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The purpose of this study was to utilize thermal imaging and the Concealed Information
Test to detect deception in participants who committed a mock crime. A functional
analysis using a functional ANOVA and a functional discriminant analysis was conducted
to decrease the variation in the physiological data collected through the thermal imaging
camera. Participants chose between a non-crime mission (Innocent Condition: IC), or a
mock crime (Guilty Condition: GC) of stealing a wallet in a computer lab. Temperature in
the periorbital region of the face was measured while questioning participants regarding
mock crime details. Results revealed that the GC showed significantly higher temperatures
when responding to crime relevant items compared to irrelevant items, while the IC did
not. The functional ANOVA supported the initial results that facial temperatures of the GC
elevated when responding to crime relevant items, demonstrating an interaction between
group (guilty/innocent) and relevance (relevant/irrelevant). The functional discriminant
analysis revealed that answering crime relevant items can be used to discriminate guilty
from innocent participants. These results suggest that measuring facial temperatures
in the periorbital region while conducting the Concealed Information Test is able to
differentiate the GC from the IC.

Keywords: deception detection, thermal imaging, mock crime, Concealed Information Test

INTRODUCTION
Deception detection is widely used by law enforcement around
the world. Although very few countries actually allow the results
to be used as evidence in court, investigators frequently use lie
detecting as a tool of reference during investigations. Many forms
of deception detection exist, but the polygraph is the most widely
used method. Unfortunately, field studies have shown that poly-
graph testing accuracy is in the unsatisfactory range of 72–91%
(National Research Council, 2003). Among the numerous rea-
sons for the variability in accuracy, a main drawback of polygraph
testing is its dependency on the level of training and experience
of the polygrapher. In other words, the accuracy of a polygraph
test is greatly affected by the subjective skill of the polygrapher.
Also, polygraph testing in itself can cause high levels of anxiety in
subjects, which can also affect the results or even lead to false-
positive conclusions. It is therefore imperative that additional
means of deception detection are developed, standardized, and
applied as alternative methods, or at least as secondary support to
the polygraph.

Deception detection using thermal imaging (a.k.a. thermogra-
phy) incorporates an infrared thermal imaging camera to mea-
sure facial skin temperature as a cue to deception. Although not
yet used in law enforcement, thermal image analysis for polygraph
testing has already gained a US patent (Pavlidis, 2005; Patent
No: US 6854879 B2), and has obtained empirical support from

previous research with results suggesting that it has the potential
to detect deception quite accurately (Pavlidis et al., 2002; Pollina
et al., 2006; Tsiamyrtzis et al., 2007; Dowdall et al., 2009). In
general, when a deceptive subject is being interrogated, they expe-
rience stress which activates the autonomic nervous system. This
then activates the sympathetic nervous system, which is respon-
sible for stress responses such as increased blood flow to the eyes
to facilitate rapid eye movement in preparing the body for the
fight-or-flight response (Pavlidis and Levine, 2001, 2002). This
increased blood flow is detectable in the periorbital region of
the face through thermal imaging. The periorbital regions are
the symmetrical areas to the left and right of the bridge of the
nose between the eyes. Previous deception detection studies that
used thermal imaging also did so by measuring the temperature
of the periorbital regions of the face. In these studies, average
facial temperatures collected from the periorbital regions were
higher during deceptive responses, compared to non-deceptive
responses, thus acting as cues to deception.

An outstanding advantage of using thermal imaging is that it is
non-invasive, in that no sensors are attached to the subject (Arora
et al., 2008). While typical polygraphs require numerous con-
tact sensors, thermal imaging has none, making it more natural
and comfortable. Research in psychophysiology has shown that
contact sensors (i.e., polygraph sensors) can compromise com-
fort, which can effect physiological measurement (Yankee, 1965),
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as well as deception detection procedures (Pavlidis and Levine,
2002). Another advantage is that raw thermal data can be saved
for later analysis, in the case that a better more accurate analy-
sis method is developed in the future (Pavlidis and Levine, 2001).
In addition, thermal imaging cameras generally look like video
cameras, meaning deception detection could take place without
the subject even realizing it is happening, which can prevent
unwanted attempts at countermeasures.

While detecting deception with thermal imaging has many
advantages, it also has certain disadvantages, one of them being
that it is sensitive to the environment and changes in the envi-
ronment. In particular, it is sensitive to ambient temperatures
and humidity levels (Hermans-Killam, 2002), as well as changes
in the distance between the subject and the thermal imaging
camera lens (Jones and Plassmann, 2002). Unlike measuring
body temperatures to detect sick people at an airport, detecting
deception must measure very small changes in skin surface tem-
perature, and therefore such sensitivity may have a critical effect
on the measurement results. Therefore, in order to control for
these possible variables, the present study conducted the ther-
mal imaging measurements in a highly controlled experimental
environment.

To detect deception, whether using a polygraph or ther-
mal imaging, a method of questioning is needed. Although in
the field the Control Question Test (CQT; Reid, 1947) is the
most widely used questioning technique (Meijer and Verschuere,
2010), it is criticized by researchers for its lack of theoretically
based empirical evidence (Ben-Shakhar, 2008; Iacono, 2008).
Unlike the CQT, the Concealed Information Test (CIT; a.k.a.
Guilty Knowledge Test or GKT; Lykken, 1959) is empirically
supported as a physiologically sound method of questioning
(Ben-Shakhar and Furedy, 1990; Elaad, 1998; MacLaren, 2001;
Ben-Shakhar and Elaad, 2003). The present study detected decep-
tion under controlled experimental conditions, and therefore
utilized the CIT instead of the CQT to maintain a theoretically
based experimental process of deception detection. In addi-
tion, because the second experimenter (the interviewer) was
not trained in interrogation, the CIT is ideal in that it is a
standardized, easily replicated procedure that does not require
professional training, as does the CQT (Ben-Shakhar and Elaad,
2002).

Unlike field studies where the interviewees are suspects to
actual crimes, participants in experiments are typically aver-
age citizens or students, and therefore a mock crime is needed.
Guilty participants commit a crime, and innocent participants
enact a similar non-criminal task, or are simply given infor-
mation about the crime. To motivate participants and provide
an incentive to be judged innocent, they are given a reward
(e.g., monetary compensation, academic credits) upon success-
ful deception, or punishment (e.g., monetary penalties, academic
tasks) for failing to deceive. In a meta-analytic study of mock
crime research, the incentive to motivate deception was a main
variable that affected the outcome of deception detection (Kircher
et al., 1988). Therefore, in the present study, participants in the
guilty condition were told they would receive triple the original
participation fee upon success, but would receive nothing if they
failed, incorporating both award and punishment.

To further increase anxiety during the mock crime, guilty par-
ticipants were to commit theft and eliminate evidence of their
crime in a public computer lab. Innocent participants had to go
to the same computer lab and send out an email, which allowed
the blind experimenter to ask questions that were relevant to both
groups, but only the guilty participants would possess crime-
relevant information. Further details regarding the mock crime
scenario are explained in the method section.

As with most physiological data, skin surface temperatures
measured using thermal imaging could be thought of as func-
tional data, and was therefore further analyzed using a functional
ANOVA (Ramsay and Silverman, 2006) and a functional dis-
criminant analysis (Ramsay and Silverman, 2006). An important
property that distinguishes functional data from multivariate data
is the existence of a smooth curve assumed to generate the data.
Functional data assumes that an underlying function gives rise to
the observed data, and that the underlying function is smooth
so that adjacent data values tend to be similar to some extent
and not too different from each other. In other words, adjacent
data values provide overlapping information, not independent
information.

A functional ANOVA is a functional extension of an ANOVA,
in which the response variable is a function and predictor vari-
ables are categorical. A functional ANOVA was used to see if facial
temperatures of participants were affected by guilt or innocence
and/or whether they were answering crime-relevant or crime-
irrelevant questions. The functional discriminant analysis is a
functional version of Fisher’s linear discriminant analysis, which
seeks to find components, or weighted integrations of functions
that separate multiple groups of observations as much as possi-
ble. The functional discriminant analysis was used to see how well
the facial temperature data was able to differentiate guilty partic-
ipants from the innocent participants. Further details regarding
the functional ANOVA and the functional discriminant analy-
sis are explained in the method section and the appendix of this
study.

