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Social interactions fill our everyday life and put strong demands on our brain function.
However, the possibilities for studying the brain basis of social interaction are still
technically limited, and even modern brain imaging studies of social cognition typically
monitor just one participant at a time. We present here a method to connect and
synchronize two faraway neuromagnetometers. With this method, two participants at two
separate sites can interact with each other through a stable real-time audio connection
with minimal delay and jitter. The magnetoencephalographic (MEG) and audio recordings
of both laboratories are accurately synchronized for joint offline analysis. The concept can
be extended to connecting multiple MEG devices around the world. As a proof of concept
of the MEG-to-MEG link, we report the results of time-sensitive recordings of cortical
evoked responses to sounds delivered at laboratories separated by 5 km.
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INTRODUCTION
Humans spend a considerable amount of time interacting with
other people, for example, communicating by verbal and non-
verbal means and performing joint actions. Impressively, most
persons deal with the ever-changing and intermingling conversa-
tions and tasks effortlessly. Various aspects of social interaction
have been studied extensively in social sciences, for example
by conversation analysis, but they have also recently started to
gain interest in systems neuroscience and brain imaging com-
munities (for reviews, see Hari and Kujala, 2009; Becchio et al.,
2010; Dumas, 2011; Dumas et al., 2011; Hasson et al., 2012;
Singer, 2012). However, many current approaches for studying
the brain basis of social interaction are still methodologically
clumsy, mainly because of the lack of suitable recording setups
and analysis tools for simultaneous recordings of two persons.

Consequently, most brain imaging studies on social interac-
tion have concentrated on recording brain activity of one partic-
ipant at a time in “pseudo-interactive” situations (e.g., Schippers
et al., 2009, 2010; Stephens et al., 2010; Anders et al., 2011).
For example, a few-second-time-scale synchronization between
the speaker’s and listener’s brain was demonstrated with func-
tional magnetic resonance imaging (fMRI) by first recording
one person’s brain activity while she was narrating a story and
later on scanning other persons while they listened to this story
(Stephens et al., 2010). With near-infrared spectroscopy (NIRS),
one person’s brain activity was monitored during face-to-face
communication with a time resolution of several seconds (Suda
et al., 2010). With magnetoencephalography (MEG), more rapid
changes were demonstrated, as the dominant coupling of the
listener’s cortical signals to the reader’s voice occurred around
0.5 Hz and 4–6 Hz (Bourguignon et al., 2012).

However, in the above-mentioned studies, the data were
obtained in measurements of one person at a time. For exam-
ple, in the fMRI study by Stephens et al. (2010), brain data
from the speaker and the listeners were obtained in separate
measurements. In the MEG study, the interaction was more nat-
ural as two persons were present all the time, although only the
listener’s brain activity was measured. However, in these experi-
mental setups, the flow of information was unidirectional, which
is not typical for natural real-time social interaction. In addition,
if only one subject is measured at a time, the complex pat-
tern of mutually dependent neurophysiological or hemodynamic
activities cannot be appropriately addressed.

Real-time two-person neuroscience (Hari and Kujala, 2009;
Dumas, 2011; Hasson et al., 2012) requires accurate quantifica-
tion of both behavioral and brain-to-brain interactions. In fact,
brain functions have already been studied simultaneously from
two or more participants during common tasks. The first demon-
stration of this type of “hyperscanning” was by Montague et al.
(2002) who connected two fMRI scanners, located in differ-
ent cities, via the Internet to study the brain activity of socially
engaged individuals. No real face-to-face contact was possible as
the subjects were neither visually nor auditorily connected and
the communication was mediated through button press. This
approach has been applied to e.g., a trust game where the time lags
inherent to fMRI are not problematic (King-Casas et al., 2005;
Tomlin et al., 2006; Chiu et al., 2008; Li et al., 2009).

However, the sluggishness of the hemodynamics limits the
power of fMRI in unraveling the brain basis of fast social interac-
tion, such as turn-taking in conversation, that occurs within tens
or hundreds of milliseconds. The same temporal limitations apply
to NIRS which has been used for studying two persons at the same
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time (Cui et al., 2012). Thus, methods with higher temporal reso-
lution, such as electroencephalography (EEG) or MEG, are called
for in studies of rapid natural social interaction.

EEG has previously been recorded from two to four inter-
acting subjects to study inter-brain synchrony and connectivity
during competition and coordination in different types of games
(Babiloni et al., 2006, 2007; Astolfi et al., 2010a,b), playing instru-
ments together (Lindenberger et al., 2009), and spontaneous
nonverbal interaction and coordination (Tognoli et al., 2007;
Dumas et al., 2010). This type of EEG hyperscanning enables
visual contact between the participants who can all be placed in
the same room.

