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The degree to which electroencephalographic spectral peaks are independent, and the
relationships between their frequencies have been debated. A novel fitting method was
used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-
closed spectra, and their interrelationships were investigated. Findings were compared
with a mean-field model of thalamocortical activity, which predicts near-harmonic relation-
ships between peaks. The subject set consisted of 1424 healthy subjects from the Brain
Resource International Database. Peaks in the theta range occurred on average near half
the alpha peak frequency, while peaks in the beta range tended to occur near twice and
three times the alpha peak frequency on an individual-subject basis. Moreover, for the
majority of subjects, alpha peak frequencies were significantly positively correlated with
frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progres-
sion agrees semiquantitatively with theoretical predictions from the mean-field model.
These findings indicate a common or analogous source for different rhythms, and help to
define appropriate individual frequency bands for peak identification.
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1. INTRODUCTION
Electroencephalographic (EEG) spectra are often characterized by
peaks at various frequencies. Most notable is the alpha peak, which
usually lies between 8 and 12 Hz in healthy adult humans. It was
the first feature reliably detected in human EEG (Berger, 1933), and
has often been subcategorized into variants in different regions of
the cortex (Niedermeyer and Lopes da Silva, 2005). Other peaks
have been widely noted, including beta peaks typically in the range
13–30 Hz in healthy adults, spatially localized gamma peaks above
30 Hz, the theta peak at 4–8 Hz, and (in sleep) spindle peaks at
11–15 Hz (Niedermeyer and Lopes da Silva, 2005). All these peaks
are superposed on broadband activity that falls off with increasing
frequency.

In the most common forms of quantitative EEG (qEEG), the
frequency spectrum is divided into several bands, and the total
absolute or relative power in each band is analyzed. While the
analysis of band powers has proved to be useful, it amounts to
approximating the rich structure of actual EEG spectra by just a
few numbers (see Figure 1). Moreover, the bands used to calculate
these powers are almost invariably based on average parameters for
normal adult humans. This procedure for instance fails to capture
the fact that the alpha peak rises from around 3–5 Hz in newborns
(Niedermeyer, 1997; Marshall et al., 2002) to 7–13 Hz in normal
adults (Van Albada et al., 2010; Chiang et al., 2011), and individual
variability which can take peaks outside the normal ranges. In the
present study, we perform EEG spectroscopy of a large sample of
healthy individuals, characterizing spectral structure in detail, and
allowing for individual variations in frequency bands.

Various EEG rhythms have been noted to reflect different states
of vigilance or independent aspects of cognitive processing (Nie-
dermeyer and Lopes da Silva, 2005). For example, the alpha peak
is most prominent in the eyes-closed condition and is associated
with attentional suppression (Snyder and Foxe, 2010), while a
spindle peak is associated with non-REM sleep, and theta peaks
occur especially during drowsiness (Niedermeyer and Lopes da
Silva, 2005). Characterizing the relationships between spectral
peaks helps to refine such interpretations and sheds light on the
underlying mechanisms.

Multiple suggestions have been made as to why EEG peaks have
the observed frequencies:

(i) Based on spectral estimates in rats, it was suggested that
successive functional frequency bands increase in center fre-
quency by a factor e ≈ 2.718 (Penttonen and Buzsáki, 2003;
Buzsáki and Draguhn, 2004). In rat brain slices, oscilla-
tions could be induced at relative frequencies corresponding
approximately to the golden ratio, suggesting period concate-
nation as an underlying mechanism (Roopun et al., 2008a,b).
Since the golden ratio is close to e0.5, the second proposal is
related to the first, but implies a denser packing of rhythms
across frequency. Both Euler’s number and the golden ratio
were proposed by offer a computational advantage by mini-
mizing interference between rhythms (Roopun et al., 2008a,b;
Pletzer et al., 2010).

(ii) A second suggestion is that rhythms are produced by groups
of neurons with similar characteristic frequencies, which
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might synchronize and act as “pacemakers.” Despite the exis-
tence of neurons with intrinsic oscillation properties, this
hypothesis suffers from a number of drawbacks (Nunez and
Srinivasan, 1981); for instance, it would require a separate
pacemaker to be postulated ad hoc for each spectral peak.

(iii) Nunez suggested that global EEG rhythms arise as spatial
cortical eigen-modes, yielding a non-harmonic progression
of peak frequencies (Nunez and Srinivasan, 1981; Nunez,
1995). One prediction of this hypothesis is that alpha fre-
quency should be negatively related to head size, which was
found by Nunez (1978) and Posthuma et al. (2001) but was
recently challenged (Valdés-Hernández et al., 2010).

(iv) Several other models have considered purely cortical oscilla-
tions (Van Rotterdam and Lopes da Silva, 1982; Liley et al.,
1999, 2002; Wright, 1999; Jirsa et al., 2002; David and Friston,
2003). For instance, networks of simulated multicompart-
mental cortical neurons can produce oscillations in the range
8–20 Hz (Liley et al., 1999), and in a non-linear continuum
theory, peaks at various frequencies in the range 2–16 Hz were
obtained depending on the parameters (Liley et al., 2002).

(v) Considerations of the importance of the thalamus in syn-
chronized oscillations in both sleeping and waking states
(Lopes da Silva et al., 1973, 1980; Steriade et al., 1993,
1996; Steriade, 2000) have motivated thalamocortical mod-
els (Lumer et al., 1997; Robinson et al., 2001b, 2002; Rennie
and Robinson, 2002; Hill and Tononi, 2005; Izhikevich and
Edelman, 2008). The proposed models display resonances
in various ranges: Lumer et al. (1997) found mostly gamma
oscillations with precise frequencies depending on the para-
meters, Izhikevich and Edelman (2008) found oscillations in
the delta and alpha ranges, and the model of Hill and Tononi
(2005) exhibited slow waves in sleep and gamma oscilla-
tions in activated states. The neural field models of Rennie
and Robinson (2002) and Robinson et al. (2001b, 2002),
which are further explored here, provide a unified mech-
anism for slow-wave and spindle oscillations in sleep, and
alpha, beta, and higher-frequency oscillations in the waking
state. These models predict clear relationships between peak
frequencies and amplitudes, with the theta peak occurring
at approximately half the alpha frequency on an individual-
subject basis, and alpha and beta peaks forming part of a
near-harmonic progression.

The latter prediction is consistent with a number of previous
studies: Carlqvist et al. (2005) found clear frequency, power, and
phase relationships between alpha and beta activity in the resting
EEG. The average ratio between beta and alpha peak frequencies
was 1.9–2.0, consistent with the beta peak being generated as a
harmonic of alpha. Similarly, bispectral analysis of subjects with
high alpha activity revealed significant phase and amplitude rela-
tionships between alpha and its second harmonic (Barnett et al.,
1971). In addition, Barnett et al. (1971) observed that 10 Hz activ-
ity was significantly phase-related to third and fourth harmonics
at 30 and 40 Hz in some cases, and less prominently to activ-
ity at 2 and 7 Hz. Palva et al. (2005) reported cross-frequency
phase synchrony between alpha, beta, and gamma oscillations in
the human MEG. Finally, some studies have revealed similarities
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FIGURE 1 | Example of an EEG spectrum (black line) with its qEEG
approximation in terms of band powers, given by the areas of the gray
bars.

in the scalp topographies and functional characteristics of alpha
and beta activity (Chen et al., 2008; Shackman et al., 2010). The
present study extends these findings using EEG spectroscopy of a
large sample of healthy individuals.

