et al., 2006; Gordon et al.,
2010).
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AGE, GENDER, AND LATERALITY
Recent developments in the quantitative analysis of complex net-
works, based largely on graph theory, have been rapidly translated
to studies of brain network organization (Sporns et al., 2004, 2007;
Bullmore and Sporns, 2009; Honey et al., 2009; Sporns, 2011).
The networks span multiple spatial scales, from individual cells to
cognitive systems and behavior.

Large cross-sectional study on healthy individuals ranging in
age from 18 to 95 years have indicated age-related reduction in
overall connectivity with age, with decreased local efficiency from
the parietal and occipital to frontal and temporal neocortex in
older brains. Women showed greater overall cortical connectiv-
ity and the underlying organization of their cortical networks was
more efficient both locally and globally. It is proposed that it should
be mandatory to take gender into account when designing exper-
iments or interpreting results of brain connectivity/network in
health and disease (Gong et al., 2009, 2011). Reduced correlations
were associated with disruptions in white matter integrity and
poor cognitive performance across a range of domains. Diffusion
tensor imaging studies similarly indicate age-related changes in
the prefrontal white matter (Malykhin et al., 2011).

The performance of the dominant arm/hand is most accurate
when reaching from one fixed starting point to multiple targets,
and performance with the non-dominant hand is most accurate
when reaching toward a single target from multiple start locations
(Sainburg and Duff, 2006; Wang and Sainburg, 2007). Studies on
patients with stroke have shown differences that reflect these dif-
ferences (Schaefer et al., 2007, 2009, 2011). The side of the lesion
influence bilateral activation in chronic post-stroke hemiparesis
(Lewis and Perreault,2007) and the arm use after left or right hemi-
paresis is influenced by hand preference (Rinehart et al., 2008).
The inter-hemispheric inhibition is stronger from the dominant
to the non-dominant side than in the opposite direction. A similar
pattern, but reduced lateralization for inter-segmental coordina-
tion is seen in lefthanders, possibly due to environmental pressure
for right-handed manipulations (Przybyla et al., 2012). Modulat-
ing activity in the motor cortex affect performance for the two
hands differently depending on which hand is stimulating. In two
right-handed age groups, 20–40 years and 60–80 years of age, mea-
sures of final position accuracy, precision and trajectory linearity
showed robust asymmetries in the left and right arms only in the
young adults (Przybyla et al., 2011).

Gene expression profiles assessed in the hippocampus,
superior–frontal gyrus, and postcentral gyrus of 55 cognitive intact
individual aged 20–99 years demonstrated clear gender differences
in brain aging (Berchtold et al., 2008). Different categories of genes
were predominantly affected in males vs. females, and different
regions of the forebrain exhibited substantially different gene pro-
file changes with age. Prominent change occurred in the sixth to
seventh decade across cortical regions particularly in males. Glob-
ally across all brain regions, males showed more gene changes than
females.

INDIVIDUAL DIFFERENCES IN BEHAVIOR AND COGNITION
A wide range of basic and higher cognitive function, including
perception, motor control, memory, and the ability to introspect,
can be predicted from the local structure of gray and white matter

as assessed by voxel-based morphometry or diffusion tensor imag-
ing (Kanai and Rees, 2011). The authors propose that it would be
more useful to use inter-individual differences as a source of infor-
mation to link human behavior and cognition to brain anatomy
rather than regard them as “noise” as is common today. Individual
data may show unexpected results that can be the basis for new
hypotheses that can be and tested. Age independent relationships
between white matter anatomy and cognitive ability are found in
healthy adult populations. Studies using diffusion-weighted mag-
netic resonance imaging support that inter-individual variation
in white matter structure has consequences for behavior and may
predict how well patients will respond to specific interventions
(Johansen-Berg, 2010).