EEG and MEG provide the same excellent millisecond-range
temporal resolution, but MEG may offer other benefits as it
enables a more straightforward identification of the underlying
neuronal sources (for a recent review, see Hari and Salmelin,
2012). Here we introduce a novel MEG dual-scanning approach
to provide both excellent temporal resolution and convenient
source identification. In our setup, two MEG devices, located in
separate MEG laboratories about 5 km apart, are synchronized
and connected via the Internet. The subjects can communicate
with each other via telephone lines. The feasibility of the devel-
oped MEG-to-MEG link was tested by recording time-sensitive
cortical auditory evoked fields to sounds delivered from both
MEG sites.

METHODS
GENERAL
Figure 1 (top) shows the experimental setup. MEG signals were
recorded with two similar 306-channel neuromagnetometers—
one at the MEG Core, Brain Research Unit (BRU), Aalto
University, Espoo, and the other at BioMag laboratory (BioMag)
at the Helsinki University Central Hospital, Helsinki; both devices
are located within high-quality magnetically shielded rooms
(MSRs), and the sites are separated by 5 km.

We constructed a short-latency audio communication system
that enables connecting two MEG recording sites. Specifically, the
system allows:

1. Free conversation between the two subjects located at the two
laboratories.

2. Instructing both subjects by an experimenter at either site.
3. Presentation of acoustic stimuli from either laboratory to both

subjects.

Each laboratory is equipped with a custom-built system for
recording the incoming and outgoing audio streams. The audio
recording systems of both sites are synchronized with the local
MEG devices and to each other, allowing millisecond-range align-
ment of the MEG and audio data streams.

AUDIO-COMMUNICATION SYSTEM
We devised a flexible audio-communication system for setting up
audio communication between the subjects in the MSRs and/or
experimenters in the MEG control rooms at the two laboratories.
The system comprises two identical sets of hardware at the two
sites, each including:

1. An optical microphone (Sennheiser MO2000SET; Sennheiser,
Wedemark, Germany) used for picking up the voice of the sub-
ject inside the MSR. The microphone is MEG-compatible and
provides good sound quality.

2. Insert earphones with plastic tubes between the ear pieces and
the transducer (Etymotic ER-2, Etymotic Research, Elk Grove
Village, IL, USA) to deliver the sound to the subject.

3. Microphones and headphones for the experimenter in the
control room.

4. Two ISDN landline phone adapters enabling communication
between the laboratories.

5. An 8-channel full-matrix digital mixer (iDR-8; Allen & Heath,
Cornwall, United Kingdom) connected to all the audio sources
and destinations described above. Additionally, the mixer is
connected to the local audio recording system and the stimulus
computer.

To eliminate the problem of crosstalk between the incoming
and outgoing audio streams, each of the two ISDN telephone
landlines was devoted for streaming the audio in one direction
only.

In “free” conversation experiments, the two subjects can talk
to each other and the experimenters at both sites can listen to
the conversation. In a simple auditory stimulation experiment
(reported below), sounds can be delivered from the stimulus
computer at one site to both subjects.

LATENCIES OF SOUND TRANSMISSION
We examined the delays introduced by our setup into the audio
streams:

1. The silicone tubes used for delivering the sound to subject’s ear
introduced a constant delay of 2.0 ms.

2. Each mixer introduced a constant delay of 2.7 ms from any
input to any output.

3. The delay of the telephone landlines was stable and free of
jitter. We estimated this delay before each experiment by mea-
suring the round-trip time of a brief audio signal presented
over a loop including the two phone lines and the two mixers;
the round-trip time was consistently 16 ms.

In sum, the total local transmission delay from the stimu-
lus computer to the local participant at each laboratory was
2.0 + 2.7 = 4.7 ms.

The lab-to-lab transfer time to the remote laboratory—
computed from the local stimulus computer to the participant
at the remote laboratory—was 12.7 ms (4.7 ms local transmission
delay + 8 ms remote mixer and phone line delay). As the local
transmission delays (4.7 ms) were identical for each participant,
only the lab-to-lab transfer time was taken into account in the
analysis of the two MEG datasets (see below).

