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Neurological disorders and physiological aging can lead to a decline of perceptual
abilities. In contrast to the conventional therapeutic approach that comprises intensive
training and practicing, passive repetitive sensory stimulation (RSS) has recently gained
increasing attention as an alternative to countervail the sensory decline by improving
perceptual abilities without the need of active participation. A particularly effective type
of high-frequency RSS, utilizing Hebbian learning principles, improves perceptual acuity as
well as sensorimotor functions and has been successfully applied to treat chronic stroke
patients and elderly subjects. High-frequency RSS has been shown to induce plastic
changes of somatosensory cortex such as representational map reorganization, but its
impact on the brain’s ongoing network activity and resting-state functional connectivity
has not been investigated so far. Here, we applied high-frequency RSS in healthy
human subjects and analyzed resting state Electroencephalography (EEG) functional
connectivity patterns before and after RSS by means of imaginary coherency (ImCoh),
a frequency-specific connectivity measure which is known to reduce over-estimation
biases due to volume conduction and common reference. Thirty minutes of passive
high-frequency RSS lead to significant ImCoh-changes of the resting state mu-rhythm
in the individual upper alpha frequency band within distributed sensory and motor cortical
areas. These stimulation induced distributed functional connectivity changes likely underlie
the previously observed improvement in sensorimotor integration.

Keywords: EEG, resting state, functional connectivity, sensory stimulation, plasticity, sensorimotor, mu-rhythm,

ongoing activity

INTRODUCTION
Pathological changes in neuronal functioning lead to a decline
of perceptual and sensory abilities. The most obvious cause
is a damage of sensory brain areas due to trauma or stroke
(Carey et al., 1993; Feys et al., 1998; Rosamond et al., 2007), but
also a variety of neurological disorders such as Parkinson’s dis-
ease (Koller, 1984; Sathian et al., 1997) or dystonia (Tinazzi et al.,
2003; Stamelou et al., 2011) can affect perceptual and sensory
function, possibly by a dysfunction of the sensorimotor network
(Silberstein et al., 2005; Tamura et al., 2009; Litvak et al., 2011).
In addition, a more natural but progressive decline of percep-
tual and sensory capacity develops with increasing age, not only
in the visual and auditory, but also in the somatosensory system
(Kalisch et al., 2009). Therapeutic strategies to treat the decline
of perceptual abilities, which often impacts also motor function,
usually comprise intensive and repeated mass training of the
respective sensory modality (Sawaki et al., 2003; Kornatz et al.,
2005).

A highly efficient alternative approach consists of passive
repetitive sensory stimulation (RSS), which has been shown to
enhance sensory abilities in chronic stroke patients (Powell et al.,
1999; Conforto et al., 2002, 2007; Sawaki et al., 2006; Smith
et al., 2009). RSS is a form of repetitive stimulation, follow-
ing the idea of Hebbian learning: synchronous neural activity
that is instrumental to drive plastic changes, is evoked by tac-
tile “co”-activation of the skin, or electrical co-activation of the
peripheral nerves of the fingers. Several studies have shown that
after such type of stimulation, tactile discrimination abilities were
improved and cortical representation of the respective skin area
was enlarged (Godde et al., 2000; Pleger et al., 2001, 2003; Dinse
et al., 2003). Evidence for the Hebbian nature of coactivation-
related learning comes in addition from the fact that, when using
a modified version of the coactivation protocol consisting of a sin-
gle, small stimulation site instead of one large area, no changes
in perception or cortical maps occur (Pleger et al., 2003; Ragert
et al., 2008). This implies that spatial summation requirements
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indicative of cooperative processes need to be fulfilled to drive
behavioral changes.

High-frequency RSS enhances sensory and motor abilities in
post-stroke patients suffering from sensory loss (Smith et al.,
2009), and counteracts age-related declines of perceptual discrim-
ination abilities (Dinse et al., 2006) and sensorimotor perfor-
mance (Kalisch et al., 2008, 2010). Several studies have related
the effectiveness of RSS to an induction of neural plasticity in
the somatosensory system (Pleger et al., 2001, 2003; Dinse et al.,
2003). However, these findings focus predominantly on corti-
cal representations of evoked sensory neuronal activity (e.g., an
altered representation of the stimulated hand area in primary
somatosensory cortex). Less is known about the impact of RSS
on global connectivity features of the involved neuronal network
during the resting state. Illuminating this relationship would be
particularly helpful in order to account for the improvement
of sensorimotor integration observed in chronic stroke patients
(Smith et al., 2009) and elderly subjects (Kalisch et al., 2008,
2010), since changes in sensorimotor integration most likely cor-
respond to changes of long-range interactions between sensory,
motor, and association areas (Diamond et al., 2008; Aronoff et al.,
2010; Mao et al., 2011).

