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Cognitive neuroscience investigates how
cognitive function is produced by the
brain. Seen from a reverse angle, cognitive
neuroscience studies how brain activity
is modulated by the execution of cog-
nitive tasks. In the former case, cogni-
tive function is characterized in terms
of neural properties associated with the
execution of given cognitive tasks, while
in the latter it can be thought of as
a probe exposing information on brain
dynamics.

Brain activity displays dynamics inde-
pendently of whether a particular task is
carried out or not. The question is then:
should cognitive neuroscience get inter-
ested in the properties of resting brain
activity? And, if so, how and to what extent
can studying resting brain activity help
characterizing the neural correlates of cog-
nitive processes?

TASK-INDEPENDENT CORTICAL
ACTIVITY PROVIDES A NULL
CONDITION REPRESENTED BY THE
BRAIN’S PROPERTIES AT REST
In the functional neuroimaging litera-
ture, resting state activity is often con-
sidered as complementary, in opposition
as it were, to task-related brain activ-
ity. Insofar as brain activity is essen-
tially defined in terms of time-averaged
topography, resting brain activity is asso-
ciated with patterns of regional blood
flow levels. In “cognitive subtraction” neu-
roimaging studies, where the neural cor-
relates of a particular cognitive function
are obtained by identifying differences in
regional blood flow activity between tasks
differing only in terms of that function,
rest is thought of as a passive null condition,

serving a baseline function against which
more controlled cognitive processes can be
gauged.

The notion of rest as a passive state
has been challenged by functional neu-
roimaging studies showing that a set of
brain regions, comprising medial pre-
frontal and posterior cingulate cortices,
precuneus, inferior parietal and lateral
temporal cortices, displays elevated activ-
ity at rest and a systematic decreased activ-
ity during cognitively demanding tasks
(Raichle et al., 2001). The topographical
consistency of these decreases led some
authors to posit the existence of an active
organized baseline mode of brain function
that would constitute a fundamental brain
functioning default mode (Gusnard et al.,
2001).

While both local activity and func-
tional connectivity at rest have been
shown to be altered in various disorders,
including schizophrenia, Alzheimer’s dis-
ease, and autism (Buckner et al., 2008),
and to be sensitive to various pharma-
cological challenges (Anand et al., 2005;
Hahn et al., 2007), the functional sig-
nificance of resting activity for cognitive
function is still debated. It has been pro-
posed that the level of resting activity is
functionally important, with changes pro-
duced by task demands representing just
the “tip of an iceberg” (Raichle et al.,
2001; Fox and Raichle, 2007). However,
it has been argued that not only has
rest no impact upon subtractions or
other measurements, but there is also
no evidence for the level of energy con-
sumption to have implications for cogni-
tive neurosciences (Morcom and Fletcher,
2007).

SPONTANEOUS ACTIVITY IS NOT
STRUCTURELESS, AND IS TIGHTLY
INTERTWINED WITH
STIMULUS-INDUCED ACTIVITY
While in the functional neuroimaging
literature rest is defined in terms of acti-
vation levels and time-averaged topogra-
phy, electrophysiological studies examined
dynamical properties of brain activity at
rest and its relationship with task-related
brain activity.

Ongoing activity encompasses a set
of dynamically switching cortical states,
which are continuously reedited across the
cortex (Kenet et al., 2003). This re-editing
process is not random, but contains rich
spatiotemporal structure (Cossart et al.,
2003; Beggs and Plenz, 2004; Ikegaya et al.,
2004; Dragoi and Tonegawa, 2010). The
observed power-law distribution was sug-
gested to indicate that the system self-
organizes into a critical state (Chialvo,
2008), where computational capabilities,
information transmission and storage, and
sensitivity to sensory stimuli are optimized
(Haldeman and Beggs, 2005; Kinouchi and
Copelli, 2006).

Spontaneous activity massively con-
tributes to the variability observed in
stimulus responses (Arieli et al., 1996;
Kisley and Gerstein, 1999). Network back-
ground activity biases stimulus-induced
activity (Azouz and Gray, 1999), and keeps
neurons in a permanent state of pre-
paredness for fast responses to variations
of synaptic input, allowing neural net-
works to switch among different regimes
of activity (Salinas, 2003). Conversely,
environmental demands modulate back-
ground oscillations (Pfurtscheller and
Lopes da Silva, 1999), and sensory stimuli

Frontiers in Human Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 45 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00045/full
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DavidPapo&UID=73751
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Papo Cognitive neuroscience and resting state

push ongoing oscillatory activity toward
stimulus-specific configurations (Tsodyks
et al., 1999).