The aim of the present study was to detect deception in par-
ticipants who conducted a realistic mock crime using infrared
thermal imaging and a simplified facial tracking method, along
with the CIT method of questioning. The purpose of the study
was to (a) detect deception using thermal imaging through a sim-
plified method, (b) in a more controlled environment, (c) using
the most realistic mock crime possible, (d) using the most opti-
mal method of statistical analyses, and (e) replicate the results of
the previous studies that have done so in the past. It was pre-
dicted that the guilty participants would be differentiable from
the innocent participants, in that the guilty condition would
show an increase in facial temperatures of the periorbital regions
when responding to crime-relevant sub-questions compared to
the irrelevant sub-questions of the CIT, while the innocent con-
dition (IC) would show no significant difference between the
two. It was also predicted that using the same thermal imaging
data, a functional ANOVA would reveal similar results, support-
ing the initial analysis, and also that a functional discriminant
analysis would be able to differentiate the guilty from the inno-
cent participants from their facial temperatures in the periorbital
regions.

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 70 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Park et al. Functional analysis of thermographic lie-detection

METHOD
PARTICIPANTS
A total of 34 participants were recruited from an online bulletin
board on a university website. The bulletin board entry stated
that participants were being recruited for a psychology experi-
ment on measuring facial temperatures using thermal imaging,
and would be paid $10 for their participation. All participants
read and signed a written consent form agreeing to participate in
the experiment. One participant was unable to finish the exper-
imental procedure, and the thermal imaging data from three
participants was incomplete and had to be discarded. This left
the data of 30 participants (17 male, 13 female), between the
ages of 18 and 30 (M = 22.74, SD = 2.77), for the final data
analyses.

MATERIALS
Apparatus
Thermal imaging. To record the facial temperatures of the par-
ticipant’s faces during the experiment, an Infrared Thermography
H2640 infrared thermal imaging camera (NEC Avio Infrared
Technologies Co. Ltd., Japan) with 320 × 240 pixel resolution
and heat resolution of 0.08◦C (±2% accuracy) at 30 Hz mounted
on an industrial strength tripod (SLIK Corporation, Japan) was
used. The thermal imaging camera was placed so that the lens
of the camera was 100 cm (±1 cm) from the participant’s face,
which is the distance that the thermal imaging camera manufac-
turer suggested as the optimal recording distance for measuring
human skin surface temperatures. The thermal imaging cam-
era was connected to an Xnote P300-TP8WK laptop computer
(LG Electronics, Korea). A digital thermometer/hygrometer was
placed directly under the thermal imaging camera, and experi-
ments were conducted at a constant room temperature of 21.0◦C
(±0.25◦C) and 65% (±2%) humidity.

Webcam. To provide a CCTV security camera at the computer
lab where the mock crime would be taking place, a Quick Cam®
Ultra Vision SE webcam (Logitech, USA) was mounted at the
front of the computer lab. The webcam was connected to a
desktop computer at the desk where a confederate acting as the
computer lab assistant was sitting. This webcam not only acted as
a CCTV security camera which the participants conducting the
mock crime had to deactivate, it also allowed the experimenters
in the psychology laboratory to view what was happening in the
computer lab while the mock crime was taking place.

The red wallet. A bright-red, faux leather, woman’s wallet with
gold-plated trimming was used as the target object that the par-
ticipants conducting the mock crime had to steal. The wallet was
a three-way folding style wallet with a few credit cards, some busi-
ness cards, and some monetary bills placed in it to make it look
and feel as realistic as possible.

Health questionnaire
A short questionnaire was designed to ask participants whether
they were sick, taking any kind of medication, had any history
of thyroid problems which may affect body temperature con-
trol, or were currently visiting the hospital for any of the above

reasons. This questionnaire was conducted before the experi-
ment to screen out any possible participants who may not show
“normal” physiological or temperature related responses to the
experimental procedures.

Concealed Information Test
While recording the thermal imaging data, participants were
asked a series of questions to detect deception. Each question
begins with a main primary question, followed by a series of five
secondary sub-questions containing different possible answers to
the original main question. For example, a main question was
“What was the item you stole from the computer lab?” and was
followed by sub-questions such as “Was it a watch?” “Was it a
ring?” and “Was it a wallet?” According to the theories underly-
ing the CIT, if the participant did actually steal the wallet, then
he or she would have critical knowledge regarding the mock
crime, which in this case would be the wallet. Thus, when a guilty
participant is asked if the item stolen was a wallet, their facial tem-
perature response to this sub-question would be different from
the other sub-questions presented. Three main questions were
asked, but there were only two actual questions. The first question
was asked a second time after the second question to conform to
the standard practice of the CIT, with the sub-questions being in a
different order from the first time to eliminate any ordering effects
(see Appendix section “Concealed Information Test Questioning
Protocol” for the questioning protocol). The sub-questions that
were not relevant to the crime are irrelevant items (IR), and the
crime relevant sub-questions are relevant items (RE). After each
sub-question was asked, a period of 10 s was allowed to pass
before the next question was asked. This was to allow the partic-
ipants’ facial temperatures to recover from any fluctuations that
may have occurred from the previous question. The questioning
session lasted approximately 6–8 min.

PROCEDURE
Upon arrival, participants first read and signed a written consent
form, followed by the health questionnaire. The experimenter
then entered the room carrying two colored envelopes and some
yellow Post-it notes. The experimenter explained the experiment
and what the participant would have to do (see Appendix sec-
tion “Envelope Selection Explanation”). The participants then
chose whether they would conduct the guilty (red) or innocent
(blue) mission. The experiment was purposefully designed this
way to increase the level of involvement the participants would
feel. Considering most crimes are committed by choice, and not
by force, it was expected that this method would produce a more
realistic response during deception detection. Participants were
informed that if they successfully accomplished the red mission,
they would receive a reward three times the amount of the original
$10 participation fee of $30, but if they failed they would receive
nothing. Here, success meant stealing the wallet and eliminating
the evidence without being discovered or questioned by anyone,
and not being detected of deception by the second experimenter
(interrogator). They were also informed that if they successfully
accomplished the blue mission, they would receive a $10 partici-
pation fee. Here, success meant sending an email at the computer
lab, leaving a message to the computer lab assistant, and not
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being accused of deception by the second experimenter. Although
the participants were informed that failing the missions would
result in receiving nothing, all participants were to receive a small
token of appreciation of $5 for participating in the experiment,
regardless of the outcome.

The participants selected an envelope, read the instruction
sheet inside, and were also given a small Post-it note to write down
whatever information they thought was important in completing
the mission. The Post-it notes were small and did not have enough
space to copy all the mission information verbatim. This forced
participants to summarize the information in their own words.
It was expected that this process would further increase personal
involvement in the mock crime, leading to a feeling of having
planned certain aspects of the mission themselves, or a feeling
of having taken part in the plotting of the crime. The mission
documents contained the following instructions:

Blue mission:
1. Go to the Computer Lab located on the 5th floor of this

building.
2. Sit at any seat and send an email to kekipark@hotmail.com.
3. In the body of the email, write your name, age, and mobile

phone number.
4. When the Computer Lab Assistant leaves his seat, go to his

computer and leave a note using the Notepad program on his
computer saying “Hello, I used one of the computers. Thank
you.”

5. Return to the Psychology Laboratory.

Red mission:
1. Go to the Computer Lab located on the 5th floor of this

building.
2. Locate the girl sitting in the 3rd row from the front of the

room, and the 4th seat from the windows.
3. When the girl leaves her seat, go to her seat and steal a red

wallet from her bag.
4. When the Computer Lab Assistant leaves his seat, go to his

computer and shutdown the webcam program that is running
on the desktop. This will automatically delete the video file
being saved.

