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We investigate the modulation of post-stimulus endogenous and exogenous oscillations
when a visual discrimination is made more difficult. We use exogenous frequency tagging
to induce steady-state visually evoked potentials (SSVEP) while subjects perform a face-car
discrimination task, the difficulty of which varies on a trial-to-trial basis by varying the
noise (phase coherence) in the image. We simultaneously analyze amplitude modulations
of the SSVEP and endogenous alpha activity as a function of task difficulty. SSVEP
modulation can be viewed as a neural marker of attention toward/away from the primary
task, while modulation of post-stimulus alpha is closely related to cortical information
processing. We find that as the task becomes more difficult, the amplitude of SSVEP
decreases significantly, approximately 250-450 ms post-stimulus. Significant changes
in endogenous alpha amplitude follow SSVEP modulation, occurring at approximately
400-700 ms post-stimulus and, unlike the SSVER the alpha amplitude is increasingly
suppressed as the task becomes less difficult. Our results demonstrate simultaneous
measurement of endogenous and exogenous oscillations that are modulated by task
difficulty, and that the specific timing of these modulations likely reflects underlying
information processing flow during perceptual decision-making.

Keywords: alpha oscillations, face perception, electroencephalography (EEG), SSVEP, attention, perceptual
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INTRODUCTION

Neural oscillations, for example measured via electroencephalog-
raphy (EEG), have been studied for decades in an effort to link
brain state to perceptual and cognitive processing. Endogenous
oscillations are attributable to internal neural processes and
include a well-known set of frequencies ranging from the low
delta to the high gamma band (Niedermeyer and Lopes da Silva,
1993). Exogenous oscillations are driven by the rhythms of exter-
nal stimuli and are typically associated with sensory systems
[e.g., steady state visually evoked potentials (SSVEP) and audi-
tory steady state response (ASSR)] (Picton et al., 2003; Vialatte
et al., 2010 review).

A prominent endogenous brain rhythm is the alpha oscilla-
tion which has been extensively investigated within the context
of both pre-stimulus and post-stimulus effects (Babiloni et al.,
2006; Hanslmayr et al., 2007; Freunberger et al., 2008; van Dijk
et al.,, 2008). The neural mechanism underlying alpha oscilla-
tions also have been deeply explored (Lopes da Silva, 1991).
Though alpha activity is often thought to represent an idling or
inattentive state (Pfurtscheller et al., 1996 review), some studies
suggest that it also reflects a suppression mechanism of irrele-
vant information (Worden et al., 2000; Kelly et al., 2006; Rihs
et al., 2007; Foxe and Snyder, 2011; Gomez-Ramirez et al., 2011),
and/or an inhibition of information processing (Klimesch et al.,
1997, 2007 review). Specifically, previous studies of post-stimulus
alpha activity within the context of visual object recognition
have shown that alpha desynchronization was greater for the

recognition of meaningful objects than it was for meaningless
objects (Klimesch et al., 1997; Vanniet al., 1997; Mima et al., 2001;
Freunberger et al., 2008), suggesting that post-stimulus alpha
activity is related to semantic information processing.

SSVEP, an oscillatory brain response evoked by a flickering
visual stimulus, is an exogenous form of frequency tagging that
has been shown to index the allocation of cognitive resources
such as attention (Vialatte et al., 2010 review). Many studies have
reported that SSVEP amplitude is decreased when attention must
compete or be split between the flicker and a background pic-
ture (Miiller et al., 2008, 2011; Attar et al., 2010). Moreover, a
study by Andersen and Miiller in 2010 revealed that the facili-
tation of SSVEP amplitude for the attended stimulus is accom-
panied by suppression for the unattended stimulus (Andersen
and Miiller, 2010). These findings suggested that SSVEPs can be
used as neural marker of the time course of attentional resource
competition.

