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Electrophysiology studies routinely investigate the relationship between neural oscillations
and task performance. However, the sluggish nature of the BOLD response means that
few researchers have investigated the spectral properties of the BOLD signal in a similar
manner. For the first time we have applied group ICA to fMRI data collected during a stan-
dard working memory task (delayed match-to-sample) and using a multivariate analysis, we
investigate the relationship between working memory performance (accuracy and reaction
time) and BOLD spectral power within functional networks. Our results indicate that BOLD
spectral power within specific networks (visual, temporal-parietal, posterior default-mode
network, salience network, basal ganglia) correlated with task accuracy. Multivariate analy-
ses show that the relationship between task accuracy and BOLD spectral power is stronger
than the relationship between BOLD spectral power and other variables (age, gender, head
movement, and neuropsychological measures). A traditional General Linear Model (GLM)
analysis found no significant group differences, or regions that covaried in signal intensity
with task accuracy, suggesting that BOLD spectral power holds unique information that
is lost in a standard GLM approach. We suggest that the combination of ICA and BOLD
spectral power is a useful novel index of cognitive performance that may be more sensitive
to brain-behavior relationships than traditional approaches.

Keywords: BOLD oscillations, ICA, fMRI, delayed match-to-sample, aging

INTRODUCTION
Studies of neural oscillations are pervasive in neuroscience, from
single and multi-unit recordings through to non-invasive whole
brain methods such as electroencephalography (EEG) and mag-
netoencephalography (MEG). Studies using these methods have
repeatedly demonstrated that the synchronization of neural oscil-
lations within specific frequency bands impact on cognitive and
motor processes (Klimesch, 1999; Buzsaki and Draguhn, 2004).
For example, a number of studies have highlighted the role of mid-
frontal theta in cognitive control (Cavanagh et al., 2009; Cohen and
Cavanagh, 2011), whilst posterior alpha power has been linked to
sustained and spatial attention (Thut et al., 2006; Dockree et al.,
2007; O’Connell et al., 2009). Nearly 20 years ago Jezzard et al.
(1993) and Biswal et al. (1995) demonstrated regional BOLD dif-
ferences in low frequency oscillatory fluctuations (0.01–0.1 Hz).
Since then a large number of studies have demonstrated that this
<0.1 Hz BOLD signal relates to underlying neural processes (He
et al., 2010; He, 2011; Honey et al., 2012) and can be used to detect
differences in resting connectivity between clinical populations
(Greicius et al., 2004; Jafri et al., 2008; Zhang and Raichle, 2010),
as well as task-related changes in functional networks (Grady et al.,
2010; Zhang and Li, 2012). However, these aforementioned studies
have used spectral information as a filtering tool, typically remov-
ing signal >0.1 Hz in order to remove potential artifacts, rather
than analyzing the relationship between BOLD oscillations and

task performance as one might in an EEG or MEG study. To our
knowledge no previous studies have investigated whether a direct
correlation exists between task performance (i.e., accuracy) and
BOLD spectral power at different frequencies.

To date it is mostly resting state studies that have investi-
gated BOLD oscillations. Studies investigating BOLD oscillations
at rest have demonstrated that multiple frequency bands within
the 0.004–0.15 Hz range contribute to the RSN signal (Niazy et al.,
2011). Niazy et al. (2011) also showed that phase synchrony dif-
fers within this spectral range, suggesting that RSNs likely contain
multiple oscillatory components. Studies by Baria et al. (2011)
and Zuo et al. (2010) have additionally shown that BOLD sig-
nals originating from different cytoarchitectonic and anatomical
regions resonate at distinct frequency ranges. Baria et al. (2011) is
one of the few studies to also investigate BOLD oscillations dur-
ing task performance (visual-motor task). They found a global
decrease in lower BOLD frequency oscillations (0.01–0.05 Hz)
during task compared to rest along with a global increase in higher
frequency BOLD oscillations (0.05–0.1 Hz). Compared to a stan-
dard general linear model (GLM) analysis there was less than
30% spatial overlap in regions showing task-related differences in
BOLD oscillations, suggesting that BOLD spectral changes are not
detected by standard fMRI analyses. Salvador et al. (2008) inves-
tigated connectivity within the frequency domain [differing from
Baria et al. (2011) who investigated regional changes in BOLD
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spectral power] and found increased low frequency connectivity
(<0.08 Hz) between prefrontal, parietal, and thalamic regions dur-
ing performance of an N-back task compared to rest. There was
also decreased high frequency connectivity (0.08–0.25 Hz) during
the N-back task within the anterior cingulate/paracingulate gyri
and insula. Whilst both Salvador et al. (2008) and Baria et al. (2011)
have shown that BOLD oscillations differ in task compared to rest
conditions neither of these studies investigated the extent to which
task performance was correlated with BOLD spectral activity.