One way to assess the functional interactions between these
distant but coordinated brain areas is to analyze resting state
functional connectivity, which reflects a measure of correlations
between spatially distant ongoing neuronal dynamics. To investi-
gate the impact of RSS on resting state functional connectivity
was the aim of this study. We applied high-frequency RSS in
healthy subjects and recorded resting state activity by means of
non-invasive Electroencephalography (EEG) before and after the
RSS procedure. As a measure of functional connectivity we ana-
lyzed changes in EEG imaginary coherency (ImCoh), which can
be used to assess frequency-specific interactions between distinct
brain areas and unlike the conventional measure of (magnitude
squared) coherence has the advantage to reduce overestima-
tion errors due to common references, volume conduction, and
cross-talk (Nolte et al., 2004; Guggisberg et al., 2008). The sensori-
motor system is known to exhibit dominant resting state rhythms
(Salmelin and Hari, 1994b) that peak in the alpha (8–12 Hz)
and beta (13–29 Hz) band, the former known as mu-rhythm or
rolandic alpha rhythm (Gastaut, 1952; Kuhlman, 1978), the lat-
ter as rolandic beta rhythm (Pfurtscheller, 1981, 1992; Salmelin
and Hari, 1994a). While the rolandic beta rhythm has a stronger
link to the precentral motor cortex, the mu-rhythm is more
tightly related to the somatosensory postcentral cortex (Salmelin
et al., 1995; Ritter et al., 2009). Given the previously reported
positive impact of high-frequency RSS on the sensorimotor abil-
ities in stroke patients (Smith et al., 2009) and elderly subjects
(Kalisch et al., 2008, 2010), we hypothesized that RSS might
induce changes of functional connectivity within the respective
sensorimotor cortical network, and therefore, focused analysis on
the alpha and beta frequency bands.

MATERIALS AND METHODS
SUBJECTS AND EXPERIMENTAL SCHEDULE
Thirty-three healthy, right-handed subjects (three male, 26.1 ±
4.0 years) participated in the study. The study was performed

in compliance with the relevant laws and institutional guidelines
and approved by the ethics committee of the Charité University
Medicine Berlin. In the pre-session, 15 min of resting state EEG
was recorded using a 64-channel EEG system (BrainAmp, Brain
Products, 0.1–250 Hz hardware bandpass filter, 59 scalp channels
arranged according to the International 10–20 System, two ECG
channel, and one vertical EOG channel, all referenced against
FCz, impedances <5 k�, sampling rate 5 kHz). During the whole
session subjects were sitting in a quiet and dimly lit room and
were instructed to stay awake and watch a silent animal documen-
tary on a distant computer screen, which allowed maintaining
a high state of vigilance while still minimizing eye movements.
During the RSS-session high-frequency somatosensory stimuli
were delivered for 30 min to the right index finger (IF) of the
subject (see section “High-frequency RSS” for details of the stim-
ulation protocol). EEG was continuously recorded during RSS
and was used to identify EEG somatosensory signal components
(see section “EEG pre-processing”). In the post-session, 30 min
after RSS terminated, another 15 min of resting state EEG was
recorded, with all settings identical to the pre-session.

HIGH-FREQUENCY RSS
Two types of previously reported somatosensory RSS stimuli were
used (electrical or vibrotactile). In 21 subjects, two disposable sur-
face electrodes with an area of 15 × 20 mm were attached to the
palmar skin of the right IF, with the positive electrode applied
to the distal and the negative electrode applied to the proximal
phalanxes (Smith et al., 2009; Kalisch et al., 2010). In 12 subjects,
a small loudspeaker diaphragm with a diameter of ∼8 mm was
mounted to the tip of the right IF and was used to transmit the
tactile stimuli to the skin (Godde et al., 2000; Pleger et al., 2001;
Dinse et al., 2003). Stimulation trains consisted of 20 single pulses
within 1 s (i.e., a repetition rate of 20 Hz) with an inter-train inter-
val of 5 s. Duration of the RSS protocol was 30 min, resulting in
a total number of 6000 pulses. RSS stimuli were applied at 50%
above perception threshold.

PSYCHOPHYSICAL MEASUREMENTS
Behavioral impact of RSS was assessed by testing tactile discrim-
ination performance via a two-alternative forced-choice simul-
taneous spatial two-point-discrimination (2PD) paradigm. This
data was in fact acquired in the context of another study and not
used for any further analysis, but is reported here for the sake of
completeness. In every subject, 2PD was performed before and
after RSS, for the right stimulated and left control IF. For details
of the 2PD procedure please refer to previous studies using the
identical protocol (Godde et al., 2000; Pleger et al., 2001; Dinse
et al., 2003).