In this paper, we aim to simultaneously investigate how post-
stimulus endogenous and exogenous oscillations are affected
as a function of task difficulty during a face/car discrimi-
nation task. Specifically, we superimpose a flickering stimu-
lus of 15Hz upon a sequence of images and simultaneously
analyze the time course and spatial distribution of exogenously-
induced SSVEPs and endogenous alpha oscillations as a function
of image phase coherence. Our results demonstrate that the
phase coherence of the stimulus, being our surrogate for the
difficulty of the visual discrimination, differentially modulates

Frontiers in Human Neuroscience

www.frontiersin.org

January 2013 | Volume 7 | Article 9 | 1


http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00009/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=YUNLI_1&UID=75380
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BinLou&UID=75342
http://community.frontiersin.org/people/XiaorongGao/77987
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PaulSajda&UID=2667
mailto:psajda@columbia.edu
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Lietal.

exogenously-induced SSVEPs and endogenous alpha oscillations
at different times and that this may reflect underlying information
processing flow during the visual discrimination task.

MATERIALS AND METHODS

SUBJECTS

Eleven right-handed subjects (three females and eight males;
mean =+ SD age, 26.5 &= 5.9 years) with normal or corrected-to-
normal vision participated in this study. Informed consent in
accordance with the guidelines and approval of the Columbia
University Institutional Review Board was obtained from all
subjects.

STIMULI AND EXPERIMENTAL PROCEDURE

Stimuli were presented in the center of a 17" LCD monitor with
a refresh rate of 60 Hz. A set of 17 face (Max Planck Institute
face database; Troje and Biilthoff, 1996) and 17 car grayscale
images (image size, 512 x 512 pixels; 8 bits/pixel) were used. The
car image database was the same used in Philiastides and Sajda
(2006) and was constructed by taking images from the inter-
net, segmenting the car from the background in each, converting
the image to grayscale and then resizing it to be comparable in
size to the face images. The pose of the faces and cars was also
matched across the entire database and was sampled at random
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(left, right, center). Equal luminance and contrast were used.
All images had identical magnitude spectra (average magnitude
spectrum of all images in the database), and their correspond-
ing phase spectra were manipulated using the weighted mean
phase (WMP) (Dakin et al., 2002) technique to generate a set of
images characterized by their percentage of phase coherence. In
this experiment, four different phase coherence levels (30, 35, 40,
and 45%) were utilized to create tasks of different difficulty levels
(Figure 1B).

The schematic of the experimental design is shown in
Figure 1A. Face/car (i.e., “task”) images were presented for 50 ms
followed by a random inter-stimulus interval (ISI) uniformly dis-
tributed between 2000 and 3000 ms. During the ISI, a uniform
grayscale image was presented as the background, which had
the same size and average grayscale value as the task images.
Frequency tagging was done by superimposing a total of 900
randomly-placed small white squares (each 3 x 3 pixels) on
the stream of images (tagging was continuous across the task
images and ISI), with the white squares having a flicker fre-
quency of 15Hz. 15Hz was chosen so that endogenous alpha
power could also be measured. The ISIs was randomly gener-
ated after each trial, and task images were not phase-locked to the
15 Hz flicker, which effectively reduced the interaction between
the event related potentials (ERPs) and SSVEPs.

2-3s

15

SSVEP (15Hz)
14

13

Alpha center frequency
(10.25Hz)

1.2

11

Amplitude (V)

0.9

% Phase Coherence

FIGURE 1 | Schematic representation of the experimental paradigm, the
methodology for effecting decision difficulty and an example amplitude
spectrum showing exogenous and endogenous frequencies of interest.
(A) Within a block of trials, subjects were instructed to fixate on the center of
the screen. A series of face and car images at four phase coherence levels
were shown in random order. Each image was presented for 50 ms followed
by an interstimulus-interval (ISl), randomized in the range of 2000-3000ms.
Subjects were instructed to discriminate, as fast as possible, the image

class (face or car) via a keyboard response. 15 Hz flickering dots were
superimposed across the images for the entire experiment. Image onsets

0.8 . L
5 10 15
Frequency (Hz)