Besides frequencies, we also examine the amplitudes of spectral
peaks. These can provide additional evidence for the independence
or interdependence of rhythms and allow the thalamocortical
mean-field model to be tested further. This model has already been
shown to be able to account for various aspects of evoked response
potentials (Rennie and Robinson, 2002), onset and dynamics of
epileptic seizures (Robinson et al., 2002), and correlation and
coherence of EEG and electrocorticographic signals (Robinson,
2003). An extension of this model incorporating the basal ganglia
successfully mimicked a number of electrophysiological changes in
Parkinson’s disease (Van Albada and Robinson, 2009; Van Albada
et al., 2009). Correspondence of amplitude relationships with
model predictions would constitute additional evidence for its
plausibility.

We perform the analyses partly in the light of aforementioned
model of thalamocortical activity, but in a way that would allow
the model to be invalidated by the data. The model is fitted to
eyes-closed spectra of a large group of healthy subjects, and the
model parameters are used to estimate a background spectrum
without peaks or troughs. This method balances the dual goals
of determining a physiologically realistic background, and not
making any prior assumptions about relationships between spec-
tral peaks. Frequencies and amplitudes are then estimated of the
empirically measured peaks relative to this background, and their
interrelationships are explored.

2. MATERIALS AND METHODS
In this section we describe our data collection, peak fitting, and
statistical methods. Section 2.1 describes the subject group, EEG
recording procedures, and calculation of spectra. Section 2.2 gives
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a brief account of the model of thalamocortical activity and its pre-
dictions concerning relationships between spectral peaks. Sections
2.3 and 2.4 respectively detail the methods for peak fitting and
classification.

2.1. SUBJECTS AND RECORDINGS
The data were eyes-closed resting EEG spectra of 1424 healthy
subjects (702 females and 722 males), a subset (95%) of those
in Van Albada et al. (2010) and Chiang et al. (2011), where any
subjects rejected in that study based on excessive voltage fluctua-
tions at 14 or more electrodes were also excluded here, resulting
in the removal of 39 subjects of the original 1463. Subjects’ ages
ranged from 6.08 to 86.55 years (mean 26.88 years). The record-
ings were obtained with a NuAmps amplifier (Neuroscan) by
Brain Resource, Ltd. (www.brainresource.com) and made avail-
able through the Brain Resource International Database (BRID;
Gordon et al., 2005). The montage included 26 electrodes placed
according to an extended International 10–20 system (Klem et al.,
1999). Of these, we focus on the Cz electrode, which is relatively
unaffected by muscle artifact and combines frontal and occipital
influences. The sampling rate was 500 Hz and average of mas-
toids was used as a reference. An analog low-pass filter removed
40 dB per decade above 100 Hz. Data were corrected offline for eye
movements using a method based on that of Gratton et al. (1983).
The spectrum was calculated from 2 min of relatively artifact-free
EEG with a resolution of 0.25 Hz by averaging the spectra of 50%
overlapping 4 s epochs after multiplying each epoch’s time series
by a Welch window. We compared our findings with 981 spec-
tra that were identical except for the use of a Hann instead of a
Welch window, to exclude the possibility of results depending on
the particular choice of windowing function.

2.2. THALAMOCORTICAL MODEL
Background spectra and predictions of peak frequencies and
amplitudes were calculated using a mean-field model of thala-
mocortical electrical activity (Robinson et al., 2001b, 2002, 2003a,
2005). It is beyond the scope of this paper to give a detailed math-
ematical account of the model, but we introduce some aspects
here to clarify theoretical predictions of peak frequencies and
amplitudes. Section 2.2.1 gives a brief overview of the model,
Section 2.2.2 provides approximate frequencies of corticothala-
mic resonances, and Section 2.2.3 discusses qualitative predictions
on relationships between peak amplitudes. For a more detailed
treatment we refer the reader to the papers cited.

2.2.1. Overview of the model
The structure of the model is illustrated in Figure 2. We here con-
sider only the version obtained by linearizing about its fixed-point
firing rates. The neural populations included are cortical excita-
tory (e), cortical inhibitory (i), thalamic reticular (r), and thalamic
relay (s) including both primary relay and association nuclei. Each
population is described by its instantaneous mean firing rate. The
e and i populations connect both to themselves with gains Gee

and Gii, and to each other with gains Gie and Gei, quantifying
the change in output rate divided by the change in input rate.
Similarly, the relay nuclei project to the cortical populations with
gains Ges and Gis. In each case, the second subscript corresponds

FIGURE 2 | Schematic representation of the model, including the
following populations: e, cortical excitatory neurons; i, cortical
inhibitory neurons; r, thalamic reticular nucleus; s, primary and
secondary thalamic relay nuclei. In the linearized version of the model,
each connection has a gain Gab (a, b=e, i, r, s). The relay nuclei receive
input from the brainstem, indicated by the subscript n.

to the sending population and the first subscript to the receiving
population. Approximating connections in the cortex as random
leads to Gii=Gei, Gie=Gee, and Gis=Ges (Braitenberg and Schüz,
1998; Robinson et al., 2001b). Besides cortical interactions, the
following loops involving the thalamus are seen: a direct corti-
cothalamic loop passing only through the relay nuclei; an indirect
corticothalamic loop also passing through the reticular nucleus;
and an intrathalamic loop that involves reciprocal connections
between the relay and reticular nuclei. These loops are associ-
ated with gains Gese=GesGse, Gesre=GesGsrGre, and Gsrs=GsrGrs,
respectively.

Spectra can be computed from the model by approximating
brainstem input as white noise, and assuming that EEG signals
are proportional to the activities of the cortical excitatory neurons
(Robinson et al.,1997,2001a,2005). Such model spectra were fitted
to empirical ones using a fitting procedure that uses a Monte Carlo
method with repeated random initializations to avoid finding false
minimums (Robinson and Rennie, 2010; Rowe et al., 2004). The
quantity minimized was a weighted sum of squared differences
between log empirical and log predicted spectra at each frequency.
The free parameters were a synaptodendritic time constant α, a
cortical damping rate γ , the corticothalamic axonal latency t 0, an
overall scale factor p0, and the gains Gee, Gei, Gese, Gesre, and Gsrs.
For further details we refer to the papers cited.

Model spectra consist of a background modulated by thalamo-
cortical interactions yielding peaks and troughs. The background
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is calculated by retaining projections from thalamus to cortex, but
setting the strengths of projections from cortex to thalamus to zero.

2.2.2. Frequency estimates via approximation of the dispersion
relation

The thalamocortical model uses a damped-wave equation to
describe the propagation of neural activity across the cortical sheet
(Robinson et al., 2001b). By Fourier transforming the spatiotem-
poral model equations, an expression for the activity of the cortical
excitatory neurons can be obtained in terms of frequencies and
wavenumbers. Equating the denominator of this expression to
zero yields a dispersion relation, determining the characteristics
of the damped waves making up the activity.

In this study we estimated peak frequencies for model spectra
in two ways: the first is based on approximations of the disper-
sion relation for the linearized model, and the second refines these
estimates by looking for peaks close to these approximations in
background-subtracted model spectra. In the present section, we
focus on the approximate frequencies, while the peaks in fitted
spectra are described in Section 3.1. Results of these two methods
are illustrated in Figure 3.

In general, the dispersion relation has complex angular frequen-
ciesω=ωx+ iωy as solutions, whereωx determines the oscillation
frequency of the solution, andωy its temporal damping rate. There
are no relevant solutions with ωy= 0, since instabilities set in
at boundaries where the dispersion relation has real solutions.