EEG—PRE-PROCESSING
All EEG data analysis was carried out using MATLAB v7.6.0 and
the EEGLAB toolbox (Delorme and Makeig, 2004). EEG was
down-sampled to 100 Hz and filtered (1–40 Hz) to remove slow
drifts and line-noise and to improve the frequency specificity of
subsequent post-processing techniques. EEG data were visually
inspected and segments containing gross artifacts (due to move-
ments or bad electrode impedances) were excluded. In all datasets
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such segments constituted less than 2% of the data, indicating
an overall sufficient data quality. For each subject, EEG datasets
of all three sessions (Pre, RSS, Post) were merged and submit-
ted to an independent component analysis (ICA). ICA linearly
unmixes the original EEG channel data into a sum of maxi-
mally temporally independent and spatially fixed components
(Bell and Sejnowski, 1995; Makeig et al., 1996). Characteristics
of the resulting independent components (ICs) were obtained
by the following analyses: for pre- and post-sessions, we calcu-
lated resting state power spectra using Welch’s methods, where
the time series is divided into overlapping, Hamming-windowed
segments, the squared magnitude of the discrete Fourier trans-
form is computed for all segments and then averaged. Segments
had 50% overlap and a window length of two seconds (i.e., twice
the number of data points sampled every second), resulting in
a frequency resolution of 0.5 Hz. For the RSS session, we cal-
culated two types of activity: stimulus-locked activity, i.e., the
somatosensory-evoked potentials (SEP), reflecting evoked activ-
ity, and the event-related spectral perturbation (ERSP), reflecting
frequency-resolved induced oscillatory activity [please refer to
(Delorme and Makeig, 2004) for a detailed description of ERSP
calculation]. ICA was used for further identification of artifacts.
Time-courses, spectra, and topographic distributions of all ICs
were inspected to identify components that reflected eye move-
ment, scalp muscle artifacts and movement artifacts. These ICs
were removed from the data. Furthermore, in each subject an
IC was identified that represents activity related to sensorimo-
tor activity and in particular to the somatosensory processing
of the high-frequency RSS stimulus (further termed somato-IC).
The somato-IC was identified by four criteria: (1) a somatosen-
sory topography of the component map, (2) an alpha (8–12 Hz)
frequency peak in the component spectrum (a beta peak is usu-
ally expected, but was not obligatory), (3) a significant SEP, and
(4) a significant event-related desynchronization in the alpha fre-
quency band of the ERSP images. If more than one somato-IC
was identified in one subject, the first in order (explaining the
most variance) was chosen.

For each subject, the individual alpha peak frequency of the
rolandic rhythm was determined (further termed Iαf) as the
frequency in the power spectrum of the somato-IC showing
the maximum value within the broad alpha (8–12 Hz) band
(Klimesch, 1996; Klimesch et al., 2006). We defined three sub-
bands with reference to Iαf: peak (Iαf – 0.5 Hz–Iαf + 0.5 Hz),
lower (Iαf – 1.5 Hz–Iαf), and upper (Iαf–Iαf + 1.5 Hz) alpha fre-
quency band. This subdivision was motivated by previous studies
showing that the broad alpha band can be divided into a lower
and an upper sub-band, which exhibit different functional prop-
erties (Klimesch et al., 1994, 1997, 2006; Rohm et al., 2001;
Doppelmayr et al., 2002). Additionally the beta band was defined
as 13–29 Hz (since a beta peak was not identifiable in every
subject, no individual beta peak frequency was calculated). Our
approach to identify components extracted by the ICA related to
somatosensory processing had the primary goal of ensuring that
the RSS was conducted correctly. However, we performed all sub-
sequent analyses in channel space and not in component space
because we did not want to bias our analysis a priori only to ongo-
ing activity related to the somatosensory system. A considerable

fraction of rhythmic brain activity relevant to our hypothesis
might be hidden in other components that were not categorized
as somato-ICs.