20

and the flickering dot pattern were not phased-locked. (B) Decision difficulty
was controlled by changing the phase coherence in the face/car images (see
“Materials and Methods"” for details). Shown is an example of one of the
images at the four different phase coherence levels (30, 35, 40, and 45%)
used in the experiment. (C) The amplitude spectrum of EEG at electrode PO8
obtained by Fourier analysis for one subject. The endogenous oscillation was
at the alpha frequency for the individual subject, which in this case was
10.25Hz, while the exogenous oscillation at 15 Hz was the SSVEP produced
by the flickering dots. Modulation of these amplitudes during the experiment
was the focus of our analysis.
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Subjects were instructed to discriminate task images as rapidly
as possible. Each experimental block consisted of 34 trials of face
and car images at each of four different phase coherence levels,
with images presented randomly within a block. In each experi-
ment, there were six blocks in total. When a task image appeared,
subjects reported their decision regarding the category of the
image by pressing a button on the keyboard, with the left arrow
key for cars and right arrow key for faces, using one of two fingers
on their right hands. Subjects were instructed to maintain cen-
tral fixation throughout the entire experiment and to respond as
quickly and accurately as possible.

DATA ACQUISITION

Participants were seated in an electrostatically shielded room
and positioned at a 1 m distance from the screen. EEG was
recorded using a Sensorium 84-channel Ag/AgCl electrode sys-
tem (Sensorium Inc., Vermont, USA). The ground channel was
located between the eyebrows, and all channels were referenced to
the left mastoid. All impedances were below 20 k2 and the sam-
pling rate was 1000 Hz. Stimulus events and motor responses were
recorded on separate channels.

DATA PROCESSING

Epochs were extracted according to the task events. Trials with
strong eye movements or other movement artifacts were manu-
ally rejected, resulting in less than 20% trials rejected. Only EEG
from correct trials with reaction times below 1000 ms was ana-
lyzed. During the behavioral and EEG data analysis, face and car
trials at the same coherence level were considered equal in diffi-
culty. In other words, there were only four difficulty conditions,
corresponding to the four phase coherence levels.

For every subject, decision accuracy and mean reaction time
from correct trials at each phase coherence level were calculated.
To test the consistency of behavioral performance across subjects,
a balanced One-Way ANOVA, testing the effect of phase coher-
ence levels (30, 35, 40, and 45%), was performed. Also, paired
t-tests were performed between each pair of phase coherence
levels.

Since SSVEP is primarily seen in visual cortex (Regan, 1989;
Vialatte et al., 2010 review) and alpha oscillations were predom-
inantly found at parietal-occipital areas (Adrian and Matthews,
1934; Palva and Palva, 2007), we re-referenced the EEG to elec-
trode Fz since it is distant from visual cortex. The amplitude
spectrum of EEG waveforms at electrode PO8 obtained by Fourier
analysis (Figure 1C) illustrates the SSVEP at 15 Hz relative to the
alpha power. We confirmed that each subject’s central alpha fre-
quency is well separated from the exogenous oscillation at 15 Hz
induced by the flickering stimuli.

The time course of SSVEP amplitude at each phase coherence
level was quantified by the following steps.

1. Narrow band pass filtering was done using a zero-phase filter
within the range of 15 & 1.6 Hz to isolate the SSVEP signal.

2. Calculating the analytic signal of the filtered EEG by applying
the Hilbert transform.

3. Estimating the instantaneous SSVEP amplitude from the com-
plex amplitude of the analytic signal.
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4. Normalizing the instantaneous SSVEP amplitude by subtract-
ing the averaged amplitude of a baseline from —200 to 0 ms
before the target and then dividing by the same baseline
(Andersen and Miiller, 2010).

Specially, we assumed the baselines of all conditions are the
same, and therefore only calculated one baseline for each subject
by averaging all trials across all conditions. The result is the nor-
malized instantaneous SSVEP amplitude reflecting the changes in
SSVEP amplitude relative to the baseline, which ensures that each
subject contributes, more or less, equally to the average, avoiding
the group results from being dominated by a single subject.