The relationship between ongoing and
task-induced activity goes beyond the level
of mutual influence. The repertoire of
functional networks utilized by the brain
in action is continuously and dynami-
cally active even at rest (Smith et al.,
2009). Likewise, population responses to
somatosensory stimuli were found to be
part of the repertoire of observed sponta-
neous activity (Luczak et al., 2009), and
the spatiotemporal correlations of spikes
in the visual cortex to be similar at rest and
when observing natural scenes (Fiser et al.,
2004). More generally, the dynamic range
of a neural network, i.e., the range of stim-
ulus intensities resulting in distinguishable
responses (Kinouchi and Copelli, 2006),
can be related to its spontaneous activity
(Shew et al., 2009). The organization of
spontaneous activity reflects past inputs,
modulates future network responses (Ohl
et al., 2001; Yao et al., 2007), and is predic-
tive of performance on a range of cogni-
tive tasks (Fox et al., 2007; Kounios et al.,
2008).

While stimuli can reveal the proper-
ties of the system, how the brain explores
the various functional configurations rep-
resenting its dynamic repertoire in the
absence of external stimulations is far less
understood.

RESTING AND TASK-RELATED
ACTIVITY ARE TWO SIDES OF THE
SAME COIN
The relationship between spontaneous
and stimulus-related brain activity can be
seen as a manifestation of the fluctuation-
dissipation theorem (FDT). The FDT
establishes a general relationship between
the (non-equilibrium) response of the sys-
tem to small external perturbations, and
the (equilibrium) internal autocorrela-
tion of fluctuations of some observable
of the system in the absence of the per-
turbations (Kubo, 1966). Specifically, the
FDT states that, in an equilibrium sys-
tem, for an observable X (e.g., the local
amplitude of a signal, or the coupling
strength between two brain sites), the ratio
between the two-time correlation function
CX(t, t′) = 〈X(t)X(t′)〉 in the absence of
perturbations and the integrated response
χ(t, t′) = ∫ t

t′ RX(t, τ) dτ, (where RX(t −

t′) measures how X responds at time t to a
small perturbation at time t′), is given by
χ(t, t′)/CX(t, t′) = −1/T, where T is the
system’s scalar temperature. Thus, one may
in principle understand the evoked response
associated to a stimulus, without applying
it, by observing suitably defined correlation
properties of brain fluctuations at rest.

However, resting brain activity does not
fulfill the equilibrium requirement of the
classical formulation of the FDT, as indi-
cated by its generic statistical and dynam-
ical properties typical of non-equilibrium
systems, viz. non-Gaussian (Freyer et al.,
2009), temporal and spatial fractal statis-
tics, i.e., with similar properties at different
scales (Novikov et al., 1997; Linkenkaer-
Hansen et al., 2001; Gong et al., 2002;
Freeman and Barrie, 2000; van de Ville
et al., 2010), and intermittent dynamics,
with alternating periods of quiet laminar
and bursty chaotic activity (Gong et al.,
2007), aging and weak ergodicity break-
ing, a regime where correlations are non-
stationary and all possible states are still
accessible, but some may require exceed-
ingly long times to visit (Bianco et al.,
2007). Conversely, the brain responds to
changing external fields not with a sin-
gle fast relaxation time, but with a series
of relaxations spanning a broad range of
scales (Lundstrom et al., 2008).

The FDT can be generalized to non-
equilibrium systems, taking an explicit
form which depends on the shape of the
invariant probability distribution toward
which the system relaxes (Marini Bettolo
Marconi et al., 2008), and even to systems
lacking a stationary correlation function
(Crisanti and Ritort, 2003; Allegrini et al.,
2007).

The way the FDT is violated can
be evaluated by plotting χ(t, t′) against
CX(t, t′) (Martin et al., 2001). For equi-
librium systems, this yields a straight line
with slope −1/T. Out-of-equilibrium sys-
tems can have a more complex χ − CX

relationship, depending on the particu-
lar properties of the system. For instance,
multiscaleness and aging lead to a non-
linear χ − CX plot (Crisanti and Ritort,
2003), and a corresponding spectrum of
slopes. FDT violations expose task-related
brain properties. For example, aging and
weak ergodicity breaking predicts maxi-
mal brain responses for perturbations with
similar properties (Aquino et al., 2011).

COGNITIVE FUNCTION CAN BE
DESCRIBED IN TERMS OF GENERIC
PROPERTIES OF ONGOING BRAIN
ACTIVITY
While the notion that cognitive function
is a product of neural activity constitutes
a firm tenet of modern cognitive neuro-
science, the idea that it can be expressed
in terms of generic brain properties lies far
from the mainstream thinking in the field.
Reformulating cognitive function in terms
of generic properties of ongoing brain
activity has two important implications.