5. Return to the Psychology Laboratory.

After participants finished writing their notes, they were given
detailed explanations on how to get to the computer lab. They
were then told to go the computer lab, execute the mission, and
immediately return as soon as they were done.

Upon returning, participants were asked if they had success-
fully completed their mission, and guilty participants were asked
for the wallet. The participants were then taken to a temper-
ature and humidity controlled measurement room where the
thermal imaging camera was set up. A second experimenter blind
to the participants’ mission selection informed the participants
that although she was aware that a crime had taken place in the
computer lab, she had no knowledge of who the perpetrator was.
She then explained that she would ask a series of questions in
an attempt to figure out whether the participant committed the
crime or not.

Before questioning, participants relaxed for 2 min to adjust to
the room. Afterwards, the first experimenter came into the room
to adjust the thermal imaging camera to record a 1 min base-
line reading. The participants were told that the camera was a
video camera, and that the interview would be recorded and later
analyzed, so to remain as motionless as possible during ques-
tioning, and to maintain eye-contact with the camera until the
questioning ended. The second experimenter was seated facing
the participant at a right angle and was outside the field of view
of the participant. As questioning began, the first experimenter
began recording the thermal data from outside the room with
a laptop computer connected to the thermal imaging camera.
The entire experiment lasted approximately 45 min to 1 h, includ-
ing the questionnaires, explanation and task selection, the mock
crime, and the questioning session. When finished, participants
were thanked, debriefed, and asked not to disclose any informa-
tion regarding the experiment until the end of the experiment
period, to prevent contaminating future participants.

EXPERIMENTAL DESIGN
There were two experimental conditions in this study: 18 par-
ticipants in the Guilty Condition (GC) which selected the red
envelope and committed a mock crime, and 12 participants in the
IC which selected the blue envelope and acted as the control con-
dition. Therefore, in order to differentiate which participants were
in the GC and which were in the IC, the average of the maximum
temperature values in the periorbital region while responding to
the RE questions were compared to the values while responding to
the IR questions. Although the first primary question was asked
twice, and the second primary question asked once, each repe-
tition of the first primary question was treated as an individual
primary question in the analysis. Therefore, there were a total
of three primary questions in the analysis. The mean tempera-
ture values of the RE and the IR items for each condition were
compared using a paired-samples t-test. A significant increase in
mean temperature value for the responses to the RE compared to
the IR sub-questions would signal that the participant possessed
concealed knowledge regarding the mock crime.

DATA COLLECTION AND ANALYSES
Initial analysis
The thermal image data used to analyze the facial temperature
readings were collected from the periorbital region of the face.
This is the area between the eye and the bridge of the nose on
either side of the nose. As shown in Figure 1, an area of inter-
est (AOI) was designated to cover the periorbital regions, but
not the actual eye itself. An AOI is an area designated by the
user of the thermal imaging software from which maximum or
minimum temperatures are collected and analyzed. AOIs are des-
ignated in order to avoid including areas of the face which are
always the hottest regions regardless of the situation, such as the
eye sockets and the inside of the mouth. The maximum temper-
ature point within the AOI was recorded during each frame of
recording (30 frames per second). The mean temperature value
corresponding to each response was the average of the maxi-
mum temperature point during the 10 s of response time given
after each sub-question was asked. The 10 s of response time
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FIGURE 1 | A sample thermal image showing the Area of Interest (AOI)

covering the periorbital regions (left and right corners of the inverted

triangle) and the metallic tracking sticker (black dot).

started at the end of the last word of each sub-question. When
an AOI is selected, the thermal imaging software automatically
tracks this designated region of the face and follows it when the
participant moves their face. However, to increase tracking accu-
racy, a small metallic sticker was placed above the bridge of the
nose which in thermal imaging appears as a black dot relative
to the skin (see Figure 1). Therefore, when the AOI was set to
follow the black dot, tracking was extremely accurate as long as
the participants did not tilt their head from side to side at an
angle or turn their head to the left or right. None of the partici-
pants tilted or turned their heads during measurement. The point
of maximum temperature was always measured from within the
designated AOI.

To compare mean facial temperature values between condi-
tions, independent-samples t-tests were conducted, and to com-
pare between RE and IR sub-questions, paired-samples t-tests
were conducted, all using SPSS 17.0 for Windows.

Functional ANOVA and functional discriminant analysis
Facial temperatures were measured for a duration of 10 s
beginning after each question was posed by the experimenter.
Therefore, the data consisted of 450 time series, or functions
(30 participants × 15 questions), measured over 300 time points
(10 s × 30 Hz), and three participants were eliminated from
the analysis due to severe noise in their signals. Due to the
limitation of computational power, the number of time points
needed to be reduced to conduct the functional ANOVA, and
therefore one of every five time points was used so that the
number of time points per question was decreased to 60 (10 s ×
6 Hz). A total of 450 functions measured over 60 time points
were analyzed. Figures 2A,B display the raw data of one guilty
subject (subject 1) measured while answering three relevant
questions and 12 irrelevant questions, respectively. Similarly,
Figures 2C,D show the raw data of one innocent subject (sub-
ject 3) measured while answering three relevant questions and
12 irrelevant questions, respectively. Before any analyses were

conducted, the original functions were smoothed by the rough-
ness penalty smoothing method with λ = 10 (see Appendix
section “Smoothing: Roughness Penalty Smoothing Method” for
more details on smoothing and Appendix section “Functional
ANOVA” for details on the functional ANOVA). Figure 3 dis-
plays the smoothed data corresponding to the raw data shown in
Figure 2.

The functional discriminant analysis estimates a weight func-
tion, instead of a vector of weight, which separates multiple
groups of functions as much as possible (see Appendix section
“Fisher’s Linear Discriminant Analysis” for the technical details
of the Fisher’s linear discriminant analysis and Appendix section
“Functional Discriminant Analysis” for details on the functional
discriminant analysis applied). The data used in the functional
discriminant analysis consisted of 450 time series, or functions,
(30 participants × 15 questions) measured over 300 time points
(10 s × 30 Hz). The data measured for RE questions and IR
questions was analyzed separately.

RESULTS
HEALTH QUESTIONNAIRE
No participant reported any medical problems in the Health
Questionnaire.

BASELINE FACIAL TEMPERATURES
An independent-samples t-test revealed no significant differ-
ences in baseline facial temperature readings between the GC
(M = 35.83, SD = 0.59), and the IC (M = 36.03, SD = 0.78),
t(28) = −0.78, p = 0.44. There were also no significant differ-
ences between male and female participants, or between their
ages. These results show that there was no significant facial tem-
perature difference between the participants in the GC and the IC
before the experiment began.

FACIAL TEMPERATURE CHANGE VALUES
The thermal imaging camera measured temperatures at 30 frames
per second. For each sub-question asked, temperature values of
the hottest point within the AOI were recorded for a period of
10 s starting at the moment the experimenter ended her ques-
tion. These temperature values were averaged, resulting in a mean
facial temperature value for the RE items and the IR items for
each participant. To obtain a facial temperature change value
(FTCV) for the RE and IR items, baseline facial temperatures was
subtracted from the mean temperature values.

Before performing paired-samples t-tests as described in the
following sections, the normality assumption was tested which
should be satisfied for a paired-samples t-test to be conducted.
First, scatter plots, Q-Q plots, and boxplots of the FTCV scores
of the four conditions (GC-RE, GC-IR, IC-RE, and IC-IR) were
examined, and are presented in Figures 4, 5, and 6. As shown
in Figures 5 and 6, the FTCV scores of subject 31 of the GC for
both the RE and IR questions seemed to be deviated from normal
distributions. Therefore, the Shapiro-Wilk test was performed to
statistically test the null hypothesis that the FTCV scores in each
of the four conditions came from a normal distribution. Results of
the Shapiro-Wilk tests were not significant [for GC-RE, W(18) =
0.94, p = 0.33; for GC-IR, W(18) = 0.94, p = 0.30; for IC-RE,

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 70 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Park et al. Functional analysis of thermographic lie-detection

FIGURE 2 | The raw facial temperature data of one guilty subject

(subject 1) answering (A) 3 relevant questions and (B) 12

irrelevant questions, and those of one innocent subject (subject 3)

answering (C) 3 relevant questions and (D) 12 irrelevant

questions, in which each line indicates the facial temperature for

each question.