EEG—IMAGINARY COHERENCY
Functional connectivity was assessed by means of ImCoh.
Introduced by Nolte et al., this connectivity estimate is known
to reduce overestimation biases inherent in many other mea-
sures of EEG functional connectivity, such as absolute coherence,
phase locking, or synchronization likelihood (Nolte et al., 2004;
Guggisberg et al., 2008). In these measures, spurious interactions
with zero time lag arise due to common references, cross-talk,
and volume conduction. In contrast, ImCoh only captures “true”
interactions that occur with a certain time lag, omitting all spuri-
ous zero time lag interactions. ImCoh is defined as the imaginary
part of coherency Cij(f ), which is a complex measure of the linear
relationship between two time series x̂i(t) and x̂j(t) at a certain
frequency f. Cij(f ) is defined as the normalized cross-spectrum
between the two signals (which in our case are the time series of
two EEG channels i and j):

Cij( f ) = Sij( f )
(
Sii( f )Sjj( f )

)1/2
,

where Sij( f ) ≡ 〈xi( f )x∗
j ( f )〉 is the cross-spectrum, ∗ is the com-

plex conjugate, 〈 〉 is the expectation value, and xi( f ), xj( f ) are
the complex Fourier transforms of x̂i(t), x̂j(t).

With n = 59 scalp channels available, there are n(n−1)
2 = 1711

possible ImCoh values, since C is antisymmetric with vanish-
ing diagonal. ImCoh was calculated separately for each subject,
recording session, and channel pair combination. The 15 min
EEG time series was partitioned into overlapping (50%) segments
with a window length of 2 s, which resulted in a frequency resolu-
tion of 0.5 Hz. ImCoh values for each of the four frequency bands
(three alpha sub-bands and beta band) were calculated by aver-
aging the ImCoh of the respective frequencies. For each channel
pair, changes of ImCoh between pre- and post-session were tested
for significance using Student’s t-tests. In order to allow appropri-
ate use of a parametric statistical test, Fisher’s Z-transformation
was used to normalize the distribution of ImCoh data (see
Nolte et al., 2004 for details on the transformation of complex
coherency). After transformation normality of the distribution
was confirmed by an Anderson–Darling test.

CORRECTION FOR MULTIPLE COMPARISONS
The large number of tested channel pairs increases the proba-
bility that one or more null hypotheses are mistakenly rejected,
also known as the family-wise error rate (FWER). Thus, a correc-
tion for multiple comparisons is needed before a statement with
respect to statistical significance can be made. Due to the possible
redundancy between neighboring channels, a classical Bonferroni
correction is a too conservative approach. An established alterna-
tive is the false discovery rate (FDR), which is a less conservative
and more powerful method for controlling the FWER (Benjamini
and Hochberg, 1995).

FDR calculates the expected proportion of false positives
(type I error) among all significant hypotheses H1 . . . Hm.
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Their corresponding P-values P1 . . . Pm are sorted in increasing
order and for a given threshold α the largest P(i) such that P(i) ≤
i

m α, is identified. Then all hypotheses H1 . . . Hi are rejected.
Here, we used the generalized Benjamini–Hochberg–Yekutieli
procedure which controls the FDR under arbitrary dependence
assumptions by using P(i) ≤ i

m
∑m

j=1 1/j
α and thus is guaranteed to

be accurate for any test dependency structure, i.e., even if the tests
are positively or negatively correlated (Benjamini and Yekutieli,
2001).

RESULTS
EEG—IDENTIFICATION OF SENSORIMOTOR COMPONENTS
We aimed to investigate the impact of high-frequency RSS on
resting state functional connectivity in the sensorimotor sys-
tem. As a first step we used ICA to identify EEG components
in each subject that reflect sensorimotor activity (somato-ICs),
including the response to the RSS (for definition of criteria see
Materials and Methods section “EEG—pre-processing”). Figure 1
shows the properties of a somato-IC in a representative sub-
ject. The distribution of the component’s weights shows a clear
sensorimotor topography (Figure 1A). Its resting state frequency
spectrum exhibits distinct peaks in the alpha and beta frequency
bands, which reflect the ongoing rolandic rhythms (Figure 1C).

The component shows both an evoked and an induced response
to the RSS (Figures 1B and D).

In seven subjects we could not identify any somato-IC. Neither
did they show any somatosensory features (SEP, ERD, spectral
alpha peak) in channel space. In fact all subjects that showed an
EEG response to the RSS in channel space yielded at least one
somato-IC. There might be several reasons why these subjects did
not respond to stimulation, at least in terms of a measurable EEG
response. The stimulation amplitude was set to 50% above per-
ception threshold, which was determined in an iterative manner
via the subjects’ feedback. It is conceivable that in some cases, the
amplitude of the stimulation might have been too low to induce
any EEG response (and also any perceptual learning). Another
possibility is a malfunction of the stimulation device. Since we
could not exclude technical failure or a bad setting of the stim-
ulation amplitude we excluded these subjects. Importantly the
exclusion was based on the absence of their EEG response, not
on the basis of their behavioral results. Nevertheless, these sub-
jects did not show any behavioral improvement (mean ± SD
two-point-discrimination threshold changes of the right stimu-
lated IF were −1.03 ± 7.27%, p < 0.8125, Wilcoxon-Signed Rank
test).