Spectral peaks for real frequencies ω=ωr occur when the dis-
persion relation is closest to having a zero. Since uniform modes
turn out to be the least damped (Robinson et al., 1997, 1998), we
consider only the dispersion relation for zero wavenumber:(

1−
iω

γ

)2

−
1

1− GeiL(ω)

×

[
Gee L(ω)+

Gese L2(ω)+ Gesre L3(ω)

1− GsrsL2(ω)
e iωt0

]
= 0, (1)

where t0 is the thalamocortical axonal loop delay, γ is a damp-
ing rate for cortical activity propagation, and L(ω) accounts for
low-pass filtering of signals in synapses and the dendritic tree,

L(ω) =

(
1−

iω

α

)−1 (
1−

iω

β

)−1

. (2)

Here, β and α are synaptodendritic rise and decay rates,
respectively.

To simplify equation (1) we use the approximations (Roberts
and Robinson, 2008)

L(ω) ≈ exp

[
iω

(
1

α
+

1

β

)]
, (3)(

1−
iω
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FIGURE 3 | Initial approximations (dashed vertical lines) and precise
estimates (solid vertical lines) of peak frequencies in model spectra for
four subjects with different values of their corticothalamic loop gains
Gese and Gesre. For subjects with Gese >0>Gesre and |Gese |< |Gesre |, we

determined peaks in the theta and what we term “iota” and “xi” ranges. For
all other subjects, we determined alpha and what we term “beta1” and
“beta2” peaks. For our definitions of iota, xi, beta1, and beta2, see Figure 7
andTable 1. Empirical spectra are shown in gray, model spectra in black.
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valid for ω<α, β, γ . Dividing equation (1) by the first term, we
obtain

1−
1

(1− Gei)(1− Gsrs)

(
Gese e

iω
(

t0+
2
α
+

2
β
+

2
γ

)

+Gesre e
iω

(
t0+

3
α
+

3
β
+

2
γ

))
= 0, (5)

where factors of L(ω)were retained only in the numerators, and
the term involving Gee was dropped, since it was previously found
by numerical exploration to be of secondary importance for peak
locations (Robinson et al., 2001b). Peaks occur where equation
(5) is closest to being solved, frequencies depending on the relative
strengths and signs of direct and indirect thalamocortical feed-
back. Generally, Gese> 0, Gesre< 0, and |Gese|> |Gesre| reflecting
the waking state with positive overall thalamocortical interactions
and a relatively inactive thalamic reticular nucleus (Robinson et al.,
2002, 2004; Van Albada et al., 2010). Minimums of the left-hand
side of equation (5) then occur approximately where the complex
argument of the Gese term is 2πn (n= 1, 2, . . .). The strongest
resonance or putative alpha rhythm corresponds to n= 1, leading
to the frequency estimate

fα ≈
1

t0 + 2/α + 2/β + 2/γ
. (6)

Peaks in the low and high beta ranges, which we will term
beta1 and beta2 peaks, correspond to n = 2 and n = 3, and are
located around 2 and 3 times the alpha peak frequency. Due to the
approximations made, equation (6) tends to underestimate peak
frequencies; more precise estimates are made in Section 3.1.

In some cases, Gese> 0, Gesre< 0, and |Gesre|> |Gese|, so that
thalamocortical resonances arise in an overall negative feedback
loop. Peaks then occur where the argument of the Gesre term is
π + 2πn (n= 0, 1, . . .). The first of these resonances is a putative
theta rhythm with frequency (Robinson et al., 2002)

fθ ≈
1

2t0 + 6/α + 6/β + 4/γ
. (7)

Note that this is close to half the alpha peak frequency in equa-
tion (6) if t0+2/α+2/β+2/γ � 1/α+1/β. In our sample, this
was generally the case, the difference between the estimated theta
frequency and half the estimated alpha frequency being of order
10%. Higher-order peaks are expected for n= 1, 2 with frequencies
around 3 and 5 times fθ , respectively.

Since no hard limit was imposed during fitting to force Gesre to
be negative, there were also some cases with Gese> 0, Gesre> 0. For
Gese>Gesre, the frequency becomes

fα ≈
1

t0 + 3/α + 3/β + 2/γ
, (8)

in analogy with the previous derivations. Higher-order peaks are
expected around integer multiples of this frequency.

We used the estimates equations (6–8) to label peaks in fitted
model spectra as theta, alpha, etc., and to obtain more precise

predictions of relationships between peak frequencies. For spectra
with a theta peak, higher-order peaks are expected to lie between
alpha and beta1, and between beta1 and beta2. Following the tra-
dition of denoting EEG rhythms by Greek letters, we refer to these
rhythms as iota and xi. The definitions of these bands are illus-
trated in Figure 7, where different sets of band limits were used
depending on the location of the highest peak, as described in
Section 2.4.1.

2.2.3. Qualitative predictions of amplitude relationships
The thalamocortical model also predicts the amplitudes of the
various peaks to covary. We here provide qualitative predictions
of such relationships, while quantitative estimates are obtained
from fitted model spectra in Section 3.1.

Since beta peaks arise as near-harmonics of alpha peaks in
the model, the prediction of a positive association between their
amplitudes is straightforward. Predicting the relationship between
theta and alpha peaks is more complicated. Simultaneous theta
and alpha peaks in empirical spectra could be due to activity in
parallel thalamocortical pathways with different gains, or to tem-
poral changes in gain in a single pathway. For instance, positive net
feedback may exist in some regions, with negative feedback in oth-
ers, especially in the drowsy state near the sleep-wake transition,
thereby allowing theta and alpha peaks to coexist. Concurrent
peaks in what are traditionally considered the theta and alpha
ranges could also arise due to parallel thalamocortical loops with
different delays, or due to spatial variations in loop delays (Robin-
son et al., 2001a, 2003b). The version of the model considered here
does not account for concurrent theta and alpha peaks via these
mechanisms, due to static gains and the lumping of possible par-
allel or spatially varying thalamocortical loops into a single loop.
However, empirical theta peaks can be considered to be superposed
on the model background and on troughs which the thalamocor-
tical model also predicts in this range, as described in the next
section.

Correlations between theta and alpha peak amplitudes are
expected to have contributions from opposing mechanisms. In
our model, positive and negative Gese+Gesre generally lead to
alpha and theta peaks, respectively, and their amplitudes tend to
be large when |Gese+Gesre| is large. The common dependence
of Gese and Gesre on the thalamocortical gain Ges will contribute
positively to the correlation between empirical theta and alpha
peak amplitudes. If concurrent peaks in what are traditionally
labeled the theta and alpha ranges arise due to spatial variations in
thalamocortical loop delays, a positive association between their
amplitudes is also expected. Note that such peaks should actually
be labeled by their generating mechanisms rather than by fre-
quency ranges; however, this is difficult to do in practice based
directly on empirical spectra.

In the following, we require that the frequency of theta peaks
differ by more than 3 Hz from that of the alpha peak. Since it is
possible in principle to have split alpha peaks with a larger fre-
quency difference, alpha splitting may provide a small positive
contribution to the relationship between empirical peaks in the
nominal theta and alpha ranges determined in this paper.

On the other hand, substantial spatial or temporal variations
in Gese+Gesre are required to produce large alpha peaks at one

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 56 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


van Albada and Robinson Relationships between electroencephalographic spectral peaks

time or location, and large theta peaks at another. Assuming that
small variations are more likely, especially within the limited time
window from which spectra are computed, this will provide a neg-
ative contribution to the association between alpha and theta peak
amplitudes.