First, it allows describing complex cog-
nitive processes in which a promoting stim-
ulus has a short-lived or labile influence
on observed activity. For both conceptual
and computational reasons, cognitive neu-
roscience has so far mainly concentrated
either on fast event-related relaxational
processes, such a perception, or on sta-
tionary non-relaxational processes, e.g.,
memory processes. In the former case, the
brain can be considered as a more or less
perfectly elastic excitable medium, exit-
ing its stationary quiet state only in the
presence of perturbations above a given
threshold, which make a transient dynam-
ical cycle observable. Observed activity is
typically modeled as a signal blurred by
additive uncorrelated Gaussian noise, and
the former is extracted from the second
by inter-trial averaging, the signal-to-noise
ratio improving with the square root of
the number of trials. In the latter case, the
brain can be treated as a quasi-equilibrium
system, and the temporal aspect drastically
simplified.

On the other hand, complex phenom-
ena including slow relaxation (e.g., con-
ceptual forms of learning), non-relaxation
(e.g., thinking or reasoning), or essen-
tially transient (e.g., mind-wandering)
processes, which are in essence subtly
modulated ongoing activity, are typically
treated as fast relaxational processes, even
though fundamental hypotheses on the
properties of brain activity (excitability)
and of the signal noise (e.g., additiv-
ity, Gaussianity, uncorrelatedeness, and
absence of memory), do not apply. This
supposes methodological procedures (e.g.,
inter-trial averaging), and experimental
adjustments (e.g., smoothing response
times, or studying very time-limited event-
related parts of a reasoning episode), that
limit the variety and dynamical character
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of cognitive processes that are being
studied.

Second, it affords a wealth of variables
through which task-induced reorganization
of brain activity may become observable.
Studying task-related brain activity at the
long time scales typical of single episodes
of learning or reasoning, but also of entire
experiments of perceptual phenomena,
forces into considering spatiotemporal
fluctuations of ongoing activity spanning
many orders of magnitude. These fluc-
tuations are not mere noise; rather, they
reflect the brain’s exploration of its mul-
tiscale dynamic repertoire (Ghosh et al.,
2007; Deco et al., 2011).

Ongoing brain activity may be char-
acterized in terms of known properties
such as fractal, non-Gaussian statistics,
and intermittency illustrated in the previ-
ous paragraph, as well as other properties,
e.g., time-reversal symmetry (Gaspard,
2005), path dependence, hysteresis, and
hierarchical structure (Sherrington, 2009),
which have not yet received the attention
of cognitive neuroscientists. This provides
a fundamental physical meaning to brain
activity, e.g., multifractal fluctuations have
a thermodynamic interpretation (Arneodo
et al., 1995), while time-reversal asym-
metry quantifies the entropy production
of the generating mechanism (Gaspard,
2005).

In turn, task-related brain activity can
be described in as yet non-standard ways
as modulations of these properties, e.g.,
in terms of modulations of probability
density functions and the way observed
time series converge to these distribu-
tions; of symmetries (e.g., scale invariance,
time-reversal), so that cognitive processes
may differ by a symmetry or a symme-
try breaking (Freeman and Vitiello, 2006);
of temporal correlations and transitions
between different scaling regimes (Buiatti
et al., 2007; He et al., 2010; Ciuciu et al.,
2012; Zilber et al., 2012), or universality
classes, which comprise macroscopic phe-
nomena with the same scaling properties
(Bhattacharya, 2009), mirroring dynam-
ical transitions in the system’s behavior
(Burov and Barkai, 2008); of degree of
ergodicity, i.e., ways of visiting the space of
possible states; of degree of FDT violation
(Cugliandolo et al., 1997) or appropriate
correlation functions restoring the FDT
(Villamaina et al., 2009); or of information

properties and computations (Rabinovich
et al., 2006).

In conclusion, while the functional
interpretation of rest (whether thought
as a merely passive condition or, as in
the default mode proposal, as an active
state) as a baseline remains questionable,
theoretical and experimental results sug-
gest that task-related brain activity may be
described in terms of generic properties
of brain activity at rest. Stimulus-induced
exposure of brain functioning and neu-
ral characterization of cognition are two
sides of the same coin, and the behavioral
aspects of cognition are ultimately noth-
ing but macroscopic manifestations of
the renormalization of spontaneous brain
fluctuations (Fingelkurts et al., 2010).
Characterizing task-related brain activity
in terms of brain properties at rest allows
describing cognitive processes that are
either understudied or examined under
simplifying assumptions, and quantifying
them with a far richer and physically
more grounded set of descriptors than
has been the case hitherto. The extent
to which all possible states of the sys-
tem can be explored through mere obser-
vation of spontaneous brain activity, in
experimentally realistic times, or whether
stimuli can lead the system to other-
wise unexplored states are still unexplored
issues, which will require further investi-
gation of the properties of systemic brain
activity.
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