The final subject group was still large enough to per-
form proper group analyses and statistics (26 subjects, 3 male,

FIGURE 1 | Properties of a somato-IC reflecting sensorimotor activity in a

representative subject. (A) Scalp map projection of IC weights (dots display
channel locations, color-coding as in panel B, but unitless). The projection
shows a lateralized somatosensory topography with a peak contralateral to
the stimulation site. (B) Time-frequency image showing ERSP, which is the
relative change in event-related power at different frequencies, time-locked to

the high-frequency RSS which starts at time point zero and is sustained for
one second. Note the pronounced ERD in the alpha and beta frequency band
during stimulation. (C) Mean log power spectrum with distinct peaks in the
alpha and beta frequency band. Individual alpha frequency Iα f indicated as
dotted lines, lower/upper alpha bands relative to Iαf are indicated as dark/light
gray areas. (D) Corresponding time-locked average SEP.

Frontiers in Human Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 144 | 4

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Freyer et al. Stimulation changes resting-state connectivity

26.1 ± 4.0 years). All remaining subjects exhibited a clear alpha
peak in the resting state spectrum of their primary somato-IC.
The group mean (±SD) peak frequency in the alpha band was
9.9 ± 1.35 Hz.

Prior to further analysis, ICs representing eye movement, scalp
muscle artifacts, and movement artifacts were removed from the
data. The mean ± SD number of ICs removed from data was
2.19 ± 0.89, which corresponds to 3.7 ± 1.5% of the total 59 ICs
per subject. Although the total number of discarded ICs limits
the maximum number of independent coherencies, the removal
of these non-physiological and non-neuronal ICs increases the
overall sensitivity for coherencies based on neuronal processes.

EEG—FUNCTIONAL CONNECTIVITY CHANGES
To assess the impact of RSS on resting state functional con-
nectivity, we analyzed ImCoh before and after the RSS pro-
cedure. Figure 2 shows an overview of the frequency-resolved
(1–40 Hz, resolution 0.5 Hz) statistical dispersion of ImCoh-
spectra. Depicted are the standard deviations (SD) across all
subjects and all channel pairs for pre- and post-sessions and for

the difference spectra post-pre indicating the change between
the two sessions. Before calculating the SD, spectra of all sub-
jects were shifted so that their alpha peak frequencies coincide
at 10 Hz (e.g., if a subject exhibits an alpha peak frequency of
11.5 Hz, the spectrum is shifted 1.5 Hz to the left). This visu-
alization corresponds to the band-specific analyses, which we
performed based on individual peak frequencies (Klimesch, 1996;
Klimesch et al., 2006). The original alpha peak frequencies of
all subjects are indicated in Figure 2A as black dots. The most
pronounced change of ImCoh is clearly visible in the alpha
frequency band (8–12 Hz). A first hint to the location of the
alpha ImCoh change is given when looking at the SD of ImCoh
spectra of channel pairs in specific regions-of-interest (ROIs).
A separate display for frontal, central, and occipital channels
reveals that the main effect originates from central channels,
with maximal changes in the alpha and beta frequency bands
(Figure 2D). This fits to the sensory modality of the RSS stim-
ulation, since the sensorimotor system is known to exhibit oscil-
latory activity in these bands (Kuhlman, 1978; Pfurtscheller, 1981,
2006).

FIGURE 2 | Statistical dispersion of ImCoh-spectra for (A) pre- and

(B) post-sessions and for (C, D) difference spectra post-pre,

indicating the change between the two sessions. (A–C) Standard
deviations (SD) across all subjects and all scalp channels. Before
calculating the SD, spectra of all subjects were shifted so that their alpha
peak frequencies coincide at 10 Hz. Original alpha peak frequencies of all
subjects are indicated as dots in panel A. (D) SD of ImCoh difference

spectra from panel C, but separately for three sub-groups of channels,
indicated in the head plot (magenta: frontal, yellow: central, cyan:
occipital). Since ImCoh is antisymmectric (im

(
Cij (f )