2.3. FITTING OF GAUSSIAN PEAKS
The fitting routine is illustrated in the flowchart in Figure 4. It
differed in several respects from one previously used to identify

alpha peaks in the subjects considered here plus 32 additional
subjects (Chiang et al., 2008, 2011). First, the current fitting rou-
tine covers not just the alpha frequency range but the larger range
2–35 Hz. Another notable difference is that Chiang et al. (2008,
2011) considered spectra at multiple electrode sites to find clus-
ters of alpha peaks with similar frequencies. Furthermore, in those
papers, peaks were fitted with Gaussian functions of log power
vs. f, whereas we use Gaussian functions of log power vs. log
f. However, we compared our results with fits of log power vs.

FIGURE 4 | Flowchart showing the steps involved in fitting peaks and
troughs to empirical spectra. The different degrees of smoothing refer to
the step where extremums adjacent to the current peak or trough are
found. A low degree of smoothing tends to yield narrow peaks/troughs,

whereas a high degree of smoothing tends to yield broad ones. Different
degrees of smoothing may be appropriate for different levels of noise.
Such smoothing improved the agreement between fitted and visually
identified peaks.
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f, finding no strong differences. The methods also differ in the
type of background used: the previous papers considered peaks
superposed on a power-law background, while the current paper
examines peaks and troughs that modulate a model-based back-
ground. This is done to assess spectral features due to thalamo-
cortical interactions (cf., Section 2.2). The model-fitting routine
has been validated and its properties analyzed in a number of
publications (Rowe et al., 2004; Van Albada et al., 2007, 2010).
We do not analyze troughs further in this paper, but including
them in the fitting routine enables their future analysis and is rel-
evant for the theta range, as further explained in the following.
Finally, the papers cited used a single degree of spectral smooth-
ing, whereas we compared moving averages with different ranges
and selected the closest fit, which helped ensure that no peaks were
missed, and yielded close agreement with visually identified peaks.
The fitting method was developed independently of the results on
relationships between peaks described here.

Before fitting, spectra were smoothed using a five-point moving
average to reduce noise. Up to 12 peaks and troughs were then fit-
ted to the difference of log spectra and log background in the range
2–35 Hz. This number of peaks was chosen since it was seen to
adequately capture all visually identified peaks in the range consid-
ered. The theta range was fitted first, since background-subtracted
empirical spectra suggested that overlapping peaks and troughs
were present in this range, and therefore an adjusted method was
used for theta. Peaks were first sought in that part of the range
2–9 Hz where the spectrum was below the background, corre-
sponding naively to the theta range. Additional smoothing was
then applied until at most a single peak was present in the range.
If a peak was present and the distance between its adjacent mini-
mums was≥1 Hz (to avoid spurious sharp peaks), recursive fitting
was performed of the overlapping peak and trough, as illustrated in

Figure 5. This entailed the following steps: first, the peak was fitted
on a possible constant baseline, and the fitted values were sub-
tracted. Then the trough was fitted with zero baseline, the residual
was calculated with only the trough subtracted, and the peak was
again fitted. The latter sequence was repeated up to 10 times as long
as this decreased the residual computed by subtracting both peak
and trough. A further constraint was that the fitted trough was not
more negative on average than the empirical one in the first and
last quarters of its frequency range. This ensured that recursive
fitting did not lead to very large peaks and troughs where these
were not present in empirical spectra. Two examples of spectra
with overlapping theta peak and trough are given in Figure 6.

The remaining peaks and troughs were fitted in order of
decreasing amplitude. Peaks were sought in those ranges where
no peaks or troughs had yet been fitted, except for theta, where
initially only the range of the peak (the closed range of frequencies
between its adjacent minimums) was excluded to allow possi-
ble additional peaks in this range to be found. If a frequency
range was not bounded by already-fitted peaks or troughs, it
was bounded by the closest frequencies where the residual was
of opposite sign to that of the extremum. To avoid fitting spurious
narrow peaks, only those peaks or troughs were considered that
extended over at least max(1, f/16) Hz, where f is the frequency
of the extremum in Hz. Locations of extremums were identified
using eight different degrees of smoothing (but the same degree
for each peak/trough), and the fit with the lowest absolute resid-
ual was selected. The limit to the number of peaks and troughs
fitted prevented under-smoothing, resulting in approximately uni-
formly distributed degrees of smoothing. Gaussian peak or trough
values were subtracted over the range where they were ≥0.05
and ≤−0.05, respectively. This fitting algorithm yielded good
agreement with visually identified peaks and troughs.

FIGURE 5 | Illustration of recursive fitting of overlapping peak and
trough. (A) Shows a Gaussian peak at f =5 and trough at f = 5.2
(dashed), and their sum in gray. A small peak remains visible over the
range shown in (B). Fitting this peak leaves the residual shown in gray in

(C). The dash-dotted line indicates the trough fitted to this residual.
Subtracting this trough yields the residual shown in gray in (D). After two
more steps, shown in (E) and (F), it is seen that the fitted peak and trough
closely match the actual ones.
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FIGURE 6 | Example spectra from two subjects with overlapping theta peak and trough. The residuals and fitted peaks and troughs (in log power) are
exponentiated for visual clarity on the logarithmic scale.

2.4. PEAK CLASSIFICATION
Frequency bands for the analysis of peak parameters are defined in
Section 2.4.1. Peak classification took into account putative split
alpha and beta peaks, as explained in Section 2.4.2, but the detailed
analysis of split peaks is left to future work considering multi-
ple electrodes. Peak exclusion criteria are described in Section
2.4.3. These take into account the statistical nature of EEG spectra,
eliminating peaks that may have occurred by chance.

2.4.1. Band limits
We defined band limits based on the location of the largest peak
in the range 2–13 Hz. To prevent influencing correlations by the
choice of band limits, we assigned subjects to five groups with
appropriate band definitions, and analyzed correlations for each
group separately. Figure 7 gives example spectra with fits from
each group and illustrates the corresponding bands. If the largest
peak was in the range 2–5 Hz (Group 1, N = 62) it was consid-
ered to be a theta peak, and if it was in the range 5–13 Hz it was
treated as an alpha peak. A further subdivision was made based on
alpha peak frequency: 5–7 Hz (Group 2, N = 49), 7–9 Hz (Group
3, N = 461), 9–11 Hz (Group 4, N = 797), and 11–13 Hz (Group 5,
N= 55). Symmetric bands were defined around these 2-Hz ranges,
bandwidth increasing with alpha peak frequency (by 1 Hz for each
consecutive group) to maximize coverage of the frequency space.
Bands were then defined via the linear regression equations for
peak frequencies derived from fitted model spectra (cf., Figure 8).
For Group 1, iota and xi limits were calculated from theta limits,
while for Groups 2–5, beta1 and beta2 limits were calculated based
on the alpha band. As a result, the iota and xi bands were rela-
tively wide for subjects whose main peak was a theta peak, while
the beta1 and beta2 bands were relatively wide for subjects whose
main peak was an alpha peak. This helped ensure that no peaks
were missed in the relevant bands. The resulting bands are listed in
Table 1. Correlations between peak parameters were determined
using only the largest peak in each band.