AUDIO RECORDING
At each site, the audio signals were recorded locally using a
dedicated PC (Dell OptiPlex 980) running Ubuntu Linux 10.04
and in-house custom-built audio-recording software. Each PC
was equipped with an E-MU 1616 m soundcard (E-MU Systems,
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FIGURE 1 | Schematics of the MEG-to-MEG link and examples of

ongoing MEG signals. Subjects seated in laboratories 5 km apart are
communicating via landline phones during the MEG measurement. The
experimenters at both sites can monitor online both data acquisition audio
communication. The audio recording computer sends digital timing signals to

the MEG data acquisition computers at both sites. Examples of the
10 s MEG signals from four temporal-lobe and four occipital-lobe
gradiometers are given below, passband 0.1–40 Hz. The two lowest traces
show the audio recording of speech while the participants counted numbers
in alternation.

Scotts Valley, California, USA), and it recorded the incoming and
outgoing audio streams at a sampling rate of 22 kHz. The same
audio signals were also recorded by the local MEG system as
auxiliary analog input signals (at a rate of 1 kHz) for additional
verification of the synchronization.

SYNCHRONIZATION
The audio and MEG data sets were synchronized locally by means
of digital timing signals, generated by the audio-recording soft-
ware and fed from the audio recording computer’s parallel port to
a trigger channel of the MEG device. To time-lock data from the
two sites, the real-time clocks of the audio-recording computers
at the two sites were synchronized via the Network Time Protocol
(NTP). To pass through the hospital firewall (at BioMag), the
NTP protocol was tunneled over a secure shell (SSH) connection
established between the sites.

The achieved local audio–MEG synchronization accuracy was
about 1 ms. The typical latency of the network connection
between the two sites (as measured by the “ping” command) was
about 1 ms, and the NTP synchronization accuracy, as reported
by the “ntpdate” command, was typically better than 1 ms. Thus
we were able to achieve about 2–3 ms end-to-end synchro-
nization accuracy between the two MEG devices. We did not

observe any significant loss of the NTP synchronization in a 4.5 h
test run.

STIMULATION FOR AUDITORY EVOKED FIELDS
For recording of cortical auditory evoked fields, 500 Hz 50 ms
tone pips (10 ms rise and fall times) were generated with a
stimulation PC (Dell Optiplex 755) running Windows XP and
the Presentation software (Neurobehavioral Systems Inc., CA,
USA; www.neurobs.com; version 14.8 at BRU and version 14.7
at BioMag). The sound level was adjusted to be clearly audible
but comfortable for both participants. During each recording ses-
sion, stimuli were generated at one laboratory and presented to
both subjects (locally to the local subject and over the telephone
line to the subject at the remote site). Stimulation was synchro-
nized locally by recording the stimulation triggers generated by
the Presentation software.

The interstimulus interval was 2005 ms, and each block com-
prised 120 tones. The stimuli were delivered in two blocks from
each site.

DATA ACQUISITION
The MEG signals were recorded with two similar 306-channel
neuromagnetometers by Elekta Oy (Helsinki, Finland): Elekta
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Neuromag® system at BRU and Neuromag Vectorview system
at BioMag. Both devices comprise 204 orthogonal planar gra-
diometers and 102 magnetometers on a similar helmet-shaped
surface. However, despite the slightly different electronics and
data acquisition systems, the sampling rates were the same within
0.16%. Both devices were situated within high-quality MSRs (at
BRU, a three-layer room by Imedco AG, Hägendorf, Switzerland;
at BioMag, a three-layer room by Euroshield/ETS Lindgren Oy,
Eura, Finland). During the recording, the participants were sitting
with their eyes open and their heads were covered by the MEG
sensor arrays (see Figure 1).

In addition to the MEG channels, vertical electro-oculogram,
stimulus triggers, digital timing signals for synchronization,
and audio signals were recorded simultaneously into the MEG
data file. All channels of the MEG data file were filtered to
0.03–330 Hz, sampled at 1000 Hz and stored locally.

The position of the subject’s head with respect to the sensor
helmet was determined with the help of four head-position-
indicator (HPI) coils, two attached to mastoids and two attached
to the forehead of both hemispheres. Before the measurement, the
locations of the coils with respect to three anatomic landmarks
(nasion and left and right preauricular points) were determined
using a 3-D digitizer before the measurement. The HPI coils were
activated before each stimulus block, and the head position with
respect to the sensor array was determined on the basis of the
signals picked up by the MEG sensors.

External interference on MEG recordings was reduced offline
with the signal-space separation (SSS) method (Taulu et al.,
2004). Averaged evoked responses were low-pass filtered at 40 Hz.
The 900 ms analysis epochs included a 200 ms pre-stimulus base-
line.