) = −im(Cji (f ))) only
the upper off-diagonal elements of the imaginary part of the coherency
matrix are shown. Normality of distributions was confirmed by
Anderson–Darling tests, allowing the use of SD as a measure of statistical
dispersion.
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Please note that Figure 2 is purely illustrative and does not
allow for any statistical interpretation. Therefore next, we ana-
lyzed which of the changes of ImCoh between pre- and post-
sessions were statistically significant. Given the sensory modality
of the applied RSS, we focused on the ongoing oscillatory activ-
ity in the alpha (8–12 Hz) and beta (13–29 Hz) frequency bands.
Also, given the known distinct functional roles of different alpha
sub-bands (Klimesch and Doppelmayr, 1997; Pfurtscheller et al.,
2000; Klimesch et al., 2003; Sadaghiani et al., 2010), we addi-
tionally defined three alpha sub-bands (peak, lower and upper
band), which were determined in each subject according to their
individual peak frequencies (see Materials and Methods section
for details). Of all analyzed frequency bands, we found the max-
imum connectivity change in the upper alpha frequency band.
Figure 3 shows the group results for this band. A pronounced
change of ImCoh can be seen over central cortical areas con-
tralateral to the somatosensory stimulation. This change is highly
significant (Figures 3B and C). Figure 3D shows significant chan-
nel pairs after FDR-correction for multiple comparisons, which
were: C1–C3, C1–C5, C1–CP5, CP1–CP3, CP1–CP5, CP3–C1,
FC1–FT7. In the other analyzed alpha and beta frequency bands,
we also found significant changes of ImCoh, but they were

only marginal and after FDR-correction for multiple compar-
isons confined to isolated single channel pairs (lower alpha band:
no significant changes, peak alpha band: C1–C3, beta band:
FC3-TP7).

Although our data allows only limited claims regarding the
exact cortical source of the change in resting state functional
connectivity, they indicate that the main change is possibly related
to activity in the sensorimotor cortex. First, the peak of change is
located over central electrodes contralateral to the somatosensory
stimulation site, indicating that the change in functional connec-
tivity is produced by the repetitive somatosensory stimulation.
Secondly, the main change in functional connectivity is reflected
in a change of ImCoh in the alpha band, which, due to the loca-
tion, most certainly corresponds to mu-rhythm activity, which
is the dominant resting state rhythm of the sensorimotor sys-
tem. The observed connectivity changes exhibited a predominant
medio-lateral orientation and are distributed over frontopari-
etal sensorimotor cortex (Figure 3E). According to Koessler et al.
(2009), who estimated the cranio-cerebral correlations between
surface EEG channel positions and the underlying cortical fis-
sures, our main effect reflects connectivity changes between pre-
central gyrus and postcentral/inferior parietal gyrus (channel C1

FIGURE 3 | Change of resting state functional connectivity after

high-frequency RSS. (A) ImCoh difference between pre- and post-session
(before and after RSS). Dots: Channel relative to which ImCoh is shown.
(B) Corresponding p-values indicating statistically significant changes of
ImCoh. A cluster of significant connectivity changes is located over
contralateral central areas. (C) Different visualization of data shown in

panel B. Dots indicate channel locations, lines indicate channel pairs with
statistically significant ImCoh changes (color coding as in panel B). (D) Same
as panel C, but only significant ImCoh changes after FDR-correction for
multiple comparisons. (E) Outline of typical locations of cortex gyri and sulci,
indicating that the main change of ImCoh is located over pre- and post-central
cortical areas.
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to channels C3, C5, Cp1), and within postcentral/inferior parietal
gyrus (channel CP1 to CP3, CP5).

INCREASED TACTILE ACUITY AFTER RSS
RSS led to a significant reduction of the 2PD threshold (post-
hoc difference post-pre = −0.24 mm, p < 4.67 × 10−6, paired
Student’s t-test) for the stimulated right IF, while threshold of
the left control IF remained unchanged (difference post-pre =
−0.0058 mm, p < 0.906). These results are closely in line with
earlier studies using the identical stimulation protocol as used in
our current study (Godde et al., 2000; Pleger et al., 2001; Dinse
et al., 2003). While 2PD data was measured here to ensure stim-
ulation efficacy and for further analysis in the context of another
study, we do not believe it is an effective test for changes in func-
tional connectivity between distant brain regions, and hence did
not further analyze behavioral data in the scope of this study.
We plan to follow up on the link between functional connectiv-
ity changes and behavior by testing e.g., sensorimotor integration
by means of motor tasks (Smith et al., 2009).

DISCUSSION
We investigated the impact of a specific form of intermittent high-
frequency RSS on the network characteristics of the brain. In
particular, we analyzed resting-state functional connectivity and
found effects within sensorimotor areas which are known to be
relevant for sensorimotor processing and integration (Diamond
et al., 2008; Aronoff et al., 2010; Mao et al., 2011). The here-used
RSS paradigm is known to evoke Hebbian-like learning processes
and as a consequence causes both an improvement in tactile
acuity (Godde et al., 2000) and a cortical reorganization of the
somatosensory representational maps (Pleger et al., 2001, 2003;
Dinse et al., 2003).