Evidence from EEG, magnetoencephalography (MEG) and
fMRI suggests the existence of face discriminating activity in right
lateral occipital cortex (rLOC, near electrode PO8) (Bentin et al.,
1996; Jeffreys, 1996; Kanwisher et al., 1997; Liu et al., 2000),
while a study by Philiastides and Sajda (2007) demonstrated a
connection between the LOC and decision difficulty. To iden-
tify electrodes that were most relevant to both discrimination
and difficulty in the task, we analyzed the spatial distributions of
the ERP amplitude differences at 170 ms post-stimulus between
face and car trials at the 45% phase coherence level (Figure 2A),
as well as at 220 ms post-stimulus comparing the 30 and 45%
phase coherence levels (Figure 2B). This approach was taken since
previous studies have demonstrated that the difference between
categories was characterized by the amplitude difference of the
N170 component, while the difficulty effect was quantified by
the amplitude difference of the D220 component (Philiastides
and Sajda, 2006; Philiastides et al., 2006). Our primary analysis
of endogenous and exogenous frequency modulations was then
done on the electrode with the most significant selectivity for
face vs. car and task difficulty (i.e., sensitivity to phase coherence
level). This turned out to be electrode PO8. Additional analy-
sis showing the spatial distribution of the modulations across all
electrodes is reported in Figures 5 and 7.

To identify time periods in which phase coherence had a
significant effect, we performed a set of statistical tests on the
normalized SSVEP amplitude. First, paired t-tests between phase
coherence levels of 30 and 45% were conducted over each time
point from 0 to 800 ms post-stimulus on all electrodes. Next,
we adopted a modified cluster-analysis approach to correct for

45%-30%

B
2 0.7
N
PO
-2 -0.7

FIGURE 2 | Spatial distributions of ERP amplitude differences between
(A) face and car trials at 170 ms post-stimulus, (B) phase coherence
levels of 45 and 30% at 220 ms post-stimulus.
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multiple comparisons and identify time periods within which
the SSVEP amplitude between phase coherence levels was sig-
nificantly different. Specifically, the time points over which the
null hypothesis was rejected at a significance level of 0.05 were
selected and clustered based on their temporal adjacency. The
maximum temporal period across all contiguous clusters were
used as for constructing the cluster-level statistics. The data were
then randomized across two phase coherence levels (30 and 45%)
to generate shuffled cluster-level statistics. We performed all pos-
sible permutations of the 11 subjects to generate the shuffled
cluster-level statistics. Finally, corrected p-values were calculated
by comparing the values of the cluster-level statistics of the origi-
nal data against the distribution of the shuffled cluster-level statis-
tics across permutations (Maris and Oostenveld, 2007; Rohenkohl
and Nobre, 2011). Subsequently, the time periods with corrected
p-values less than 0.05 at electrode PO8 were selected for analyz-
ing the spatial distribution of SSVEP amplitude in parietal and
occipital areas at each phase coherence level.

The effect of phase coherence on the alpha band was quantified
using the same processing steps as the SSVEP analysis, described
above, except that the filtering band was specific for each subject,
in terms of their alpha center frequency 1.6 Hz. The mean alpha
center frequency across all subjects was 10.5Hz (SD, 1.0 Hz).
Since motor related oscillations (mu rhythm) share a common
frequency band (8-12 Hz) with endogenous alpha oscillations,
response-locked data of both SSVEP and alpha oscillations were
also analyzed to investigate the effect of the motor response.

RESULTS

BEHAVIORAL RESULTS

Averaged behavioral performance across all subjects at each phase
coherence level is shown in Figure 3. It is clear that reaction
time is increased (Figure 3A) and decision accuracy is decreased
(Figure 3B) as phase coherence level decreases. A balanced One-
Way ANOVA demonstrates a significant effect of phase coherence
level on reaction time [F3, 36) = 2.94, p < 0.05] and decision

Oscillations modulated by task difficulty

accuracy [Fg3, 40y = 17.93, p < 0.001]. A set of paired t-tests
demonstrates that there is a significant difference between any two
phase coherence levels for reaction time (p < 0.01) and decision
accuracy (p < 0.01). Behavioral results thus clearly demonstrate
a significant effect of phase coherence on decision difficulty as
measured via reaction time and accuracy.