Apart from Baria et al. (2011) and Salvador et al. (2008) no
other studies to date have investigated the relationship between
BOLD spectral power and task performance. However, a hand-
ful of fMRI studies have begun to investigate temporal variability
within the BOLD signal and its relationship to task performance.
In a series of studies by Garrett et al. (2010, 2011, 2013) they used
a partial least squares approach to extract functional networks and
subsequently analyzed the variability (standard deviation) within
these circuits and their relationship to age and task performance.
Garrett et al. (2010) showed that BOLD variability was a robust
marker of chronological age, explaining more age-related variance
than mean BOLD signal. BOLD variability was also an important
indicator of task performance. Garrett et al. (2011) showed that
young participants increased BOLD variability during task perfor-
mance and decreased variability during fixation. However, elderly
participants failed to modulate BOLD variability between task and
fixation conditions, showing reduced variability during task and
increased variability during fixation. Samanez-Larkin et al. (2010)
used a similar analytical approach and demonstrated increased
BOLD variability in elderly participants within the nucleus accum-
bens (NAcc), which was associated with increased financial risk
taking. As with the work of Garrett et al. (2010, 2011, 2013),
Samanez-Larkin et al. (2010) found that these results were specific
to BOLD variability measures and that the average NAcc signal
did not predict risk seeking behavior. It is clear from both of these
studies that BOLD variability might be a more sensitive measure
of functional changes with age than average BOLD signal. It is
likely that these changes in BOLD variability have an oscillatory
underpinning and could be better explained by investigating the
BOLD spectrum.

The previously mentioned studies show that spectral properties
of the BOLD signal are anatomically and functionally informative,
although this approach has typically only been applied to resting
state fMRI. Studies investigating BOLD variability during task per-
formance suggest that this measure holds unique task dependent
information that is lost in a standard GLM analysis. Using tools
available in the GIFT toolbox, we aim to bridge the gap between
studies of BOLD oscillations at rest and studies of BOLD variabil-
ity during task by investigating the relationship between BOLD
spectral power and task performance (delayed match-to-sample
task) in young and older participants.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen young (22.08± 3.31) and nineteen elderly (70.2± 3.96)
neurologically normal, right-handed subjects participated in this
study. The two participant groups were matched for gender, hand-
edness, hospital anxiety and depression scale (HADS) score, and

Mini Mental State Exam (MMSE) score. Participants gave writ-
ten informed consent prior to the study that was approved by the
Trinity College Dublin School of Psychology Ethics Committee.

PROCEDURE
Trial structure
Figure 1 illustrates the trial structure. Throughout the experiment
participants were asked to fixate on a white cross hair presented
in the center of a black screen. The same basic trial structure was
applied in all conditions, with condition-specific variations (see
“Conditions” below). After a variable inter-trial interval (1782–
6881 ms) a sample cue was presented in the center of the screen
for 750 ms. This was replaced by the crosshair for a variable period
between 4299 and 9630 ms. A probe cue was then presented left
or right of the cross hair for 1500 ms. At this point the participant
made a judgment about the stimuli by pressing the left or right
button on the keypad placed in their right hand. No feedback was
given to the participant about their response. In all trials the probe
stimulus was presented at a different angle/orientation to the sam-
ple stimulus so they were not perceptually identical. This forced
participants to encode stimulus identity and not just perceptual
features of the stimulus.

Conditions
Four trial types were embedded in a 2× 2 factorial design (two
factors each with two levels).