Similar improvements in tactile discrimination as well as in
cortical representation can be induced by repetitive transcranial
magnetic stimulation (rTMS). The approaches of RSS and of
rTMS share a common conceptual idea: to adapt stimulation
protocols typically used in studies of synaptic plasticity at a cel-
lular level in order to alter perception and behavior in human
individuals. Crucial to this approach is the observation that
changes induced in this way are bidirectional depending on stim-
ulation frequency. Both low frequency repetitive stimulation as
well as low frequency rTMS have been shown to reduce corti-
cal excitability in parallel to impairment of behavior. In contrast,
high-frequency, intermittent stimulation enhances excitability,
which is associated with improvement of performance (Siebner
and Rothwell, 2003; Ragert et al., 2004; Tegenthoff et al., 2005;
Reis et al., 2008; Dinse, 2011). What makes exposure-based learn-
ing different to rTMS is the fact that in contrast to rTMS, the
use of sensory stimuli employs the natural sensory pathway to
reach a particular cortical area, and that this allows application
of highly specific stimulus features such as orientation or lumi-
nance, which has been shown to induce specific learning effects
for those features (Beste et al., 2011), an option not possible for
rTMS.

Please note that we referred to the effects of passive stimula-
tion as “learning processes.” The rationale for this is based on
previous studies showing that the effects of repetitive stimulation

depend on NMDA-receptor activation (Dinse et al., 2003), thus
demonstrating that the effects of passive stimulation are mediated
by very basic mechanisms underlying synaptic plasticity, and on
empirical findings showing facilitation of intracortical excitabil-
ity (Hoffken et al., 2007). We therefore argue that the effects of
passive stimulation are based on modifications of synaptic effi-
cacy and transmission, both fundamental principles underlying
“learning”. In a more general view, learning is defined as the
acquisition of new knowledge, behaviors, skills, values, prefer-
ences or understanding, and may involve synthesizing different
types of information. Apparently, the term “learning” is rather
broadly defined. Given such a broad definition, in our view the
outcome of persistent improvement observed following passive
stimulation qualifies as learning.

High-frequency RSS was previously proposed as therapeutic
approach to treat the decline and loss of sensory abilities (Kalisch
et al., 2008, 2010; Smith et al., 2009). Additionally, high fre-
quency RSS has been shown to improve sensorimotor abilities
such as haptic and fine motor performance in elderly subjects
(Kalisch et al., 2008, 2010). It has, therefore, successfully been
applied in stroke patients to improve motor test results and to
stabilize motor training effects over a longer time course (Smith
et al., 2009). These data implicate that a purely passive sensory
repetitive stimulation protocol has a pronounced impact on the
network characteristics of the sensorimotor system, and point to
the importance of sensory input and sensorimotor integration for
the outcome of motor-training rehabilitation paradigms. Here,
we provide neurophysiological evidence supporting these recent
behavioral results. We show that high-frequency RSS not only
changes sensory function and evoked activity in somatosensory
areas (Pleger et al., 2001, 2003; Dinse et al., 2003), but also signif-
icantly affects resting-state functional connectivity between brain
areas engaged in sensorimotor integration processes.

As a means of assessing functional connectivity, we examined
coherency changes of ongoing oscillatory activity in human EEG.
Although the approach of using ImCoh as a measure of functional
connectivity is fairly new (Nolte et al., 2004), it has been applied
in a wide variety of studies of different clinical and neuroscientific
context (Guggisberg et al., 2008; Cole et al., 2010; Hinkley et al.,
2010, 2011; Gonzalez et al., 2011; Martino et al., 2011; Nicolas
et al., 2011; Sander et al., 2011).

Our results show that a brief application of RSS alters func-
tional connectivity of the sensorimotor system. Connectivity
changes had a mainly medio-lateral orientation, which princi-
pally is in line with earlier findings indicating a change of the
center of gravity of somatosensory-evoked activity in medio-
lateral direction in EEG and fMRI data (Pleger et al., 2001,
2003). In contrast to those previous results, however, the here-
reported changes of functional connectivity were present during
the resting state, i.e., in the absence of any explicit sensorimo-
tor stimuli and are distributed over EEG channels which are
located over pre- and post-central cortex (Koessler et al., 2009)—
suggesting an involvement of not only sensory but also motor
areas.

Hence, the here reported connectivity changes might be
related to the findings by Smith et al. (2009) and Kalisch et al.
(2008, 2010), who observed enhanced sensorimotor integration,
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enhanced information transfer, and enhanced learning after RSS.
Furthermore, our findings might not only be related to these
studies on stroke rehabilitation and physiological aging, but pos-
sibly apply to a variety of pathologies associated with sensory loss
and motor function impairment.