EFFECT OF PHASE COHERENCE ON EXOGENOUS OSCILLATIONS

We tracked the time course of the SSVEP amplitude as a way
to explore how exogenous oscillations are modulated by phase
coherence and therefore decision difficulty. Figure 4A shows the
time course of the normalized SSVEP amplitude at electrode PO8.
There is a suppression of normalized SSVEP amplitude imme-
diately after stimulus onset. Using a paired t-test between phase
coherence levels of 30 and 45%, a significant effect of phase
coherence (p < 0.05) was observed from roughly 266 to 466 ms
post-stimulus. This time period was confirmed to be significant
with multiple comparisons correction using cluster-level statis-
tics (p < 0.05). The average SSVEP amplitude in this time period
at electrode POS for each of the four phase coherences is pre-
sented in Figure 4B. As phase coherence increases, the average
SSVEP amplitude also increases, indicating a greater suppression
of SSVEP amplitude at lower phase coherence levels. The aver-
age SSVEP amplitudes in this period at phase coherence levels
of 30 and 35% are significantly different from those at a phase
coherence level of 45% (paired ¢-test between 30 and 45% phase
coherence levels: £(19) = 3.16, p = 0.010; paired t-test between 35
and 45% phase coherence levels: t(19) = 2.63, p = 0.025).

The scalp topologies of the average SSVEP amplitude from
266 to 466 ms, for each of the four phase coherence levels, are
plotted in Figure 5A. The reduction of SSVEP power is mainly
in occipital areas, and this reduction is greater for lower phase
coherences. The spatial distribution of the difference in SSVEP
amplitude between 30 and 45% coherence levels (Figure 5B)
illustrates that phase coherence/task difficulty effects are sub-
stantial in the region near electrode POS8. The p-value at each

>
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30%
Phase Coherenece

35% 40% 45%

at each phase coherence level. Error bars indicate the standard error.

FIGURE 3 | Behavioral results. (A) Mean reaction time averaged over subjects at each phase coherence level. (B) Average decision accuracy across subjects
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FIGURE 4 | Effect of decision difficulty on exogenous oscillations as
measured by normalized SSVEP amplitudes at electrode PO8. (A) Time
course of normalized SSVEP amplitude, shown for each of four phase
coherence levels. The shaded area indicates the time period (266-466 ms)
having a significant difference in normalized SSVEP amplitude between phase
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coherence levels of 30 and 45% as assessed by paired t-test across subjects
and cluster-level statistics (p < 0.05). The vertical dashed line indicates the
onset of task images. (B) Average SSVEP amplitude from 266 to 466 ms at
each phase coherence level. Asterisks indicate significant differences

(paired t-test, p < 0.05).
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FIGURE 5 | Spatial distribution of exogenous oscillatory modulations,
within a 266-466 ms time window, as a function of decision difficulty.
(A) Scalp topographies showing the scalp distribution of average SSVEP
amplitude for the four phase coherence (i.e., difficulty) levels. (B) The average
difference in SSVEP amplitude between phase coherence levels of 30 and

apnyijdwe pazijewioN

5

c 0.2!
Q Hoos
0.0:

1

anjen 4

45% (30-45%). (C) The p-values at each electrode location, assessing the
average SSVEP amplitudes via a paired t-test between phase coherence
levels of 30 and 45%. Lower p-values indicate more significant differences in
mean SSVEP amplitude modulations between the 30 and 45% phase
coherence levels.

electrode location, as assessed by a paired t-test, is plotted in
Figure 5C. In occipital areas, only electrodes around PO8 show
significant effects (p < 0.05) of phase coherence/task difficulty.