2.4.2. Split peaks
Peaks in the range 5–13 Hz, differing from the primary alpha peak
by no more than 3 Hz and less than a factor of two in height,

were considered to be secondary alpha peaks. If there were several
peaks fulfilling these criteria, the one with the smallest frequency
difference with the primary peak was chosen. If such a peak was
the highest in the theta or iota band, the next-highest peak in the
relevant band was taken to be the primary theta or iota peak, if
present.

Secondary beta1 peaks were considered to be those peaks lying
within 6 Hz of the primary beta1 peak, at higher frequency than
the highest-frequency alpha peak and not directly flanking it, and
differing by less than a factor of two in height from the pri-
mary peak. As for alpha, if several such peaks were present, the
one closest to the primary peak was selected. If the secondary
beta1 peak fell outside the beta1 band, the next-highest peak in
the relevant band was considered to be the primary peak for
that band.

This classification of split peaks may be refined and further
analyzed in future studies using data from multiple electrodes, as
done for alpha peaks by Chiang et al. (2008, 2011).

2.4.3. Rejection criteria
Peaks in the theta or iota bands were rejected if they imme-
diately flanked alpha peaks (using the criterion that their fre-
quency ranges had an overlap of at least two points, corre-
sponding to a range of 0.25 Hz) and were more than four times
smaller than the alpha peak, since such peaks usually appeared
to result from non-Gaussianity of the alpha peak. The rejected
peak was replaced by the next-highest peak in the same range, if
present.

Another criterion for peak identification was a good signal-
to-noise ratio. At each frequency, a nine-point root mean square
deviation between log raw and log smoothed spectra was deter-
mined as an estimate of noise. The 10% of peaks with the lowest
ratio of height to this RMS deviation at the nearest frequency point
were rejected. It is of course possible that some spurious peaks were
nevertheless fitted, but these will be randomly scattered and not
influence the main trends.

In some cases model spectra did not closely fit empirical spec-
tra. After classifying peaks into bands, we therefore determined
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FIGURE 7 | Example spectra of subjects from each group having a different set of band limits, as listed inTable 1. Vertical lines indicate peak locations:
magenta, primary peaks; blue, secondary alpha peak; green, secondary beta1 peak.

the mean deviation between log empirical and log model spectra,
and excluded peaks when the model fit was among the worst 15%
for the given group and band. Visual inspection showed this to
be a relatively conservative exclusion criterion, so that only peaks
were considered where the model fit well. Mean deviations rather
than mean absolute deviations were used because the reliability
of the background depends mainly on whether the model fit is
systematically above or below the empirical spectrum. This cri-
terion was not applied to the theta band, since model fits did
not yet adequately capture theta peaks. Instead, theta peaks were
rejected if the fit in the alpha band was among the worst 15%.
Note that empirical theta peaks could nevertheless be investigated,
since the model background was fitted in this range, and Gaussian
theta peaks and troughs were fitted on top of this background, as
explained in Section 2.3.

The rejection criteria were chosen to obtain a maximal set of
fitted peaks showing good correspondence with visually identified
peaks. Thus, the criteria were independent of the results reported
here. The qualitative results were robust to variations of rejection
levels.

3. RESULTS
Section 3.1 concerns relationships between peak frequencies and
heights found from fitted model spectra. These may be regarded
as theoretical predictions using physiologically realistic parame-
ters, and as such are intermediate between theoretical predictions
and empirical results. The limited number of model parameters
prevents overfitting and ensures that relationships between model
peaks do not simply reflect empirical ones. The results for Gaussian
peaks fitted to empirical spectra are discussed in Section 3.2.
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FIGURE 8 | Relationships between frequencies of peaks or
spectral enhancements determined from fitted model spectra.
(A) Beta1 vs. alpha; (B) beta2 vs. alpha; (C) iota vs. theta; (D) xi vs.
theta. Thick lines, fits of frequency ratios; thin lines, linear fits with
intercept. Dashed lines represent 99% non-simultaneous

confidence intervals for the linear trends, and the corresponding
99% confidence bounds for the slopes and intercepts are indicated.
Note that beta2 frequencies can exceed 35 Hz (the maximum
frequency of fitted Gaussian peaks), since model spectra were
evaluated up to 50 Hz.

Table 1 | Frequency bands in Hz, based on the frequency of the largest peak in the range 2–13 Hz.

Group Theta Alpha Iota Beta1 Xi Beta2

1 2–5 5–8.7 8.7–14.2 14.2–16.3 16.3–25.9 –

2 2–4.5 4.5–7.5 7.5–11.1 11.1–16.4 16.4–17.9 17.9–25.9

3 2–6 6–10 10–13.8 13.8–20.9 20.9–21.9 21.9–32.5

4 2–7.5 7.5–12.5 12.5–16.4 16.4–25.3 25.3–25.9 25.9–35

5 2–9 9–15 15–19.1 19.1–29.8 29.8–29.9 29.9–35

The following ranges were distinguished for the largest peak: 2–5 Hz (Group 1), 5–7 Hz (Group 2), 7–9 Hz (Group 3), 9–11 Hz (Group 4), and 11–13 Hz (Group 5). Note

that the Gaussian peaks are fitted curves and hence not constrained by the 0.25 Hz resolution of the empirical spectra.

3.1. PEAK RELATIONSHIPS BASED ON FITTED MODEL SPECTRA
The following two sections respectively describe the frequency and
amplitude relationships of peaks in fitted model spectra.

3.1.1. Frequency relationships
Figure 8 shows the dependences of beta1 and beta2 frequencies
on alpha frequency, and of iota and xi on theta frequency, where
peaks were labeled as described in Section 2.2. Spectra (including
background) with Gese+Gesre< 0 often showed a theta enhance-
ment but no actual theta peak. Therefore, theta frequencies were

determined from sign changes of the second derivative of the spec-
trum with respect to frequency. We excluded those cases from
analysis where the spectrum was below the background at the
theta frequency thus determined (9 out of 64). It is seen that theta
peaks or shoulders in model spectra tend to occur much below
half the normal alpha peak frequency. This may be an artifact due
to the fact that the fitted version of the model has only a single
set of gains and therefore does not account for concurrent theta
and alpha peaks. Thus, cases with Gese+Gesre< 0 have theta and
iota peaks in fitted spectra, with a frequency ratio close to three.
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Since the fitting routine emphasizes the goodness of fit for the
peak around 10 Hz, theta peaks are fitted around 3 Hz even when
they empirically occur around 5 Hz. In contrast, the analysis in
Section 2.2 showed that variations in thalamocortical gains will
tend to cause theta and alpha peaks with a frequency ratio close to
two. We will take this as our prediction of the relationship between
theta and alpha peak frequencies.

The mean ratios of beta1 and beta2 peak frequencies to the
alpha peak frequency were 2.123± 0.008 and 3.32± 0.01, respec-
tively, slightly above the ratios of 2 and 3 predicted based on the
approximations in Section 2.2. Due to the non-zero intercepts of
the linear trends, these ratios depend somewhat on the consti-
tution of the sample. For instance, for the 50% of subjects with
the lowest alpha peak frequencies, the mean ratios were closer to
2.2 and 3.4. The iota-to-theta frequency ratio was 3.4± 0.2, again
somewhat above the approximate theoretical prediction of 3. Sim-
ilarly, the xi-to-theta ratio was 6.3± 0.3, to be compared with the
value of 5 based on the simplified equations in Section 2.2. We
note that the reliability of the latter estimates is somewhat com-
promised by the possible fitting of iota peaks to actual alpha peaks,
as mentioned above, which may have affected the parameter values
and hence relative peak locations.