The observed effect is based on changes in oscillatory cou-
pling of ongoing EEG rhythms, with the main finding being in
the upper alpha band (∼10–12 Hz). The alpha rhythm is one of
the most prominent oscillatory hallmarks of the resting human
brain. The amplitude of alpha-band oscillations exhibits tempo-
ral correlations and spatial coherency, over long-range distances
(Nunez et al., 2001; Freyer et al., 2009a, 2011), which makes them
eligible for the investigation of the brain’s network characteristics.
The most prominent alpha rhythm is related to the visual system
and plays a strong functional role in the processing of visual stim-
uli (Makeig et al., 2002; Kirschfeld, 2005; Hanslmayr et al., 2007;
Becker et al., 2008, 2011; Ritter and Becker, 2009; Scheeringa
et al., 2011). However, the changes in functional connectivity in
the present study relates to alpha activity that is distinct from
the “classic” occipital alpha rhythm, which dominates the EEG
when the subject is at rest with eyes closed. In the present case,
the subjects had their eyes open, which leads to a strong attenu-
ation of the occipital alpha rhythm. As can be seen in Figure 2D,
alpha band ImCoh changes in occipital electrodes were much less
pronounced than in central electrodes. In fact, the change in the
alpha band is not stronger than in any other of the investigated
frequencies indicating that it does not exceed noise level. Given
the clear peak in central channels and the modality of the stimu-
lus, the present finding most likely reflects the alpha band activity
of the sensorimotor system, i.e., the mu-rhythm (Gastaut, 1952;
Kuhlman, 1978).

Evidence for a functional role of the mu-rhythm is plenty.
For example, intermediate amplitudes of the rhythm facilitate
somatosensory stimulus perception in near-threshold stimula-
tion conditions (Linkenkaer-Hansen et al., 2004). Pre-stimulus
mu-rhythm amplitude predicts detection of a target stimulus
against stronger masking stimuli (Schubert et al., 2009). The
rhythm is also involved in higher cognitive processes, as indi-
cated by studies showing a modulation of the mu-rhythm by
attention (Jones et al., 2010; Anderson and Ding, 2011) and by
the numerous application of mu-rhythm-based brain computer
interfaces (Blankertz et al., 2007; Muller et al., 2008; Yuan and He,
2009; Pfurtscheller et al., 2010; Boulay et al., 2011). Combined
EEG-fMRI studies have shown the mu-rhythm to be nega-
tively correlated to the BOLD signal in primary somatosensory

and motor cortex (Ritter et al., 2009), indicating less net neu-
ronal activity, which is well in line with the recently proposed
theory that alpha band rhythms serve a “gating-by-inhibition”
(Klimesch et al., 2007; Jensen and Mazaheri, 2010). Finally, mu-
rhythm has been shown to exhibit a functional connection to
stimulus-induced brain signals in remote brain areas, thus pro-
viding evidence for long-range connectivity (Reinacher et al.,
2009). But what might be the role of this rhythm in sensorimo-
tor integration? Here, we speculate that the observed RSS-induced
change in oscillatory coupling between distant sensorimotor areas
reflects enhanced effectiveness of neuronal information transfer
and sensorimotor integration, possibly via a modified feedback
loop between motor and sensory areas, which in turn lead to
the observed improvement of behavioral sensorimotor abilities.
In order to provide a more detailed account of the mechanisms
that link changes in oscillatory resting-state dynamics, altered
connectivity, and improved somatosensory capabilities, compre-
hensive approaches combining advanced multimodal empirical
data acquisition capable to also monitor ultrahigh frequency
activity (Ritter et al., 2008; Freyer et al., 2009b), spatiotempo-
ral nesting analysis (Schultze-Kraft et al., 2011), multivariate
approaches (McIntosh et al., 1996; Boonstra et al., 2007; Krishnan
et al., 2011), and computational modeling will be employed in the
future.

CONCLUSIONS
Here we provide evidence for the impact of passive sensory
stimulation on the resting state functional connectivity in the
human brain. We show that 30 min of RSS leads to significant
coherency changes of the ongoing mu-rhythm, the dominant
resting state rhythm of the sensorimotor system. These changes
might constitute a neurophysiological substrate for the previously
observed improvements in sensorimotor training in response to
RSS (Kalisch et al., 2008, 2010; Smith et al., 2009). Functional
connectivity measures provide tools for assessing network inter-
actions in the human brain, and may thus be used to study efficacy
of different sensory and motor training paradigms.
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