Factor 1: task (match, respond). Participants performed four
blocks where they had to make a judgment about whether the sam-
ple and probe matched (Match) and four blocks where they had
to make a judgment about the position of the probe (Respond).
These blocks were pseudo-randomly intermixed. At the beginning
of each block a cue was presented for 750 ms saying “MATCH”
or “RESPOND.” This informed the subject which task they had
to perform for the block. In blocks of Respond trials participants
responded by pressing the left button if the probe cue was on the
left of the screen, or the right button if the probe cue was on the
right side of the screen. During Respond trials participants did not
need to encode or attend to the sample cue, as it held no informa-
tion that could guide the subsequent response. During blocks of
Match trials participants had to respond at the time of the probe
by pressing the left button if the probe stimulus matched the sam-
ple stimulus or the right button if they did not match. Each block
lasted 4.14 min.

Factor 2: stimulus type (line, face). During both Respond and
Match blocks the stimulus type was pseudo-randomly intermixed
and could be either a gray line or a greyscale face. The faces were
obtained from the Max Planck Institute for Biological Cybernetics
database (Blanz and Vetter, 1999). For Line stimuli the participant
was first presented with a horizontal line as a sample. At the time
of the probe the participant was presented with a vertical line that
was either the same or a different length. For Face stimuli, the
participant was presented with a frontward facing face as a sam-
ple. At the time of the probe the face stimuli was presented at a
30˚ orientation facing either leftward or rightward (the presenta-
tion of leftward facing and rightward facing faces on the left or
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FIGURE 1 | Delay match-to-sample trial structure. A fixation cross was
presented in the center of the screen for the duration of the study. Sample
cues (either a face or a line) were presented in the center of the screen during
the first 2TRs of a trial (stimulus onset jittered 0–3250 ms from the onset of
the first TR), after a variable time delay (4299–9630 ms), a probe cue was

presented left or right of the fixation cross (stimulus onset jittered 0–2500 ms
from the onset of the fifth TR). Participants responded as quickly possible at
the presentation of the probe cue making either a left/right judgment or a
match/non-match judgment. Face and line probe cues were presented in a
different orientation to the sample cue.

right of the screen was counterbalanced). This approach forced
participants to encode stimulus identity and not just perceptual
features of the stimulus.

The combination of these two factors with two levels each
resulted in four conditions:

1. Line Respond: is the probe Line on the left or right of the screen?
(40 trials)

2. Face Respond: is the probe Face on the left or right of the screen?
(40 trials)

3. Line Match: is the length of the probe Line the same as the
length of the sample Line? (40 trials)

4. Face Match: is the probe Face the same as the sample Face? (40
trials)

Participants practiced four to six shorter blocks of the task before
entering the MRI scanner to make sure they understood the task.
This typically lasted ∼7 min.

BEHAVIORAL ANALYSES
Behavioral measures were analyzed using a two way repeated mea-
sures ANOVA. Two factors of Task (Match, Respond) and Stimulus
(Face, Line) were included with an additional between subject’s
factor of group (young, old). This was used to assess differences
in error rate, reaction time (RT), and RT variability. RT variability
(intra-individual coefficient of variation) was calculated by divid-
ing the RT standard deviation of each individual by their mean RT
(Stuss et al., 2003; Bellgrove et al., 2004).

APPARATUS
Subjects lay supine in an MRI scanner with the thumb of the right
hand positioned on a two-button MRI-compatible response box.

Stimuli were projected onto a screen behind the subject and viewed
in a mirror positioned above the subjects face. Presentation soft-
ware (Neurobehavioral Systems, Inc., USA) was used for stimulus
presentation both inside and outside the scanner. TTL pulses were
also used to drive the visual stimuli in Presentation. Event timings
and RTs were calculated off-line using event timings acquired by a
separate laptop running Brain Recorder (Brain Products, Munich,
Germany) at a higher sampling frequency (5000 Hz).

fMRI DATA ACQUISITION
We first acquired a high-resolution T1-weighted anatomical
MPRAGE image (FOV= 230 mm, thickness= 0.9 mm, voxel
size= 0.9 mm× 0.9 mm× 0.9 mm), followed by phase and mag-
nitude images at different echo times (TE1= 1.46 ms, TE2= 7 ms),
which were used to generate a voxel displacement map. Each par-
ticipant then performed a single EPI session containing 1024 vol-
umes lasting ∼34 min. The field of view covered the whole brain,
224 mm× 224 mm (64× 64 voxels), 34 axial slices were acquired
(0.05 mm slice gap) with a voxel size of 3.5 mm× 3.5 mm× 4 mm;
TR= 2 s, TE= 32, flip angle= 78˚. This was a sparse-sampling
sequence with the slices compressed to the first 1700 ms of the
TR, leaving 300 ms without gradient switching to facilitate the
simultaneously recorded EEG (Debener et al., 2005). The com-
bined EEG/fMRI data will be presented in a separate manuscript.
All MRI data was collected on a Philips 3T Achieva MRI Scanner
(Trinity College Dublin).