DATA ANALYSIS
For comparable analysis of the two data sets, the 8 ms remote
mixer and phone line delay to the remote laboratory had to be
taken into account. First, the two datasets were synchronized
according to the real-time stamps recorded during the measure-
ment. Thereafter, the triggers in the remote data were shifted
forward by 8 ms. With the applied 1000 Hz sampling rate, the
accuracy of the correction was 1 ms.

The magnetic field patterns of the auditory evoked responses
were modeled with equivalent current dipoles, one per hemi-
sphere. The dipoles were found by a least-squares fit to best
explain the variance of 28 planar gradiometer signals over each
temporal lobe.

RESULTS
The lower part of Figure 1 shows, for both subjects, eight
unaveraged MEG traces from temporal-lobe and occipital-lobe
gradiometers. The two lowest channels below the MEG traces
illustrate both the local and remote audio streams, in this case
indicating alternate counting of numbers by the two subjects.

Figure 2 shows the source waveforms for the auditory evoked
fields modeled as current dipoles located in the supratemporal
auditory cortices of each hemisphere. For both subjects, N100m
peak latencies were similar for tones presented locally (black lines)
and over the auditory link (red lines). Response amplitudes were

FIGURE 2 | Source waveforms of averaged auditory evoked fields from

both participants to tones presented locally (black lines) and remotely

(red lines), separately for the left and right hemisphere. The
superimposed traces illustrate replications of the same stimulus block.
Please note that we did not rigorously control the sound intensities in this
proof-of-the-concept experiment, and thus the early difference between
local and remote sound presentations in the left hemisphere of the BRU
subject likely reflects differences in sound quality.

well replicable both for the local and the remote presentations,
as is evident from the superimposed two traces for both condi-
tions; Table 1 shows source strengths and peak latencies for both
subjects and stimulus repetitions.

DISCUSSION
We introduced a novel MEG-to-MEG setup to study two inter-
acting subjects’ brain activity with good temporal and reasonable
spatial resolution. The impetus for this work derives from the
view that dyads rather than individuals form the proper analy-
sis units in studies of the brain basis of social interaction (Hari
and Kujala, 2009; Dumas, 2011). Within this kind of “two-person
neuroscience” framework, it is evident that one cannot obtain all
the necessary information by studying just one person at a time,
and simultaneous recordings of the two interacting persons’ brain
function are required.

It is well known that just the presence of another person affects
our behavior. Daily social life comprises various types of inter-
actions, from unfocused encounters happening on busy streets
(where the main obligation is not to bump into strangers, and—
should it happen—to politely apologize) to focused face-to-face
interactions with colleagues, friends, and family members. We
spend much time observing other people’s lives that intrude into
our homes via audiovisual media and literature. Normal social
interaction is, however, more symmetric and mutual so that infor-
mation flows in both directions, with verbal and nonverbal cues
tightly coupled.

Social interaction is characterized by its rapid and poorly pre-
dictable dynamics. One important issue for any hyperscanning
approach is thus the required time resolution. The facial expres-
sion of a speaker can change clearly even during a single phoneme
(Peräkylä and Ruusuvuori, 2006), and to pick up the brain effects
of such fleeting nonverbal cues requires a temporal resolution
not worse than a hundred or tens of milliseconds (Hari et al.,
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Table 1 | Source strengths (in nAm) and peak latencies (in ms) of auditory evoked magnetic fields elicited by tones presented locally or

remotely to the subjects located at BRU (top panel), and at BioMag laboratory (bottom panel).

Subject at Left hemisphere Right hemisphere

Local Remote Local Remote

I II I II I II I II

BRU Latency 105 105 98 96 105 105 99 101

Amplitude 38 39 45 52 34 37 36 38

BioMag Latency 90 90 94 94 90 94 94 94

Amplitude 59 47 67 64 115 115 107 98

Data are given separately for both sessions (I and II) and for both hemispheres.

2010); similar time scales would be also needed for monitoring
of brain events related to turn-taking in a conversation (Stivers
et al., 2009).

Moreover, brain rhythms that have been hypothesized to play
an important role in social interaction (Wilson and Wilson, 2005;
Tognoli et al., 2007; Schroeder et al., 2008; Lindenberger et al.,
2009; Scott et al., 2009; Dumas et al., 2010; Hasson et al., 2012)
are very fast (5–20 Hz) compared with hemodynamic variations
and can be only picked up by electrophysiological methods.
However, the below 1 Hz modulations of neuronal signals have
clear correlates in the hemodynamics (Magri et al., 2012), mean-
ing that the electrophysiological (MEG/EEG) and hemodynamic
(fMRI/NIRS) approaches complement each other in the study of
the brain basis of social interaction.