3.1.2. Amplitude relationships
Relationships between alpha and beta peak heights are illustrated
in Figure 9. The regressions were performed without an intercept
term, since no beta peaks arise in the model without alpha peaks.
The heights are more scattered than the frequencies, but clear posi-
tive trends remain. The slopes of the trend lines are slightly reduced
by the few spectra with particularly strong alpha, even though the
two spectra with the highest alpha peaks in fitted spectra were
excluded, since fitted peaks did not accurately reflect empirical
ones in these cases. For instance, excluding all cases with alpha
height>3, the slopes become 0.278 and 0.079 for beta1 and beta2,
respectively.

No significant correlations were found between theta peak
heights on the one hand and iota and xi peak heights on the
other hand (p> 0.5). However, iota and xi peak heights did have a

positive association (r = 0.63, p= 9.9e − 8), with the slope of the
regression line for xi vs. iota height being 0.4± 0.1. A similar word
of caution applies to these amplitude relationships as to the corre-
sponding frequency relationships, since the model parameters for
subjects with Gese+Gesre< 0 may be affected by the simultaneous
presence of theta and alpha peaks in empirical spectra.

3.2. EMPIRICAL PEAK RELATIONSHIPS
Here we respectively present the empirical findings on frequency
and amplitude relationships between spectral peaks, and compare
these with the model predictions.

3.2.1. Frequency relationships
Figure 10 shows the average empirical spectrum and average fit-
ted Gaussian peaks of log power vs. log frequency plotted against
f/fα , where fα is the individual alpha frequency; this permits fre-
quency ratios to be explored. Averages consisted of mean spline-
interpolated spectra across those subjects for which an alpha peak
was fitted and not rejected based on the model fit.

It is clearly seen that beta1 peaks occurred on average close to
twice the alpha peak frequency, while theta peaks occurred around
half the alpha peak frequency. Third harmonics of alpha may have
been too small or scattered to be visible in the overall average. Since
we expect large alpha peaks to be concurrent with large beta peaks,
we also plotted the average for the 10% of subjects with the largest
alpha peaks separately. This average does seem to have a shoulder
around three times the alpha peak frequency (Figure 10B). The
average fits additionally show small peaks around 1.5 times the
alpha peak frequency, which are however not clearly apparent in
the mean empirical spectra. This effect might be explained by the
presence of superposed positive and negative power modulations.

Figures 10C,D provide a visualization of these findings that
avoids labeling peaks as “alpha” or otherwise, and does not depend
on band limits. Figure 10C shows the frequencies of all peaks not
rejected based on signal-to-noise ratio vs. their ratios to all other
peaks in the same spectrum. Figures 10C,D confirm the associ-
ation of peaks around 10 Hz with peaks at half, twice and three
times that frequency. In particular, the horizontal stripes around
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FIGURE 9 | Relationships between peaks heights from fitted model spectra. (A) Beta1 vs. alpha; (B) Beta2 vs. alpha. Dashed lines and the text indicate
99% confidence intervals for the fits.
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FIGURE 10 | (A,B) Mean empirical spectrum (black) and fitted peaks (gray) vs.
f /fα . (A) All subjects for which alpha peak parameters were obtained. (B) The
10% of subjects with the highest alpha peak amplitudes. Fitted peaks are
scaled for clarity, with the same scale in (A,B). (C) Ratios of all pairs of peak

frequencies within spectra. Dotted lines are drawn at 1/3, 1/2, 2/3, 3/2, 2, and
3. (D) Pairs of peak frequencies within spectra. The grayscales indicate the
density of points. The empty diagonal band reflects the omission of the 1:1
points and the separation necessary for peak resolution.

(20, 1/2) and (30, 1/3) in Figure 10C clearly show the presence of
second and third harmonics of alpha. The constant ratios indicate
that these frequencies covary on an individual basis. The individ-
ual covariation of theta and alpha frequencies is somewhat less
clear, but on average, theta peaks occurred close to half the alpha
frequency. Pairs of peaks around 8 and 10 Hz are also seen, pos-
sibly representing split alpha. The finite width of the diagonal
band arises because a certain minimum separation was necessary
in order to resolve peaks; this does not imply a discontinuity in
the frequencies of rhythms that can co-occur. The slopes of the
frequency relationships are brought out in Figure 10D. The Hann-
windowed spectra and the log-linear fits of the Welch-windowed
spectra showed the same progression of peak frequencies as the
log-log fits of the Welch-windowed spectra.

The relationships between peak frequencies are further illus-
trated in Figure 11, and Table 2 lists the corresponding corre-
lation coefficients and fit parameters. The plots show only those
subjects whose main peak was an alpha peak (Groups 2–5), in
order to have only a single set of band limits for each range of
alpha frequencies. Intercepts are included since these were found
to be significant for both empirical and model peaks in many
cases, and since fits without intercept would mainly reflect band
limits.

Theta, beta1, and beta2 frequencies of Group 4 (alpha frequen-
cies in the range 9–11 Hz) had significant positive correlations (at
the 0.05 level) with alpha peak frequencies. The theta trend line

for this group is close to the theoretical prediction of fθ = 0.5fα .
Group 3 (alpha frequencies in the range 7–9 Hz) also showed a sig-
nificant positive correlation between alpha and beta1 frequencies.
The same correlations were significant for the Hann-windowed
spectra, apart from a positive theta-alpha correlation for Group
3 but not Group 4. Using log-linear instead of log-log fits of
Welch-windowed spectra also yielded the same pattern of trends,
except none of the theta-alpha correlations reached significance.
However, all these correlations were positive.

The slopes of the beta1 trends for Groups 3 and 4 were 0.9± 0.5
and 1.2± 0.4, respectively. However, these slopes are affected by
the rectangular sampling regions defined by the group-specific
band limits, causing many points to lie to the top left and bottom
right of a central region of higher density. The slope of this region
is very close to 2, matching predictions based on the approxima-
tions in Section 2.2. The prediction based on peaks in fitted model
spectra (cf., Section 3.1) yields beta1 frequencies slightly above the
high-density region, and thus seems to be a somewhat poorer fit
to the data.

For beta2 frequencies, we note that the model-based predictions
may be better than they appear visually, since no empirical peaks
were fitted above 35 Hz, producing a selection effect. Higher upper
limits for the beta2 band might therefore have yielded additional
points in the upper right-hand corner of the plot, giving a closer
correspondence between empirical peak frequencies and model
predictions. The Hann-windowed spectra and the log-linear fits
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FIGURE 11 | Relationships between peak frequencies. Linear
regressions were performed for each group separately to avoid
spurious correlations induced by the adjustment of band limits to
alpha peak frequencies. Correlation coefficients and parameters of
the fits are indicated inTable 2. Dashed red lines indicate model

predictions based on the approximations in Section 2.2 (fθ = fα /2,
fβ1 = 2fα , fβ2 = 3fα ); continuous red lines linear fits with intercepts
based on fitted model spectra from Section 3.1. The dashed black line
is a reminder that no peaks were fitted above 35 Hz. Significance
levels: **0.01, ***0.001.

of the Welch-windowed spectra showed the same significance lev-
els as the log-log fits of the Welch-windowed spectra for both
beta1-alpha and beta2-alpha frequency correlations.