fMRI PRE-PROCESSING
Scans were pre-processed using SPM81. Images were realigned
and unwarped using field maps to correct for motion artifacts,

1www.fil.ion.ucl.ac.uk/spm
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susceptibility artifacts and motion-by-susceptibility interactions
(Andersson et al., 2001; Hutton et al., 2002). Images were subse-
quently normalized to the ICBM EPI template using the unified
segmentation approach (Ashburner and Friston, 2005). Lastly, a
Gaussian kernel with a full-width at half-maximum (FWHM) of
8 mm was applied to spatially smooth the image.

fMRI ANALYSES
Group ICA analysis
A single group spatial ICA was run using the GIFT toolbox2. In this
approach single-subject datasets were first compressed using prin-
cipal component analysis (PCA, 123 components), single-subject
data were then combined and PCA was performed for a second
time on the whole group. Spatial ICA was then performed using
the infomax algorithm (Bell and Sejnowski, 1995), with subse-
quent back reconstruction into single subjects (Calhoun et al.,
2001; Erhardt et al., 2011). The resulting output is an independent
component map and an associated timecourse for every compo-
nent and subject. A modified minimum descriptive length (MDL)
criteria (Li et al., 2007) determined that the optimal number of
independent components was 82 and ICASSO was run with 100
re-runs and random initial conditions to ensure a robust decom-
position (Himberg et al., 2004). Components with a quality (iQ;
the difference between intra-cluster and extra-cluster similarity)
below 0.9 were excluded from further analysis as were components
that significantly correlated with regions of white matter or CSF.
Head movement components (i.e., ringing around the edge of the
brain) were also excluded from further analysis.

The Mancovan toolbox (Allen et al., 2011) was used to deter-
mine relationships between IC networks and descriptive vari-
ables such as age, gender, and task performance. This approach
allowed us to investigate within component effects by analyz-
ing IC spatial maps (SMs), and IC timecourse spectra as well
as how descriptive variables modulate connectivity between net-
works using functional network connectivity (FNC; Jafri et al.,
2008). For each component the BOLD spectrum were estimated on
the detrended subject-specific timecourses (removing the mean,
slope, and period π and 2π sines and cosines over each timecourse)
using the multi-taper approach as implemented in Chronux3, with
the time-bandwidth product set to three and the number of tapers
set to five (Mitra and Bokil, 2008). These are the default settings
within the Mancovan toolbox.

Two mancovan models were run which both included age, gen-
der, neuropsychological measures (NART, Logical memory subtest
of the WMS, MMSE), and head movement (rotation and trans-
lation). Task performance (accuracy and RT) was also included
in these models, but RT values for line match and face match
performance were highly correlated (r = 0.96, p= 2e−19). In
order to improve model estimation we ran two separate mod-
els; (1) face match performance orthogonalized with respect to
line match performance (FM_r), and (2) line match performance
orthogonalized with respect to face match (LM_r). Two linear
regressions were used to calculate these residual values. As such
one model included the aforementioned variables along with face

2http://mialab.mrn.org/software/gift
3http://chronux.org

match accuracy (FM_acc), face match RT (FM_RT), residual line
match accuracy (LM_r_acc) and residual line match reaction time
(LM_r_RT), and a second model was run with residual face match
accuracy (FM_r_acc), residual face match RT (FM_r_RT), line
match accuracy (LM_acc) and line match reaction time (LM_RT).

Multivariate analyses were first performed in order to assess
the extent to which each of the independent variables explained
variance in the data (Figure 3). At this stage redundant variables
that do not explain significant variance in the data (p > 0.05) are
removed from the model. This procedure determines how well the
independent variables explain variance within the dependent vari-
ables once other independent variables are taken into account. For
example, Figure 3 shows that for component 58 BOLD spectral
power is significantly modulated by FM accuracy, FM RT, gender,
and rotation (p < 0.05, uncorrected). Importantly, we can see that
rotation is the strongest predictor variable, explaining more vari-
ance in the BOLD spectrum then any other variables. Components
will only be described as showing a significant relationship with
task accuracy if they show the strongest relationship with BOLD
spectral power based on these multivariate analyses.