Genetic polymorphisms contribute to the increasing hetero-
geneity of cognitive function in old age. Brain-derived growth
factor (BDNF) has a critical role in activity-dependent mod-
ulation of synaptic plasticity in human motor cortex. A com-
mon single nucleotide polymorphism (BDNF val66met) reduces
secretion of BDNF, and the activity related cortical plasticity in
response to motor training (Kleim et al., 2006). It is associated
with greater error and poorer retention in short-term motor learn-
ing (McHughen et al., 2010) and reduces cognitive abilities in
the elderly (Cheeran et al., 2008; Miyajima et al., 2008). Genetic
differences may have increasingly large effect on cognition when
the cognitive resources are reduced in aging. Thus the effect of
the catechol-O-methyltransferase (COMT) gene heterogeneity on
cognitive performance is magnified in old age and interacts with
BDNF gene heterogeneity (Lindenberger et al., 2008).

Aging is associated with a progressive decline of perception,
motor behavior and cognition, and memory functions (Dinse,
2005; Persson et al., 2006). However, there is considerable indi-
vidual variation and high physical and cognitive activities may
reduce the aging-related decline (Kramer and Erickson, 2007). An
interesting study on elderly individuals with multi-year dancing

FIGURE 1 | Dendritic branching and spines in pyramidal neurons in

parietal cortex in rats housed in standard laboratory cages (A) and rats

in enriched environment with opportunity for various activities (B),

Johansson and Belichenko (2002).
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activities showed highly significant superior sensory, motor,
and cognitive performance control group. Dance clearly involve
multisensory stimulation and interactions that in addition to
training physical activity, include motor coordination and balance,
emotional stimulation, social interaction, sensorimotor stimula-
tion, and clearly creates an enriched environment (Kattenstroth
et al., 2010).

There is also substantial evidence from animal studies that a
stimulating environment, before and/or after a stroke can reduced
the impact of an ischemic lesion (Johansson, 2000, 2004). Figure 1
shows the dendritic morphology of pyramidal neurons in layer
II/III in rat housed in standard (Figure 1A) or in an enriched
environment (Figure 1B) as viewed in confocal laser scanning
microscopy after microinjection of Lucifer yellow into the neurons
(Johansson and Belichenko, 2002). Post-ischemic enriched envi-
ronment also improves motor and cognitive functions, stimulates
neurogenesis in the subventricular zone (Komitova et al., 2005),
and reduces secondary thalamic atrophy after grafting (Mattsson
et al., 1997).

CONCLUDING REMARKS
Stroke unit care is the only treatment that so far has been shown
to have a major impact on the outcome after stroke. More patients
can return home early, and the need for institutional care is
reduced (Dewey et al., 2007; Stroke Unit Trialists’ Collaboration,
2007; Indredavik, 2009). The benefit of stroke units compared
to general wards is most likely a combination of optimal med-
ical and nursing care, well functional teams, task oriented, and

for the individual meaningful training in an environment that
gives them confidence, stimulation, and motivation (Johansson,
2011). Cognitive rehabilitation programs starting early after stroke
are essential to establish whether attention-training (Barker-Collo
et al., 2009), or non-invasive cortical stimulation can lead to better
social adjustment and quality of life post-stroke. Working memory
and attention are important in most cognitive activities. In pilot
studies, anodal tDCS over the left dorsolateral prefrontal cortex
has been reported to enhance working memory (Jo et al., 2009)
and to improve post-stroke attention decline (Kang et al., 2009).

Progress of time is an independent covariate that reflects spon-
taneous recovery of function during the first months after a stroke.
To avoid the confounding effect of time (Kwakkel et al., 2006)
most studies on testing new rehabilitation methods have been
performed several months after stroke. Optimal benefits for the
patients and the society would supposedly be obtained by suc-
cessful intervention in the sub-acute phase as indicated by the
beneficial effect on motor outcome in stroke units (Dewey et al.,
2007; Indredavik, 2009). Rehabilitation program may require dif-
ferent therapy protocols in acute and chronic stages of recovery,
and we need to know the optimal time for specific interventions.

The progress in research on cortical network reorganization
after stroke (Wang et al., 2010; Grefkes and Fink, 2011; Westlake
and Nagarajan, 2011) will increase our possibilities to test hypothe-
ses related to treatment and outcome. One important question
concerns the optimal time for starting non-invasive brain stimu-
lation for cognitive functions. The optimal time and stimulation
location may vary with the time post-stroke.
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