FIGURE 3 | The smoothed facial temperature data under λ = 10 of

one guilty subject (subject 1) answering (A) 3 relevant questions

and (B) 12 irrelevant questions, and those of one innocent subject

(subject 3) answering (C) 3 relevant questions and (D) 12 irrelevant

questions, in which each line indicates the facial temperature for

each question.
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FIGURE 4 | Scatter plots of the distributions of the facial temperature

change values of the (A) Guilty Condition responding to relevant

sub-questions (X -axis) and irrelevant sub-questions (Y -axis), and (B)

Innocent Condition responding to relevant sub-questions (X -axis) and

irrelevant sub-questions (Y -axis). The facial temperature change value in
degrees Celsius (◦C).

FIGURE 5 | Normal Q-Q plots of the four conditions. (A) Guilty Condition responding to relevant sub-questions, (B) Guilty Condition responding to irrelevant
sub-questions, (C) Innocent Condition responding to relevant sub-questions, and (D) Innocent Condition responding to irrelevant sub-questions.
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FIGURE 6 | Boxplots of the two types of questions. (A) relevant sub-questions and (B) irrelevant sub-questions. The X-axis indicates the condition
(Guilty Condition and Innocent Condition) and the Y-axis indicates the facial temperature change value in degrees Celsius (◦C).

W(12) = 0.96, p = 0.84; for IC-IR W(12) = 0.96, p = 0.82], indi-
cating that the normality assumption was not violated in any of
the four conditions.

GUILTY CONDITION
A directional paired t-test for the GC revealed a significant differ-
ence between the FTCVs for the RE questions (M = 0.40, SD =
0.62) and the IR questions (M = 0.37, SD = 0.61), t(17) = 1.91,
p < 0.05. However, when utilizing the Bonferroni correction to
control for an experimentwise error rate, the results were no
longer significant and only showed a trend (p < 0.10) toward
temperature responses to the crime relevant sub-questions being
higher than the temperature responses to the crime irrelevant
sub-questions.

INNOCENT CONDITION
A directional paired-samples t-test for the IC revealed no signif-
icant difference between the FTCVs for the RE questions (M =
−0.17, SD = 0.59) and the IR questions (M = −0.17, SD =
0.59), t(11) = −0.04, p > 0.05 As expected, there were no dif-
ferences in the temperature responses to crime relevant and
irrelevant sub-questions.

The above results show that there was no significant dif-
ference in FTCV values between RE and IR responses in the
IC, yet there was a noticeable trend in the values between RE
and IR responses in the GC. These analyses were conducted
using t-tests which analyze the data by comparing mean values.
However, the data of the present study are time-based values,
and a comparison of means may have been a meticulous enough
approach. Important information may have been lost or over-
looked during the process of averaging out this chronological
data. Mean values summarize the data measured over contin-
uous time points as mingle measures, and it may not, in this
case, have been enough to consider only mean values to cap-
ture all of the characteristics that reflect a group difference.
Therefore, a functional ANOVA, which uses all of the values
measured in its analysis, was utilized to evaluate all of the exist-
ing data in its entirety in greater detail, as well as prevent any

loss of information that may have occurred from a simple mean
comparison.

FUNCTIONAL ANOVA AND FUNCTIONAL DISCRIMINANT ANALYSIS
The researchers who conducted the additional analyses did not
participate in the actual experiment, and were only provided with
the raw thermal data. This eliminated any researcher biases that
may have affected the results.

The functional ANOVA examined the main effect of con-
dition (GC/IC), the main effect of relevance (RE/IR), and the
interaction effect of condition and relevance. Figure 7A presents
the mean facial temperature over the 10 s for the four differ-
ent conditions. From top to bottom, the four lines indicate
GC-RE, IC-IR, IC-RE, and GC-IR. We can see that guilty par-
ticipants manifested higher facial temperature for RE questions
than IR questions. Figure 7B shows the significant main effect
of condition, which indicates that guilty participants mani-
fested lower facial temperatures when answering IR questions
over the 10 s by around 0.55◦C. Figure 7C presents the signif-
icant main effect of relevance, which indicates that innocent
participants manifested lower facial temperatures when answer-
ing RE questions compared to IR questions over the 10 s by
around 0.33◦C. Figure 7D shows that the interaction effect of
condition and relevance was significant, which indicates that
the facial temperature of guilty participants answering RE ques-
tions was significantly higher than what could be predicted
from the sum of the two main effects by 0.9◦C. This suggests
that facial temperature is affected by the interaction between
condition (GC/IC) and relevance (RE/IR), meaning that guilty
participants showed higher facial temperature when answering
RE questions than IR questions whereas innocent participants
did not.

The functional discriminant analysis analyzed 90 functions
(30 participants × 3 relevant questions) for the RE questions
based on a weight function estimated with penalty parameter
ρ = 10 determined by the leave-one-out cross-validation. Before
the analysis, each function was baseline corrected by subtract-
ing the corresponding baseline temperature. The 90 functions
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FIGURE 7 | (A) The estimated mean functions of the four conditions. From
the top, solid red line indicates the mean function of GC-RE, blue dashed
line IC-IR, blue solid line IC-RE, and red dashed line GC-IR. (B) The main
effect of condition (GC/IC; solid line) with 95% pointwise confidence

interval (dotted lines). (C) The main effect of relevance (solid line) with
95% pointwise confidence interval (dotted lines). (D) The interaction effect
of condition and relevance (solid line) with 95% pointwise confidence
interval (dotted lines).

were classified into two groups based on the weight function, and
98.89% (89 out of 90) were correctly classified (misclassification
rate = 1.11%). This result indicates that facial temperatures mea-
sured while answering a RE question can be used to differentiate
whether a participant is in the GC or IC.

For IR questions, 360 functions (30 participants × 12 irrel-
evant questions) were analyzed based on a weight function
estimated with penalty parameter ρ = 106 which was also deter-
mined by the leave-one-out cross-validation. Again, before the
analysis, each function was baseline corrected. When the 360
functions were classified into two groups based on this weight
function, 68.89% (248 out of 360) were correctly classified (mis-
classification rate = 31.11%) which is only slightly higher than
chance. This result indicates that facial temperatures measured for
IR questions does not effectively discriminate guilty and innocent
participants.

DISCUSSION
The present study utilized infrared thermal imaging with the
CIT to detect the deception of participants who committed
a mock crime. However, because there are certain limitations
in using thermal imaging in the field, such as environmental
factors and participant movement, the present study aimed to
overcome these limitations by conducting a laboratory based
experiment that would control for such variables. In accordance
to conducting a lab based study, the present study further uti-
lized deception detection techniques that were best suited for

research purposes. One of which was to use the CIT method
of questioning, which is based on empirical evidence, and the
other being a highly realistic mock crime scenario. In addi-
tion, a new and simple means of tracking the facial movement
of the participants during thermal image measurement to min-
imize temperature variances due to head movement was also
developed.

Results revealed that the average maximum skin surface tem-
peratures recorded in the periorbital regions of the guilty partic-
ipants were, as expected, significantly higher while responding to
RE items compared to IR items. In contrast, and also as expected,
there were no significant temperature differences between the RE
and IR items measured from the innocent participants. These
results are in line with the previous results of studies which
used thermal imaging to detect deception (Pavlidis et al., 2002;
Pollina et al., 2006; Tsiamyrtzis et al., 2007; Dowdall et al., 2009).
However, the facial tracking process necessary to accurately mea-
sure facial skin temperatures used in the present study was drasti-
cally simplified in comparison to those used in previous research.
Instead of relying on high-tech computer programming, a more
analogue method of tracking was developed and was successfully
applied.