Compared with EEG, the rather straightforward source anal-
ysis of MEG is beneficial for pinpointing the generators of both
evoked responses and spontaneous activity. For example, the dif-
ferentiation of the rolandic mu rhythm from the parieto-occipital
alpha rhythm (for a review, Hari and Salmelin, 1997), appearing
in overlapping frequency bands, is easy with MEG—often evident
just by examining the spatial distributions of the signals at the
sensor level—but the corresponding differentiation is strenuous
with EEG because extracerebral tissues smear the potential distri-
bution that is also affected by the site of the reference electrode
(Hari and Salmelin, 2012).

Our MEG-to-MEG setup, with its high temporal resolution
and reasonable spatial resolution, therefore, provides a promising
tool for studying the brain basis of social interaction. In the fol-
lowing, we discuss the technical aspects and future applications of
the established MEG-to-MEG link.

TECHNICAL PERFORMANCE OF THE MEG-TO-MEG LINK
Our major technical challenge in building the MEG-to-MEG link
was to create a stable and short-latency audio connection between
two laboratories. Both these criteria were met. The obtained
12.7 ms lab-to-lab transmission time corresponds to sound lags
during normal conversation between participants about 4 m
apart. Thus, our subjects were not able to perceive the delays of
the audio connection.

High sound quality was another central requirement, and the
selected optical microphones and the telephone-line bandwidth
were sufficient for effortless speech communication.

Moreover, it was crucial to accurately synchronize the MEG
datasets of the two laboratories. We achieved offline alignment

accuracy of 3 ms by synchronizing the computers at the two sites
to a real-time clock via NTP, and by recording the digital timing
signal to both MEG data files. As a result, the millisecond tem-
poral resolution of MEG was preserved in the analysis of the two
subjects’ brain signals in relation to each other.

Recording of auditory evoked cortical responses, used as a
“physiological test” of the connection, also endorsed the good
quality of the established MEG-to-MEG link: the prominent
100 ms deflections were similar in amplitude and latency when
the stimuli were presented from either laboratory.

FURTHER DEVELOPMENT AND APPLICATIONS
The current setup with combined MEG and audio recordings
could be extended to multi-person interaction studies with only a
few extra steps, even connecting subjects located in various parts
of the world. As the major part of human-to-human interaction
is nonverbal, one evident further development is the implementa-
tion of an accurate video connection that, however, will inherently
involve longer time lags than does the audio connection.

Face-to-face interaction, obtainable with such a video link,
gives immediate feedback about the success and orientation of the
interaction. Fleeting facial expressions that uniquely color verbal
messages in a conversation are impossible to be mimicked in a
conventional brain-imaging setting where one prefers to study all
participants in as equal conditions as possible.

The MEG-to-MEG connection can be further enriched by
adding, e.g., eye tracking and/or measures of the autonomic
nervous system. Just glancing at another person, even briefly,
during the interaction gives information about the mutual under-
standing between them; for example, too sluggish reactions
would be interpreted as lack of presence of the partner. Eye
gaze also informs about turn-taking times in conversation, and
gaze directed to the same object tells about shared attention.
Eye-gaze analysis has already given interesting results on the syn-
chronization of two persons’ behavior (Kendon, 1967; Richardson
et al., 2007).

It has to be emphasized that analysis of the two-person datasets
still remains the bottleneck in dual scanning experiments. The
analysis approaches attempted so far range from looking at the
similarities between the participants’ brain signals, searching for
inter-subject coupling at different time scales, and combining the
two persons’ data to obtain a more integrative view of the whole
situation. In a recent joint improvisation task—applying a mirror
game where two persons follow and lead each other without
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any pre-set action goals—the participants entered in smooth co-
leadership states in which they did not know who was leading and
who was following (Noy et al., 2011). Thus any causality measures
trying to quantify information flow from one brain to another
during a real-life-like interaction likely run into problems. This
example also illustrates the uniqueness of real-life interaction: it
would be impossible to recreate exactly the same states even if
the same participants would be involved again. Thus measuring
the brain activity of both interaction partners at the same time
is crucial for tracking down any coupling between their brain
activities.

One may try to predict one person’s brain activity with the
data of the other or to use, e.g., machine-learning algorithms
to “decode” from brain signals joint states of social interaction,
such as turn-taking in a conversation. Beyond these data-driven
approaches, this field of research calls for better conceptual basis
for the experiments, analysis, and interpretations. One of the

first steps is, however, the acquisition of reliable data, to which
purpose the current work contributes.
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