EFFECT OF PHASE COHERENCE ON ENDOGENOQUS OSCILLATIONS
Changes in normalized endogenous alpha oscillations at elec-
trode PO8 are shown in Figure6A. The alpha amplitude

first increase in the 250ms time period after the stimu-
lus, and then falls below the baseline. However, only the
time period from 397 to 731 ms shows a significant dif-
ference between phase coherence levels of 30 and 45%, as
assessed by a paired t-test (p < 0.05) and cluster-level statis-
tics (p < 0.05). The average suppression in this time period
increases with increasing phase coherence levels, which is the
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FIGURE 6 | Effect of decision difficulty on endogenous oscillations as
measured by normalized alpha amplitude at electrode PO8. (A) Time
courses of normalized alpha amplitude, shown for each of four phase
coherence levels. The shaded area indicates the time period (397-731 ms)
having a significant difference in normalized alpha amplitudes between phase
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coherence levels of 30 and 45% as assessed by paired t-test across subjects
and clusterlevel statistics (p < 0.05). The vertical dashed line indicates the
onset of task images. (B) The average alpha amplitude from 397 to 731 ms at
each phase coherence level. Asterisks indicate significant differences (paired
t-test, p < 0.05).
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FIGURE 7 | Spatial distribution of endogenous oscillatory modulations,
within 397-731ms time window, as a function of decision difficulty.
(A) Scalp topographies showing the scalp distribution of average alpha

amplitude for the four phase coherence (i.e., difficulty) levels. (B) The
power difference of average alpha amplitude between phase coherence
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levels of 30 and 45% (30-45%). (C) The p-values at each electrode
location, assessing the average alpha amplitudes via a paired t-test
between phase coherence levels of 30 and 45%. Lower p-values indicate
more significant differences in mean alpha amplitude modulations between
the 30 and 45% phase coherence levels.

reverse of the difficulty modulation on exogenous oscillations
(Figure 6B). A significant difference was only found between
30 and 45% phase coherence levels (paired t-test: t(19) = 3.36,
p = 0.007).

As in our analysis of SSVEP, we calculated the scalp dis-
tributions of average alpha amplitude in the significant time
period (397-731 ms) at each phase coherence level (Figure 7A).

Alpha suppression is centered in parietal and occipital regions,
with suppression being greater at high phase coherence levels.
By plotting the difference in alpha power between 30 and 45%
phase coherence levels and the scalp maps of p-values, as shown
in Figures 7B and C, we can see that the modulation of the alpha
power by phase coherence/task difficulty appears in right lateral
parietal-occipital regions.
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FIGURE 8 | Effects of decision difficulty on response-locked data. (A)
SSVEP and (B) alpha oscillations at electrode PO8. The shaded area indicates
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with reaction time. Asterisks indicate significant differences (paired t-test,
p < 0.05).

EFFECT OF THE MOTOR RESPONSE

When analyzing the data by aligning trials according to their reac-
tions times, effects of decision difficulty on exogenous induced
SSVEP and endogenous alpha oscillations can still be observed
between the highest and lowest phase coherence levels. Similar
to the stimulus-locked analysis, a lower SSVEP power for 30%
phase coherence trials at electrode PO8 is observed roughly
from —500 to —400 ms before the response (Figure 8A), while
a reversed effect of task difficulty on endogenous alpha oscil-
lations is seen lasting from approximately —200 ms before the
response until 100 ms after the response (Figure 8B). The tim-
ing of the period that showed a significant difference between
difficulty levels was consistent with results of the average reac-
tion time and stimulus-locked analysis. However, the duration
was shorter comparing with the corresponding stimulus-locked
analysis.

DISCUSSION

The results of the present study demonstrate that task difficulty,
represented here via manipulation of the phase coherence of
the visual stimulus, modulates the amplitudes of exogenously
induced SSVEPs and endogenous alpha oscillations in different
ways and at different times. In our experiment, the amplitude
modulations of SSVEP are in response to the task-irrelevant 15 Hz
flickers, while endogenous alpha oscillations reflect the response
of an intrinsic rhythm to the face vs. car decision. To compare the
effects of task difficulty on SSVEP and endogenous alpha oscilla-
tions, we will now summarize several of our observations. First,
SSVEP amplitude after the stimulus is immediately decreased,
while there is a delay of 250 ms before suppression of alpha ampli-
tude. Second, the time periods reflecting significant modulation
by task difficulty are 266—466 ms and 379-731 ms for SSVEP and
alpha oscillations respectively. Third, the correlation between the
phase coherence level and the amplitude suppression for SSVEP is
opposite to what is seen for alpha. With the increase of the phase
coherence level, the reduction of SSVEP amplitude is decreased,
while the reduction of alpha amplitude is increased. Fourth, the