In order to determine which spectral bins were associated with
task performance we additionally performed univariate analyses.
Partial correlation was used to measure the strength of the lin-
ear relationship between two variables [e.g., log(power) and face
match accuracy] after adjusting for all other independent vari-
ables. Univariate tests were corrected for multiple comparisons at
p < 0.05 using false discovery rate (FDR; Genovese et al., 2002).

Standard GLM analyses
Along with the ICA analyses we also conducted two standard GLM
analyses implemented in SPM8 (Friston et al., 1995a,b). The first
modeled events using the canonical hemodynamic response func-
tion (hrf), the second modeled events using Fourier basis functions
(2 sine and 2 cosine functions of different frequencies with a 15-
s Hanning window; Balsters and Ramnani, 2008). All first level
models included nine event types. Sample and probe cues for each
of the four conditions were modeled as eight separate event types.
Trials in which responses were incorrect, too early (before the
probe cue) or too late (responded after the presentation of the next
sample cue) were modeled separately as a ninth event-type and dif-
ferentiated from experimental conditions. This ninth event type
included the onsets from both the sample and probe cues in error
trials. Thus, activity time-locked to incorrect trials was excluded
from regressors explaining instruction related activity. The resid-
ual effects of head motion were modeled as covariates of no interest
in the analysis by including the six head motion parameters esti-
mated during the realignment stage of the pre-processing. Prior
to the study, a set of planned experimental timings were gener-
ated from two volunteers who performed the task outside of the
scanner. These timings were carefully checked so that they resulted
in an estimable GLM in which the statistical independence of the
nine event types was preserved (piloting on volunteers allowed to
generate a realistic error trial regressor).

To determine voxels significant at the group level, t -contrasts
were incorporated into a random effects analysis using either one
or two sample t -tests for the analyses using the canonical hrf or
two way ANOVAs for analyses using the Fourier basis functions.
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ANOVAs had two factors; Group (two independent levels) and
Basis functions (five non-independent levels). In all cases contrast
images describing the main effect of stimulus (face vs. line), main
effect of task (match vs. respond), and stimulus× task interac-
tions at the single-subject level were calculated for both sample
and probe cues. For analyses using the canonical HRF this was
one contrast image per subject whereas analyses using the Fourier
basis set used five contrast images per subject (one for each basis
function).

Significant within group differences were established using a
conjunction analysis (Price and Friston, 1997; Friston et al., 2005).
This analysis confirms what is statistically similar across groups.
Significant group differences were run on the same model. Beta
values for the face match condition were also input into a one-
sample t -test in order to see if beta values correlated with task
accuracy in a similar manner to the ICA analyses. All results were
corrected for multiple comparisons (FWE, p < 0.05).

RESULTS
BEHAVIOR
Error rates
For both young and old groups there was a significant main
effect of task [F(1, 28)= 170.99, p < 0.001] as significantly more
errors were made in the matching task (7.46 error trials± 0.53)
compared to the respond task (0.58 error trials± 0.12). Both
groups also made significantly more errors for faces (4.88 error
trials± 0.28) compared to lines [3.41 error trials± 0.35; F(1,
28)= 28.85, p < 0.001]. There was also a significant stimulus by
task interaction [F(1, 28)= 34.42, p < 0.001] as significantly more
errors in face match condition than any other condition.

A number of group differences were also present. Although
the main effect of group [F(1, 28)= 3.77, p= 0.06] did not
reach significance, there were clear selective deficits in the per-
formance of old participants compared to young. This was
seen in the significant group× stimulus interaction [significantly
more errors to faces than lines in the old participants; F(1,
28)= 16.84, p < 0.001], and a significant group× task× stimulus
interaction [F(1, 28)= 21.05, p < 0.001], as elderly participants
made significantly more errors in the face matching condition
compared to any other condition [T (1, 28)= 4.19, p < 0.001].
This suggests that key difference in performance between the
young and old participants was in the face match condition (see
Figure 2A).