The results of this study support past research that the CIT is
indeed an effective method of questioning for deception detec-
tion, assuming the appropriate circumstances apply, which in
this case was that the interviewer possessed information regard-
ing evidence that only the guilty participants knew, and the
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innocent participants did not. The CIT was conducted with no
pre-interview or any other type of interviewee preparation, other
than informing the subject that they would be asked a few ques-
tions regarding a crime that had been committed. This allowed for
an extremely short questioning session, the interviewer needed no
information about the participant to conduct the session, no pre-
interview or rapport building was necessary, and the interviewer
needed no special training to conduct the questioning session.
Therefore, when applicable, the CIT seems to be a much more
efficient means of questioning than the CQT.

The mock crime used in the present study was also highly
effective at making the participants feel as if they were actually
committing a crime. How the participants felt during the mock
crime was not systematically measured, yet it was clear to the
experimenter that most of the participants were highly anxious
about conducting the mock crime, as well as receiving the decep-
tion detection procedure. Examples of this were, but not limited
to, participants’ hands shaking when they returned from conduct-
ing the mock crime, participants not being able to steal the wallet
and returning empty handed (but eventually going through with
it), and in one extreme case the participant gave up and decided
not to participate in the study after attempting the mock crime.
The combination of the public location, having to dig through
a stranger’s bag for a wallet, and having to eliminate evidence at
the computer lab assistant’s computer seemed to have provided
enough immersiveness to make the participants believe they were
actually doing something illegal.

In addition to the initial statistical analyses, additional analy-
ses were conducted to further examine the results which revealed
only a trend toward the predictions of the present study. As pre-
dicted, and in line with the trend found in the initial analyses, the
additional analyses conducted using a functional ANOVA were
able to show that facial temperatures in the periorbital regions of
guilty participants were significantly higher while responding to
RE questions compared to IR questions, but not in the innocent
participants. This result not only supports the results of previous
studies, but also increased the ecological validity of the experi-
ment by displaying consistent results even when analyzed through
different statistical methods by researchers who did not partic-
ipate in the experiment itself. A functional discriminant analysis
was also able to discriminate between the guilty and innocent par-
ticipants at a classification rate of 98.89%. This result provides
support for the potential that thermal imaging has in detecting
deception, or at the very least supplementing existing methods of
deception detection to increase their accuracy.

Certain limitations applied to the present study. First, the ther-
mal imaging camera used was not the highest resolution camera
available. There are other thermal imaging cameras currently
available with greater resolution, which may produce more accu-
rate measurements. Second, the participants were given a choice
to choose between the GC and IC in order make the mock crime
scenario more immersive. Although there were no significant dif-
ferences in age, gender, health, or baseline temperatures between
the two conditions, it is possible that other dissimilarities may
have had an effect on the results, such as personality differences
or intelligence. Had such information been measured prior to the
condition selection procedure, it could have provided valuable

information as to which participants chose the guilty condition
and how they may have differed from the participants in the
IC. Third, although the thermal imaging procedure was non-
invasive compared to all the sensors of a polygraph, due to the
fact that the participants were told not to move and maintain
eye-contact with the camera during the questioning session, and
that they had to have a small metallic sticker placed on their
forehead, the procedure was not totally free of constraints. To
overcome this limitation, the development of an advanced track-
ing method will be necessary. Such a tracking method would
allow for a more realistic study where the participants would
be able to move freely during measurement. A more sophisti-
cated tracking method could also prevent any changes in ratio
between the AOI and the size of the participants’ thermal image
from moving back and forth in relation to the thermal imaging
camera. Fourth, the study was conducted during the middle of
summer, which may have led to less emphasized temperature dif-
ferences between the innocent and guilty participants. In other
words, the entire sample’s baseline temperatures may have been
higher than normal, leading to smaller increases in temperatures
for the deceptive participants’ facial temperature responses. Fifth,
the number of participants in the study was relatively small. Even
though the number was sufficient to conduct the statistical anal-
yses without technical issues, future research should increase the
number of participants to further increase the reliability of the
results. Sixth, the participants were allowed to choose whether
they wanted to engage in a mock-crime involving monetary risk,
or a relatively risk-free task. The present study was conducted this
way to further immerse the guilty participants into feeling as if
they were really involved in the crime. Although the participants
were random university students, allowing them to choose their
own task forced the study to sacrifice a certain amount of control
afforded by random allocation. However, in reality, most crim-
inals decide for themselves whether they should or should not
commit criminal behavior, and therefore this freedom of choice
may have increased ecological validity. A final limitation is that
the present study used the value of the hottest single pixel of each
frame from within the AOI for the analyses and from a statistical
point of view this is not a very robust approach.

The results of the present study have demonstrated three main
findings. First, it has provided support for previous studies that
have utilized thermal imaging to detect deception, but in an
experimental environment further controlling for temperature,
humidity, and unnecessary body movement, in a much more sim-
ple and effective manner. Second, it has provided support for
previous studies that claim the CIT is a more efficient questioning
method requiring little to no training. Finally, a mock crime was
designed that seems highly effective at providing a realistic crime
experience, without placing anyone involved at risk or danger.

In conclusion, the present study has shown that using thermal
imaging to detect deception has realistic and applicable poten-
tial to be utilized in modern day law enforcement. However,
standardization of the equipment, methodology, and data analy-
sis techniques are necessary before any kind of field application
can be expected. Future research on deception detection using
thermal imaging should place emphasis on three areas. First,
developing a more advanced facial tracking method. Second, a
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simpler way of analyzing the thermal data collected, to make
detecting faster and more accurate, yet easier to apply to real-
world circumstances. Third, conducting research using the most
high-resolution thermal imaging equipment. This may produce
not only more accurate results, but even allow for the discovery
of previously unknown physiological changes in facial skin tem-
peratures or facial temperature changing regions that can also act
as cues during deception detection. Finally, taking a more robust

approach in the statistical analyses of the maximum temperature
values by analyzing not one pixel, but an area of pixels from the
thermal images.
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APPENDIX
ENVELOPE SELECTION EXPLANATION
“This experiment involves you conducting a mission. There are
two different missions you will be choosing from. Both missions
will be conducted at the same location. It is a public place with
people who are not involved with the experiment. There may only
be a small number of people, or quite a few.

In my hands are two different envelopes. The blue envelope
contains a legal mission and the red envelope contains an illegal
mission. If you choose the blue mission, you will simply do what
the mission says, and as long as you correctly do what the mission
states, you will receive $10. However, if you choose the red mis-
sion, you will only receive a reward if you successfully complete
the two the stages of the mission.

To complete the first stage, you will have to complete the stated
illegal act without anyone else knowing other than myself. If any-
one else discovers that you are committing an illegal act, you
automatically fail the mission. After successfully completing the
mission, you will be questioned while having your bio-signals
measured.

To complete the second stage of the mission, you must fool
the questioner into thinking you did not commit any illegal
acts, without being detected. This means that you must not only
convince the questioner, but you must also trick the bio-signal
measurement equipment as well. So, if you successfully complete
both stages of the red mission, you will be rewarded $10 for par-
ticipating in the experiment, as well as a bonus reward of $20, for
a total of $30. However, if you fail either stage of the red mission,
you will receive nothing, and go home empty handed.

If you have any questions for me, please feel free to ask. If not,
select an envelope now.”

SMOOTHING: ROUGHNESS PENALTY SMOOTHING METHOD
Let yt denote the value of facial temperature at time t. In func-
tional data analysis, the observed temperature yt , is regarded
as a realization of an underlying continuous smooth temper-
ature function x, rather than merely as a sequence of discrete
observations. More specifically, we assume the following model,

yt = x(t) + ε(t) (A1)

where x(t) is the value of the underlying smooth function evalu-
ated at time t and ε(t) is a perturbation at time t that causes the
observed data yt to look rough. The first step of functional data
analysis is to estimate the smooth function x, which requires a
smoothing method to convert the observed values yt to a function
x with values x(t) computable for any desired time point t.