SSVEP suppression appears in occipital regions, and the diffi-
culty effect is most significant near electrode PO8. Alpha changes,
conversely, are widespread over a broader region in parietal and
occipital areas though the most significant modulation of alpha
suppression by decision difficulty is primarily in right lateral
parietal-occipital areas.

Our findings showed that the suppression of SSVEP amplitude
from 266 to 466 ms was greater at lower phase coherence lev-
els. SSVEP can be used as an objective measure of the allocation
of attentional resources (Vialatte et al., 2010 review). The facil-
itation and suppression of the SSVEP response to the attended
and ignored stimuli, respectively, was reported in a study by
Andersen and Miiller (2010). Previous work using exogenous fre-
quency tagging to investigate to what extent emotional pictures
bias competition for attentional processing resources reported a
larger decrease in SSVEP amplitude when visual processing load
was increased (Miiller et al., 2008, 2011; Attar et al., 2010). In
addition, previous studies have suggested that additional atten-
tional resources are needed to maintain decision accuracy when
the task becomes more difficult (Binder et al., 2004; Grinband
et al., 2006; Philiastides et al., 2006; Heekeren et al., 2008 review).
Therefore, our observation that there is a greater reduction of
SSVEP amplitude for difficult decisions can be interpreted as a
neural correlate of this competition for attentional processing
resources and supports the hypothesis of the need for more atten-
tional resources when making a difficult decision. Furthermore,
this greater SSVEP suppression at low coherence levels is con-
sistent with the perceptual load hypothesis, which says that
increased perceptual difficulty of a visual task attenuates the pro-
cessing of task-irrelevant, unattended distractor stimuli (Vi et al.,
2004; Lavie, 2005).

Our analysis showed that normalized SSVEP amplitudes
mainly decreased in occipital regions, coinciding with areas that
had strong SSVEP responses (Regan, 1989; Vialatte et al., 2010
review). We also found SSVEP suppression in electrodes in close
proximity to POS8 exhibited the most significant difficulty effect in
our face-car discrimination task. This is consistent with previous
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findings that rLOC is involved in face discrimination and related
to decision difficulty for this type of task (Bentin et al., 1996;
Jeffreys, 1996; Kanwisher et al., 1997; Liu et al., 2000; Philiastides
and Sajda, 2007).

In our study, the suppression of alpha oscillations appeared
in parietal-occipital areas, and this topographic distribution of
alpha desychronization has been previously reported (Klimesch
et al., 1997; Doppelmayr et al., 2002). The right hemisphere in
parietal-occipital regions was significantly affected by decision
difficulty (Figure 7), which is possibly related to the right hemi-
sphere dominance for face perception (Rhodes, 1985; Luh et al.,
1991; Yovel et al., 2008). Object recognition studies found that
alpha desynchronization over the right lateral occipital regions
exhibited maximal values (Freunberger et al., 2008) and corre-
lated with the proportion of correct object detections (Vanni
et al., 1996). Thus both the endogenous and exogenous effects
yield scalp topologies that are consistent with the task, sug-
gesting that the oscillations themselves are linked to specific
cortical areas involved in processing the stimuli and making the
decision.