As noted, the relationships between peaks in fitted model
spectra are influenced by the empirical data themselves. The cor-
responding predictions may be considered as theoretical predic-
tions with physiological parameter distributions, yet the findings
should be interpreted with caution. To achieve a level of pre-
diction intermediate between the parameter-independent ones
from the approximations in Section 2.2, and the ones from fitted
model spectra, we considered model spectra based on independent
Gaussian distributions for the model parameters (e.g., gains and
delays) with the empirical means and standard deviations, thus
destroying any true correlations between the model parameters.
This yielded an approximate mean alpha:beta1:beta2 frequency
ratio of 1:2.2:3.8, exceeding both the empirical ratios and the
model predictions with correlated parameters. This implies that
correlations between the parameters are important for the model
to reproduce the empirical frequency relationships.

3.2.2. Amplitude relationships
Figure 12 shows relationships between peak heights in the differ-
ent bands, both differentiating between groups and for the sample
as a whole. Note that for generality an intercept term was included
in the regressions, in contrast to Figure 9. An F-test revealed
that the intercept significantly improved each of the three whole-
sample fits (p � 0.001). However, for direct comparison with
Figure 9, we also considered fits without intercept.

Alpha and theta peak heights of the combined groups lack a
positive relationship. This matches the trend for Group 4 (alpha
frequencies in the range 9–11 Hz), while Groups 3 and 5 have
significant positive trends.

More convincing positive correlations are seen for beta1, being
significant for Groups 3–5 as well as for the sample as a whole. The
overall slope is 0.11± 0.03. Discarding the intercept, the slope is
0.28± 0.01, consistent with the prediction of 0.266± 0.009 based
on model fits.

The overall correlation between beta2 and alpha peak heights is
0.14 (p= 2.4e − 4). For beta2 peaks, the slopes are 0.04± 0.03 and

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 56 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


van Albada and Robinson Relationships between electroencephalographic spectral peaks

Table 2 | Correlation coefficients, the corresponding p-values, slopes,

and intercepts for linear fits of theta, beta1, and beta2 peak

parameters vs. alpha peak parameters.

Group Band Pearson r p-value Slope Intercept

FREQUENCY

1 Theta 0.32 0.070 0.3±0.4 2±3

Beta1 0.61 0.061 0.3±0.5 13±4

Beta2 – – – –

2 Theta 0.33 0.39 1±2 0±20

Beta1 0.11 0.70 0±3 10±20

Beta2 0.018 0.94 0±3 20±20

3 Theta 0.022 0.78 0.0±0.3 4±2

Beta1 0.28 2.3e−5*** 0.9±0.5 10±4

Beta2 0.025 0.72 0±1 26±9

4 Theta 0.17 0.00037*** 0.4±0.30 1±3

Beta1 0.29 3.0e−11*** 1.2±0.4 9±4

Beta2 0.14 0.0055** 0.6±0.5 24±5

5 Theta −0.095 0.58 0±1 10 ± 20

Beta1 0.23 0.18 1±2 10±30

Beta2 −0.41 0.092 −1±2 50±20

AMPLITUDE

1 Theta 0.34 0.050 1±2 0.2±0.5

Beta1 0.0073 0.98 0±4 0±1

Beta2 – – – –

2 Theta −0.44 0.21 −0.1±0.3 0.3±0.2

Beta1 −0.083 0.78 0.0±0.3 0.4±0.2

Beta2 −0.23 0.34 −0.1±0.2 0.4±0.2

3 Theta 0.29 1.6e−4*** 0.12±0.08 0.2±0.1

Beta1 0.35 7.9e−8*** 0.12±0.05 0.24±0.07

Beta2 0.14 0.041* 0.04±0.06 0.28±0.07

4 Theta 0.021 0.66 0.01±0.04 0.37±0.06

Beta1 0.36 5.5e−17*** 0.12±0.04 0.24±0.06

Beta2 0.18 1.8e−4*** 0.05±0.04 0.23±0.05

5 Theta 0.55 4.6e−4*** 0.2±0.2 0.2±0.2

Beta1 0.38 0.022* 0.2±0.2 0.2±0.2

Beta2 0.44 0.066 0.1±0.1 0.2±0.1

1–5 Theta 0.039 0.31 0.01±0.04 0.37±0.05

Beta1 0.35 2.7e−24*** 0.11±0.03 0.25±0.04

Beta2 0.14 2.4e−4*** 0.04±0.03 0.26±0.04

The 99% confidence intervals for the slopes and intercepts are indicated. The

numbers of figures reported are adapted to the uncertainties. Significance levels:

*0.05, **0.01, ***0.001.

0.21± 0.01 with and without inclusion of the intercept, respec-
tively, thus bracketing the predicted value of 0.076± 0.004. The
beta2 trends are significantly positive for Groups 3 and 4, and
similar in slope to each other and to the trend for Group 5.

The large variability of trends in theta peak height may be partly
due to the requirement that theta peaks be higher than alpha peaks
for Group 1 and vice versa for Groups 2–5. This constitutes a selec-
tion effect that may have increased the slopes of all trend lines, but
that would have been strongest for Group 1, due to alpha peaks
generally being higher than theta peaks. For Group 5 (alpha fre-
quencies in the range 11–13 Hz), the positive trend may be partly

explained by actual alpha and beta1 peaks being mislabeled respec-
tively as theta and alpha peaks in a small proportion of cases. Thus,
the definition of alpha as corresponding to the largest peak in the
range 5–13 Hz may not be optimal, and it could for instance help
to take subjects’ ages into account (Van Albada et al., 2010; Chiang
et al., 2011). All in all, the relation between alpha and theta peak
heights merits further investigation.

Peak height correlations for Hann-windowed spectra differed
from those for Welch-windowed spectra for some groups and
bands, but for the combined groups, the theta-alpha correlation
was still insignificant, while beta1-alpha and beta2-alpha corre-
lations were positive and highly significant. Moreover, for those
cases where the significance levels differed greatly (theta height
of Group 1 and beta2 height of Group 4), the linear trends were
nevertheless quite similar. The same held for the log-linear fits of
the Welch-windowed spectra.

We checked whether the positive overall associations between
alpha and beta peak heights could be due to relationships between
fit deviations in each band. The partial correlation between alpha
and beta1 peak heights, corrected for deviations between log
empirical and model spectra in both bands, is 0.33, close to
the uncorrected correlation. However, the corrected correlation
between alpha and beta2 peak heights is only 0.036. The posi-
tive correlation between fit deviations in these bands (r = 0.15)
may itself be partly due to positively correlated peak heights,
but this is impossible to verify without an objectively appropriate
background subtraction.

Using independent Gaussian model parameter distributions
with the empirical means and standard deviations, model spectra
exhibited greater relative beta1 and beta2 amplitudes, the slopes of
the fits without intercept being 0.35 for beta1 and 0.15 for beta2.
This provides a poorer match to the empirical results for beta1 but
a better match for beta2.

4. DISCUSSION
Using a large sample (1424) of resting eyes-closed EEG spectra,
we have shown clear interdependences between the frequencies
and amplitudes of peaks in different bands in this condition, fre-
quencies of many peaks following an approximately harmonic
progression. These results strongly suggest that a common process
contributes to the different rhythms.