Smoothing methods based on so-called basis expansion pro-
cedures represent a function x as a weighted sum of well-known
basis functions φk

x(t) =
K∑

k = 1

ckφk(t), (A2)

where K is the number of basis functions and ck is the coefficient
for the kth basis function. By estimating the coefficients ck, we can
represent a complicated-looking function as a linear combination

of well-known basis functions, which aids further analysis. In
particular, it is convenient to estimate derivatives of a function
expressed by a basis expansion because the first derivative of x,
Dx, can be expressed as

Dx(s) =
K∑

k = 1

ckDφk(s), (A3)

where Dφk(s) is the first derivative of basis function φk at time s.
More generally, the derivative of order m of function x at time s
will be given as

Dmx(s) =
K∑

k = 1

ckDmφk(s), (A4)

where Dm denotes the derivative of order m. This property will be
useful in estimating the coefficients ck, which will be clear soon.

There are many popular bases that are widely used in prac-
tice. Most functional data analyses are known to involve either a
Fourier basis for periodic data or a B-spline basis for non-periodic
data (Ramsay and Silverman, 2006). We used the B-spline basis
(de Boor, 2001) for smoothing the data because facial tempera-
ture can be considered non-periodic.

The remaining problem is how to estimate the coefficients ck.
We applied a penalized least-squares method that is consid-
ered more powerful and versatile than other methods such as
least-squares smoothing, kernel smoothing, and local polynomial
fitting approaches (Ramsay and Silverman, 2006). The objective
function of the penalized least-squares method is given as the
following.

L =
T∑

t = 1

[
yt −

K∑
k = 1

ckφk(t)

]2

+ λ

∫ [
D2x(s)

]2
ds (A5)

Basically, the coefficients are obtained by minimizing the sum of
squared differences between observed values y, and function val-
ues x as shown in (A6), the first term of the objective function.

T∑
t = 1

[
yt −

K∑
k = 1

ckφk(t)

]2

(A6)

The role of the second term in the objective function is to control
the roughness of the function x. The squared second derivative[
D2x(s)

]2
of function x at time s is called its curvature at s, since

a straight line, which has no curvature, will have a zero second
derivative. Therefore, a function’s roughness measured across all
time points s is the integrated squared second derivative as given
in (A7). ∫ [

D2x(s)
]2

ds (A7)

By applying (4) this roughness can be rewritten as

∫ [ K∑
k = 1

ckD2φk(s)

]2

ds (A8)

which shows that the basis expansion is useful in estimating coef-
ficients ck; it expresses the roughness as a linear combination of
the second derivative of well-known basis functions.
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By minimizing the objective function (A5), we wish to obtain
two conflicting goals in curve estimation: model fit and general-
izability. By minimizing (A6), we want to obtain the estimated
curve with a good fit to the data in terms of minimizing the
residual sum of squares. On the other hand, by minimizing
(A7), we do not want the fit to be too good as to be exces-
sively wiggly and overfit the data. The balance between these
two conflicting goals in the objective function can be controlled
by the smoothing parameter λ. As λ gets bigger, the objec-
tive function will place more emphasis on the smoothness and
less on fitting the data. Therefore, as λ approaches infinity, the
estimated curve will approach the standard linear regression

which has
∫ [

D2x(s)
]2

ds = 0. In contrast, as λ becomes smaller,
less penalty is placed on the curvature, and as λ approaches
zero, the estimated curve approaches an interpolant to the data,
which passes exactly though all the given data points. There
exist several methods to choose the smoothing parameter and
we applied the generalized cross-validation (GCV) method pro-
posed by Craven and Wahba (1979). The basic idea under GCV
is to compute a measure of mean squared error over a range
of values of λ and choose the value that gives its minimum.
In this analysis, we tried 11 different values of λ (log10 λ =
−5, −4,−3,−2, −1, 0, 1, 2, 3, 4, 5) and obtained λ = 101

as the optimal value.

FUNCTIONAL ANOVA
After obtaining a smooth function x, we can perform a functional
ANOVA. The form of the functional ANOVA model for analyzing
our data can be given as

Tempi(t) = μ(t) + α(t) + β(t) + γ(t) + δi(t) + ei(t) (A9)

where, Tempi(t) is the facial temperature for participant i eval-
uated at time t, μ(t) is the mean facial temperature of inno-
cent participants answering irrelevant questions evaluated at
time t, α(t) is the main effect of group (i.e., the difference
between the mean face temperature of innocent participants
and that of guilty participants when they are answering irrel-
evant questions), β(t) is the main effect of relevance (i.e., the
difference between the mean face temperature of innocent par-
ticipants answering irrelevant questions and that of innocent
participants answering relevant questions), γ(t) is the interac-
tion between group and relevance (i.e., the difference between
the mean face temperature of guilty participants answering irrel-
evant questions and that of guilty participants answering relevant
questions), δi(t) is the participant specific effect, and ei(t) is a
residual function.

With this model, we want to test whether there is a signif-
icant effect of being in the guilty group, being in the relevant
condition, and/or simultaneously being in the guilty group and
relevant condition, on facial temperatures measured over time. In
order to estimate parameters (or functions), we need to construct
a matrix Z where N is the total number of functions (N = 150,
30 participants × 15 questions). The rows corresponding to the
participants in group 1 (innocent) and condition 1 (irrelevant)
will have [1 0 0 0], the rows corresponding to the participants
group 2 (guilty) and condition 1 (irrelevant) will have [1 1 0 0],

the rows corresponding to the participants in group 1 (innocent)
and condition 2 (relevant) will have [1 0 1 0], and the rows corre-
sponding to the participants in group 2 (guilty) and condition 2
(relevant) will have [1 1 1 1] in the first four columns. In the next
18 columns, subject k in group 1 (guilty) will have a row vector
whose kth element is one and all the other elements are zero. In
the next 12 columns, subject k in group 2 (innocent) will have a
row vector whose kth element is one and all the other elements
are zero. Then the model (A9) has the equivalent formulation as
linear regression as shown in (A10),

x(t) = Zβ(t) + e(t) (A10)

where x(t) is N by 1 vector of facial temperature, β(t) =
[μ(t),α(t), β(t), γ(t), δ1(t), . . . .δN(t)]′, and e(t) is N by 1 vec-
tor of residuals. In order to deal with linear dependency in the
columns of the design matrix, we need to augment the rows of
the design matrix to enforce the sum of the participant specific
effects in each group to be zero.

The regression coefficients β(t), are the parameters that we
want to estimate and they can be estimated by minimizing the
following objective function.

Lβ =
∫ ([x(s) − Zβ(s)]′[x(s) − Zβ(s)])ds

+ λβ

∫ ([D2β(s)]′[D2β(s)])ds (A11)

This objective function has the same structure as the objective
function (A5) of the penalized least-squares smoothing. Basically,
the regression coefficients are obtained by minimizing sum of
squared differences between the function value x(s) and the pre-
dicted value Zβ(s) over all possible values of s, i.e., minimizing
(A12), the first term of the objective function.

∫ ([x(s) − Zβ(s)]′[x(s) − Zβ(s)])ds (A12)

The second term of the objective function is introduced to con-
trol the roughness of the regression coefficient function β. The
inner product of the second derivative of β(s), [D2β(s)]′[D2β(s)],
is defined as the curvature of the function β at time s. Therefore,
the function’s roughness measured across all argument values s is
the integrated curvature as given in (A13).

∫ ([D2β(s)]′[D2β(s)])ds (A13)

As β can be considered a smooth function, we used a basis expan-
sion method to represent β. Let B denote a 2 by Kβ matrix of
coefficients, where Kβ is the number of basis functions, and θ(s)
denote a Kβ by 1 vector of basis functions at time s. We used the B-
spline basis for smoothing the function of regression coefficients.
The regression coefficients can now be represented as (A14) by
the basis expansion.

β(s) = Bθ(s) (A14)
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Therefore, the objective function (A11) can be rewritten as
(A15) and estimating regression coefficients β is equivalent to
estimating the coefficients of the basis expansion B.