Similarly to Klimesch et al. (2007 review), the time course
of endogenous alpha oscillations in our study showed a syn-
chronization at 250 ms post-stimulus and a desynchronization
around 350-750 ms. The alpha suppression showed the most sig-
nificant difficulty effect in the time period of 379-731ms, as
it occurred during the time of the late component and motor
response previously identified for this type of face-car discrimi-
nation task using single-trial analysis of EEG (Philiastides et al.,
2006). Previous studies on object recognition/detection showed
that the magnitude of alpha desynchronization was related to
semantic information processing, and that the recognition of
meaningful objects elicited a larger alpha suppression than that
for meaningless objects (Klimesch et al., 1997; Vanni et al., 1997;
Mima et al., 2001; Freunberger et al., 2008). In our study, the
stimuli at high phase coherence level contained more mean-
ingful information than that at the low phase coherence level,
since task difficulty was modulated by the percentage of phase
coherence. Accordingly, the pattern of alpha suppression, i.e.,
larger alpha suppression at high phase coherence levels, may be
related to semantic information processing. It is also worth men-
tioning that a study by Siegel et al. (2007, 2011) found that
visual gamma oscillations increased with a decrease in task diffi-
culty and that gamma-band enhancement was accompanied by a
decrease in alpha-band activity. This finding supports our results
showing that decreasing task difficulty further suppresses alpha
oscillations.

In this study, the difficulty of the discrimination task was
manipulated by varying the phase coherence in the images. A
study by Banko et al. (2011) proposed that the effect of phase
noise on sensory processing should be dissociated from overall
decision difficulty, and suggested that the difficulty component
seen in Philiastides et al. (2006) was merely the noise-induced
modulation of a bottom-up P2 visual component. However,
(Philiastides et al., 2006) explicitly used a modified face vs. car
discrimination experiment using colorized images to show that
the effect was on decision difficulty since it was present even
while keeping the stimulus unchanged, thus reflecting that this

Oscillations modulated by task difficulty

difficulty component clearly was also indexing top-down task
related processes and was not simply a function of the sensory
noise. Our results are interpretable within the context of “task-
difficulty” regardless of whether it is defined bottom-up by the
stimulus signal-to-noise and/or top-down by the task.

Additionally, the results from a response-locked analysis
showed similar waveforms for the highest and lowest phase
coherence levels regardless of the systematic latency differences
due to different reaction times for the different difficulty levels
(Figure 8). Though the endogenous alpha oscillations in parietal-
occipital areas might include a superposition of mu rhythms
due to volume conduction and the significant effect for endoge-
nous alpha activity was widespread over a region in right lateral
parietal-occipital areas (Figures 7B,C), near to the motor cortex,
our results from the response-locked analysis showed a significant
modulation of the endogenous oscillations by task difficulty.

A potentially alternative interpretation of our work is that
the phase coherence manipulation we employ creates a diffuse
partial occlusion that drives processes associated with perceptual
closure. Though fragmented line drawings and not phase coher-
ence are usually used to investigate perceptual closure (Doniger
et al., 2000; Sehatpour et al., 2008), it is possible that the effects
we observe are the same one might see in a perceptual clo-
sure experiment. Also intriguing is the similarity in the timing
of the difficulty component at 220 ms (Philiastides et al., 2006)
and the Nl closure component at 250 ms (Doniger et al., 2000).
Though the phase coherence manipulation effects behavioral
accuracy and reaction time in a way that one would expect if
directly affecting difficulty, further work is needed to investi-
gate whether the manipulation is specific to the subject needing
to perceptually close a stimulus for recognition or if it acts
on more general processes of evidence accumulation in a noisy
stimulus.

In summary, using our experimental paradigm we were able to
analyze SSVEP and endogenous alpha oscillations simultaneously
while subjects performed a face-car discrimination task where the
difficulty of the decision was varied on a trial-to-trial basis. We
found that the SSVEP reduction was positively correlated with
decision difficulty, while the correlation between the suppres-
sion of endogenous alpha oscillations and decision difficulty was
negative. The findings indicate that the amplitude modulation
of SSVEP reflects the competition for the attentional process-
ing resources and support the hypothesis of the need for more
attentional resources when making a difficult decision, while
endogenous alpha oscillations may be related to semantic infor-
mation processing. Lastly, our results demonstrate that exogenous
and endogenous oscillations can be simultaneously measured to
track the changes in ongoing stimulus-driven and endogenous
activities during visual discriminations of varying difficulty.
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