Our main findings are: (i) a positive correlation between theta
and alpha peak frequencies for subjects with alpha peak frequen-
cies in the range 9–11 Hz, theta peaks occurring on average near
half the alpha peak frequency for the sample as a whole; (ii) peaks
in the low beta range tending to occur near twice the alpha peak
frequency on an individual-subject basis, with positive correla-
tions between frequencies of alpha and low beta peaks reaching
significance for subjects with alpha peak frequencies in the range
7–11 Hz; (iii) peaks in the high beta range tending to occur near
three times the alpha peak frequency on an individual-subject
basis, with positive correlations between frequencies of alpha and
high beta peaks reaching significance for subjects with alpha peak
frequencies in the range 9–11 Hz; (iv) a lack of correlation between
theta and alpha peak amplitudes for the sample as a whole; and
(v) a positive, approximately linear, relationship between alpha
and beta1 peak amplitudes for the sample as a whole. A positive
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FIGURE 12 | Relationships between peak heights. Linear
least-squares fits are indicated by lines in the corresponding colors for
each group, and in red for all subjects combined. No beta2 peaks were

identified for Group 1. Correlation coefficients and parameters of the
fits are listed inTable 2. Significance levels: n.s. non-significant, *0.05,
***0.001.

correlation between alpha and beta2 peak amplitudes was also
found, but further tests are needed to verify this result.

The harmonic progression of peak frequencies closely matches
predictions based on an approximation of a linearized mean-
field model of thalamocortical activity (Robinson et al., 2001b,
2005). It is not consistent with any of the following propos-
als: (i) a geometric progression with a peak spacing of Euler’s
number (Penttonen and Buzsáki, 2003; Buzsáki and Draguhn,
2004) or the golden ratio (Roopun et al., 2008a,b; Pletzer et al.,
2010); (ii) pacemakers that would not a priori be related in
frequency or occurrence; (iii) Nunez’s theory of purely cortical
eigenmodes, which predicts a non-harmonic sequence of peaks
(Nunez, 1995). More generally, to our knowledge there is no
model of purely cortical oscillations that predicts the observed
peak relationships.

In view of the predicted relationships between peak frequen-
cies, we adjusted band limits to the alpha peak frequency for peak
classification. These limits could have been set separately for each
subject, followed by a statistical analysis attempting to correct for
this. However, to more strongly control for the effects of band lim-
its, we defined only five sets of band limits and investigated trends

in each group separately. This yielded group-specific frequency
relationships that only reached significance for subjects with alpha
peak frequencies in the range 7–11 Hz, probably related to the fact
that these were the largest subject groups. It may be investigated
in future studies whether larger sample sizes or different band
definitions yield significance and similar slopes also in the other
groups.

Relationships between peak amplitudes were in good agree-
ment with predictions based on physiological considerations and
model spectra. We identified possible contributions to both pos-
itive and negative associations between theta and alpha peak
amplitudes, consistent with the overall lack of correlation found.
Ratios between alpha, beta1, and beta2 peak heights were close
to those from fitted model spectra. Since the latter were partly
influenced by the data themselves, we conclude that the empiri-
cal results match the model predictions at least semiquantitatively.
Amplitude relationships, especially those between alpha and theta
peaks, displayed variability between groups of subjects with dif-
ferent alpha peak frequencies. We discussed possible confounding
effects that may account for this, suggesting a closer investigation
of the theta band in particular.
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According to the thalamocortical model, the observed peaks are
largely explained by two scenarios: either the inhibitory thalamic
reticular nucleus is weakly active, creating a positive thalamocor-
tical feedback loop; or it is strongly active, creating a negative
feedback loop. In the first case, the lowest-frequency resonance
gives rise to an alpha peak corresponding to one pass through
the loop, while in the latter case, it produces a theta peak corre-
sponding to two passes. These basic rhythms are associated with
near-harmonics around odd numbers of times the theta frequency,
and integer numbers of times the alpha frequency. This agrees with
the observed peaks around twice and three times the alpha peak
frequency, and the hints of peaks around three times the theta peak
frequency.

The covariation of peak frequencies suggests that band limits
should be adjusted on an individual basis (at least for the resting-
state condition considered here), as also proposed for instance
by Doppelmayr et al. (1998) and Klimesch (1999), and consis-
tent with age-associated changes in alpha peak frequency (Van
Albada et al., 2010; Chiang et al., 2011) and various theoretical
predictions (Nunez and Srinivasan, 1981; Nunez, 1995; Robin-
son et al., 2001b). It seems most expedient to base the limits
on the alpha peak frequency, provided of course that an alpha
peak is present. Consistent with the present study, Doppelmayr
et al. (1998) argued for a positive association between bandwidth
and alpha peak frequency. They measured task-related increases
in theta and decreases in alpha peak power, and defined a transi-
tion frequency between ranges of increase and decrease. Individual
alpha frequency was positively correlated not only with this transi-
tion frequency, but also with the difference between the alpha and
transition frequencies. Thus, task-related activity confirms that
higher alpha peak frequencies imply wider and higher-frequency
EEG bands.

The present theoretical (cf., also Robinson et al., 2001b) and
empirical results suggest that, for peak identification, band lim-
its may be placed at approximately n+ 1/4 and n+ 3/4 times
the individual alpha peak frequency (n= 0, 1, . . .), with theta
and low beta peaks respectively being sought in the ranges 1/4–
3/4 and 7/4–9/4 times the alpha peak frequency (see Figure 13).
This follows especially from results where we avoided classify-
ing peaks and examined pairs of peak frequencies within spec-
tra. This clearly showed that peaks around 20 Hz often occurred
together with peaks around half that frequency, and that peaks
around 30 Hz often occurred together with peaks around one-
third that frequency. These ratios were nearly constant despite
individual variations in absolute frequencies. After peak classi-
fication, points also clustered around fβ1 = 2fα in those sub-
jects with alpha peak frequencies in the range 7–11 Hz. The
relationship between theta and alpha frequencies was slightly
less clear, but theta peaks occurred on average very close to
half the alpha peak frequency. Moreover, for the one group of
subjects having a highly significant correlation between alpha
and theta peak frequencies (those with alpha peak frequen-
cies of 9–11 Hz), the trend line was close to fθ = fα/2. Fur-
ther research could ascertain whether the bands depicted in
Figure 13 are appropriate for detecting task- or state-related
changes.

FIGURE 13 | Proposed band limits based on the frequency of the alpha
peak.

The strictly individual adjustment of frequency bands is appro-
priate for within-subject comparisons where the alpha peak fre-
quency is relatively stable. It may also be used for group com-
parisons when the distribution of band limits does not differ
systematically between groups. However, depending on the ques-
tions asked, individual band adjustment may complicate analyses,
since the band limits (and possibly associated filter characteris-
tics, for instance when using wavelet analysis) affect spectral band
power, peak characteristics, and the structure of the correspond-
ing oscillations in the time domain. One option for dealing with
this can be to define several subgroups, each with fixed frequency
bands, as done in the present study. Alternatively, one could correct
or account for differences in band definitions, for instance using
analysis of variance where band limits constitute one of multiple
factors.

Defining algorithms for peak fitting and classification naturally
involves many choices that may influence the results. However, fit-
ting Gaussian functions of frequency and of log frequency yielded
qualitatively identical results. Moreover, we designed our meth-
ods to yield good agreement with visually identified peaks, and
we consider it likely that any algorithm fulfilling this criterion
will give similar results. This may be further investigated in future
studies.

We allow for the possibility of contributions to the EEG which
do not conform to the simple pattern of (sub)harmonics of alpha
due to thalamocortical resonances. These may include cortically
generated rhythms, rhythms originating in the hippocampus or
amygdala, and intrathalamically generated rhythms such as sleep
spindles (Robinson et al., 2002; Niedermeyer and Lopes da Silva,
2005). However, we argue that interpretations of EEG rhythms in
terms of mechanisms, state dependence, and functional correlates
should take into account their partially overlapping origins.
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