Lβ =
∫ ([x(s) − ZBθ(s)]′[x(s) − ZBθ(s)])ds

+ λβ

∫ ([BD2θ(s)]′[BD2θ(s)])ds (A15)

The coefficient B, can be estimated by minimiz-
ing Lβ with respect to B, which is given as vec(B) =[
Jθθ ⊗ (Z′Z) + R ⊗ λβI

]−1
vec(Z′CJφθ), where vec(B) is an

operator that stacks the columns of the matrix B in one col-
umn vector, ⊗ is the Kronecker product, C is the matrix of
coefficients in (A2), Jθθ = ∫

θ(s)θ(s)′ds, Jφθ = ∫
φ(s)θ(s)′ds, and

R = ∫
D2θ(s)D2θ(s)′ds.

The smoothing parameter λβ again plays a role to control
the level of the roughness of the estimated function of β(s). As
λβ gets bigger, the estimated curve of β(s) will be smoother. In
order to choose the value of λβ, we applied a cross-validation
method proposed by Ramsay et al. (2009). The basic idea of this
method is to compute the cross validated integrated squared error
over a range of values of λβ and choose the value that gives its
minimum. In this analysis, we tried 13 different values of λβ

(log10 λβ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and obtained λβ = 106 as the
optimal value.

FISHER’S LINEAR DISCRIMINANT ANALYSIS
The purpose of Fisher’s linear discriminant analysis is to seek
components (or linear combinations) of measured variables that
are efficient for discrimination. Suppose that we have a set of N
observations (or objects) of p dimensions denoted by x1, . . . , xN ,
which consists of C subsets, N1 in the subset S1, N2 in the subset
S2, . . ., NC in the subset SC. If we form a linear combination of
the p variables in xi, it can be represented by

yi = w′xi (A1)

where w indicates a weight vector of order p and yi indicates the
constructed component of observation i. If the norm of w is one,
constructing a component by w′xi is equivalent to projecting xi

onto a line in the direction of w geometrically. We want to find
the best direction w that separates C subsets as much as possible.
The measure of the separation between the projected data y can
be measured by the variance of the means of the C subsets. If x̄ is
the grand mean of xi given by

x̄ = 1

N

N∑
i = 1

xi (A2)

then the grand mean for the corresponding projected data is
given by

ȳ = 1

N

N∑
i = 1

yi = 1

N

N∑
i = 1

w′xi = w′
(

1

N

N∑
i = 1

xi

)
= w′x̄. (A3)

which is the projected grand mean. Likewise, if x̄c is the sample
mean of x in subset c given by

x̄c = 1

Nc

∑
xi ∈ Sc

xi (A4)

then the sample mean for the corresponding y’s in subset c is
given by

ȳc = 1

Nc

∑
yi ∈ Sc

yi = 1

Nc

∑
xi ∈ Sc

w′xi = w′
⎛
⎝ 1

N

∑
xi ∈ Sc

x

⎞
⎠ = w′x̄c.

(A5)
which is the projected subset mean. The variation among the
projected means can be calculated by

s2
B =

C∑
c = 1

Nc
(
ȳc − ȳ

)2

=
C∑

c = 1

Nc
(

w′x̄c − w′x̄
)2

=
C∑

c = 1

Ncw′ (x̄c − x̄) (x̄c − x̄)′ w

= w′
[

C∑
c = 1

Nc (x̄c − x̄) (x̄c − x̄)′
]

w

= w′SBw (A6)

where SB = ∑C
c = 1 Nc (x̄c − x̄) (x̄c − x̄)′. We can make this vari-

ation as large as we wish by multiplying a constant to w. To
obtain good separation, this variance should be large relative to
the variation within each subset, which can be measured by

s2
W =

C∑
c = 1

∑
yi∈Sc

(
yi − ȳc

)2

=
C∑

c = 1

∑
xi∈Sc

(
w′xi − w′x̄c

)2

=
C∑

c = 1

∑
xi∈Sc

w′ (xi − x̄c) (xi − x̄c)
′ w

= w′
⎡
⎣ C∑

c = 1

∑
xi∈Sc

(xi − x̄c) (xi − x̄c)
′
⎤
⎦w

= w′SW w (A7)

where SW = ∑C
c = 1

∑
xi∈Sc (xi − x̄c)(xi − x̄c)

′. Fisher’s linear dis-
criminant analysis seeks to find w that maximizes the following
objective function

J(w) = s2
B

s2
W

= w′SBw

w′SW w
. (A8)
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Maximizing (A8) with respect to w is equivalent to maximiz-
ing w′SBw subject to the constraint, w′SW w = 1, which can be
obtained by maximizing the following objective function with
respect to w and a Lagrange multiplier λ

J(w,λ) = w′SBw − λ
(

w′SW w − 1
)
. (A9)

Taking a derivative of (A9) with respect to w and setting it to zero
yields

SBw = λSW w (A10)

which is a generalized eigenvalue problem. Taking a derivative of
(A9) with respect to λ and setting it to zero yields the constraint

w′SW w = 1. (A11)

If we premultiply (A10) by w′ on both sides, we can obtain the
value of λ

λ = w′SBw

w′SW w
= w′SBw (A12)

which is the maximum variance among the projected means.
Therefore, the eigenvalue of the eigen-equation (A10) indicates
the maximum variance among the projected means that can be
achieved and the eigenvector indicates the direction, or weight,
that maximally separates C subgroups.

If one dimension is not enough to separate C subgroups,
we can consider more eigenvalue-eigenvector pairs that can be
obtained by solving the generalized eigenvalue problem given by
(A10). If there are C subgroups, C − 1 eigenvalue-eigenvector
pairs are usually used to separate C subgroups. This is equiv-
alent to constructing C − 1 linear combinations of variables
given by

yi = Wxi (A13)

where W = [w1, . . . , wC−1]′ and y is the vector of C − 1 compo-
nents.

After obtaining W, we can allocate a new observation xnew into
one of C subgroups in the following way. First we calculate ynew =
Wxnew and calculate the distance between ynew and the projected
mean of each subgroup given by

distc = (
ynew − ȳc

)′ (
ynew − ȳc

)
= (

Wxnew − Wx̄c
)′ (

Wxnew − Wx̄c
)

= (
xnew − x̄c

)′
W′W

(
xnew − x̄c

)
. (A14)

Then the new observation is allocated to the subgroup that yields
the smallest distance value.

FUNCTIONAL DISCRIMINANT ANALYSIS
Fisher’s linear discriminant analysis can be readily extended to
functional data. Suppose we have a set of N functions measured
at T time points, denoted by xi(t), where i = 1, . . . , N and t =
1, . . . , T, and those N observations belong to C subsets with N1 in
the subset S1, N2 in the subset S2, . . ., NC in the subset SC. Fisher’s
linear discriminant analysis aims to find linear combinations of

variables that separate C subsets as much as possible. For func-
tional data, finding a linear combination of observed variables
corresponds to finding a weighted integration of the functions
given by

yi =
∫

ξ(t)xi(t)dt (A15)

where ξ(t) indicates the weight function evaluated at time t and yi

is the component constructed by the weighted integration of the
observed function xi(t).

In order to estimate the weight function ξ(t), we will adopt a
basis function expansion approach to approximate functions. Any
function can be approximated up to some degree of approxima-
tion by a linear combination of suitable basis functions. Suppose
that φ(t)is an M by 1 vector of M suitable basis functions evalu-
ated at time t. Then the observed functions xi(t), and the weight
function ξ(t), can be represented by basis function expansions as
follows

xi(t) = v′
iφ(t) = φ(t)′vi (A16)

ξ(t) = w′φ(t) = φ(t)′w (A17)

where vi is the M by 1 vector of the coefficients of basis functions
for xi(t) and w is the M by 1 vector of the coefficients of basis
functions for ξ(t). Then the weighted integration (A15) can be
rewritten as

yi =
∫

w′φ(t)φ(t)′vidt

= w′
(∫

φ(t)φ(t)′dt

)
vi

= w′Jvi (A18)

where J = ∫
φ(t)φ(t)′dt is the M by M symmetric matrix of inner

products of the basis functions.
We want to find the weight function ξ(t), or equivalently, the

coefficients of its basis functions w, that separate C subsets as
much as possible. The measure of the separation between the pro-
jected data y can be measured by the variance of the means of the
C subsets. The grand mean for the corresponding component is
given by

ȳ = 1

N

N∑
i = 1

yi = 1

N

N∑
i = 1

w′Jvi = w′J
(

1

N

N∑
i = 1

vi

)
= w′Jv̄. (A19)

where v̄ is the mean vector of the coefficients of basis functions
for xi(t). Likewise, the sample mean for the yi’s in subset c is
given by

ȳc = 1

Nc

∑
yi ∈ Sc

yi = 1

Nc

∑
vi ∈ Sc

w′Jvi = w′J

⎛
⎝ 1

N

∑
vi ∈ Sc

vi

⎞
⎠ = w′Jv̄c.

(A20)
where v̄c is the mean vector of the coefficients of basis functions
for xi(t) in subset c. The variation among the projected means can
be calculated by
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s2
B =

C∑
c = 1

Nc
(
ȳc − ȳ

)2

=
C∑

c = 1

Nc
(

w′Jv̄c − w′Jv̄
)2

=
C∑

c = 1

Ncw′J (v̄c − v̄) (v̄c − v̄)′ Jw

= w′J
[

C∑
c = 1

Nc (v̄c − v̄) (v̄c − v̄)′
]

Jw

= w′JSBJw (A21)

where SB =
C∑

c = 1
Nc(v̄c − v̄)(v̄c − v̄)′. We want this variation as

large as possible relative to the variation within each subset, which
can be measured by

s2
W =

C∑
c = 1

∑
yi ∈ Sc

(
yi − ȳc

)2

=
C∑

c = 1

∑
vi ∈ Sc

(
w′Jvi − w′Jv̄c

)2

=
C∑

c = 1

∑
vi ∈ Sc

w′J (vi − v̄c) (vi − v̄c)
′ Jw

= w′J

⎡
⎣ C∑

c = 1

∑
vi ∈ Sc

(vi − v̄c) (vi − v̄c)
′
⎤
⎦ Jw

= w′JSW Jw (A22)

where SW =
C∑

c = 1

∑
vi ∈ Sc

(vi − v̄c)(vi − v̄c)
′. Fisher’s linear discrim-

inant analysis seeks to find w that maximizes the following
objective function

J(w) = s2
B

s2
W

= w′JSBJw

w′JSW Jw
. (A23)

If we use enough number of basis functions, for example, the
same number as the number of time points, the estimated weight
function ξ(t) = w′φ(t) could be jagged, which would make the
interpretation of the weight function difficult. We would prefer a
smoother version of the weight function, which can be obtained
by maximizing the following regularized objective function

J(w, ρ) = w′JSBJw

w′JSW Jw + ρ
∫ (

D2ξ(t)
)2

dt

= w′JSBJw

w′JSW Jw + ρ
∫

D2w′φ(t)D2φ(t)′wdt

= w′JSBJw

w′JSW Jw + ρw′ (∫D2φ(t)D2φ(t)′dt
)

w

= w′JSBJw

w′JSW Jw + ρw′Rw
(A24)

where D2 indicates the second derivative of a function and
R = ∫

D2φ(t)D2φ(t)′dt. The penalty term added to the objec-
tive function w′Rw is the squared integration of the second
derivative of the weight function, which measures the roughness
or smoothness of the weight function. The penalty parameter
ρ(≥0) controls the importance of the penalty term. A larger
value of penalty term will put more emphasis of the smooth-
ness of the weight function and yield a smoother weight function.
The optimal value of ρ can be obtained by a cross-validation
method.

Maximizing (A24) with respect to w is equivalent to maxi-
mizing w′JSBJw subject to the constraint w′JSW Jw + ρw′Rw = 1,
which can be obtained by maximizing the following objective
function with respect to w and a Lagrange multiplier λ

J(w,λ) = w′JSBJw − λ
(

w′JSW Jw + ρw′Rw
)
. (A25)

Taking a derivative of (A25) with respect to w and setting it to
zero yields

JSBJw = λ(JSW J + ρR)w (A26)

which is a generalized eigenvalue problem. Taking a derivative of
(A25) with respect to λ and setting it to zero yields the constraint

w′JSWJw + ρw′Rw = 1. (A27)

If we premultiply (A26) by w′ on both sides, we can obtain the
value of λ

λ = w′JSBJw

w′JSWJw + ρw′Rw
= w′JSBJw (A28)

which is the maximum variance among the means of the com-
ponent yi. Therefore, the eigenvalue of the eigen-equation (A26)
indicates the maximum variance among the means of the com-
ponent that can be achieved and the eigenvector indicates the
coefficients of the weight function that maximally separate C
subgroups.

If one dimension is not enough to separate C subgroups,
we can consider more eigenvalue-eigenvector pairs that can be
obtained by solving the generalized eigenvalue problem given by
(A10). If there are C subgroups, C − 1 eigenvalue-eigenvector
pairs are usually used to separate C subgroups. This is equivalent
to constructing C − 1 linear combinations of variables given by

yi = WJvi (A29)

where W = [w1, . . . , wC − 1]′ and y is the vector of C − 1
components.

After obtaining W, we can allocate a new observation
xnew(t) = φ(t)′vnew into one of the C subgroups in the following
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way. First we calculate ynew = WJvnew and calculate the distance
between ynew and the projected mean of each subgroup given by

distc = (
ynew − ȳc

)′ (
ynew − ȳc

)
= (

WJvnew − WJv̄c
)′ (

WJvnew − WJv̄c
)

= (
vnew − v̄c

)′
W′JJW

(
vnew − v̄c

)
. (A30)

Then the new observation is allocated to the subgroup that yields
the smallest distance value.

CONCEALED INFORMATION TEST QUESTIONING PROTOCOL
Primary question 1: “What was the item you stole from the
computer lab?”

Sub-question 1-1: “Was it a ring?”
Sub-question 1-2: “Was it a wallet?”

Sub-question 1-3: “Was it a pair of glasses?”
Sub-question 1-4: “Was it a notepad?”
Sub-question 1-5: “Was it a jewel?”

Primary question 2: “What did you do before you left the
computer lab?”

Sub-question 2-1: “Did you clean the room?”
Sub-question 2-2: “Did you meet a friend?”
Sub-question 2-3: “Did you take a picture?”
Sub-question 2-4: “Did you turn off the webcam?”
Sub-question 2-5: “Did you have a drink?”

Primary question 3: “What was the item you stole from the
computer lab?”

Sub-question 3-1: “Was it a jewel?”
Sub-question 3-2: “Was it a notepad?”
Sub-question 3-3: “Was it a watch?”
Sub-question 3-4: “Was it a wallet?”
Sub-question 3-5: “Was it a pair of glasses?”

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 70 | 17

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	A functional analysis of deception detection of a mock crime using infrared thermal imaging and the Concealed Information Test
	Introduction
	Method
	Participants
	Materials
	Apparatus
	Thermal imaging
	Webcam
	The red wallet

	Health questionnaire
	Concealed Information Test

	Procedure
	Blue mission:
	Red mission:

	Experimental Design
	Data Collection and Analyses
	Initial analysis
	Functional ANOVA and functional discriminant analysis


	Results
	Health Questionnaire
	Baseline Facial Temperatures
	Facial Temperature Change Values
	Guilty Condition
	Innocent Condition
	Functional ANOVA and Functional Discriminant Analysis

	Discussion
	Acknowledgments
	References
	Appendix
	Envelope Selection Explanation
	Smoothing: roughness penalty smoothing method
	Functional ANOVA
	Fisher's Linear Discriminant Analysis
	Functional Discriminant Analysis
	Concealed Information Test Questioning Protocol