Reaction time
As with error rate, all participants showed a significant main effect
of task on RT (slower RTs during match (1236.99± 43.33 ms)
compared to respond conditions [718.2± 24.54 ms; F(1,
28)= 159.85, p < 0.001]. There was also a significant main effect
of stimulus type [slower to respond to faces (1044.08± 30.92 ms)
compared to lines (911.11± 26.99 ms); F(1, 28)= 189.73,
p < 0.001], and a significant stimulus× task interaction [signif-
icantly slower on face matching compared to all other conditions;
F(1, 28)= 142.92, p < 0.001].

Older participants showed significantly slower RTs com-
pared to young participants (Old (1148.25± 41.8 ms); Young
(806.93± 39.1 ms); significant main effect of group [F(1,

FIGURE 2 | Behavioral Results. Bar graphs showing task accuracy (A) and
response times. (B) Gray bars show average scores for young participants;
white bars show average scores for elderly participants. Error bars show
the standard error.

28)= 35.564, p < 0.001]). There were also significant group×
stimulus interactions [F(1, 28)= 22.14, p < 0.001; old participants
were significantly slower than young participants to respond to
faces compared to lines] and significant group× task interactions
[F(1, 28)= 12.86, p < 0.005; Older participants were significantly
slower than young participants to match compared to respond].
Finally there was also a significant group× task× stimulus inter-
action illustrating the significant difference in face matching in
young compared to old [F(1, 28)= 34.56.2, p < 0.001]. These
results are illustrated in Figure 2B.

Whilst there were no significant group effects on RT vari-
ability there was a significant main effect of stimulus type [F(1,
28)= 8.49, p < 0.01] on RT variability (greater variability for line
stimuli compared to faces) and a significant task× stimulus inter-
action [F(1, 28)= 4.3, p < 0.05; greater variability in the line
match condition compared to all other conditions].

fMRI ANALYSES
Group ICA analyses
Out of 82 ICs, 54 were included in the mancovan models. Figure 3
shows the strength of the relationship between spectral power for
each IC and each of the variables of interest and nuisance variables.
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FIGURE 3 | Multivariate statistics. Results from the reduced mancova models, depicting the significance of covariates of interest and nuisance predictors for
power spectra in log10(p) units. Gray cells indicate terms that were removed from the full model during backward selection process.

ICs were ignored if they showed a stronger relationship with head
movement than task performance.

Task performance. We first examined the relationship between
IC features and accuracy. SMs and FNC showed no significant
relationship to task accuracy, but for a number of ICs BOLD spec-
tral power was significantly correlated with task performance (see
Figure 4). In all cases there was a positive relationship between 0
and 0.1 Hz BOLD spectral power and task performance (greater
spectral power= better performance) and a negative relationship
between 0.1 and 0.25 Hz power and accuracy (greater spectral
power= poorer performance). Spectral power within the ante-
rior cingulate cortex (ACC) (area 24; IC 71) correlated to both LM
and FM accuracy. Spectral power within the caudate nuclei (IC
47) was specific to LM accuracy. Spectral power within six net-
works related to FM accuracy including putamen (IC 14), visual
(IC 15), right superior STG (IC 26), precuneus (posterior DMN;
IC 48), insular (IC 63), and the salience network (SN) (ACC and
bilateral anterior insular; IC 65) (see Table 1 for details). All of
these results were significant in the analysis of the residual values
(FM_r_acc and LM_r_acc) as well as analysis of the original val-
ues. Table 2 shows the results of linear multiple regression using
single-subject IC timecourses as the dependent variable and the
GLMs used for the hrf analysis as independent variables (see Stan-
dard GLM Analyses above for details). A one-sample t -test was
performed on beta values to establish if there was a significant rela-
tionship between event timecourses and IC timecourses (p < 0.05,
uncorrected). Two sample t -tests were also run on these same
beta values to establish whether the relationship differed between
groups (p < 0.05, uncorrected).

Figure 5 shows spectral profiles for both young and older par-
ticipants and the correlations between spectral power and accuracy
after variance associated with age had been removed from the data.
Even after age-related variance was removed from the data there
were still very strong correlations between task accuracy and spec-
tral power below 0.1 Hz (r values between 0.64 and 0.79). However,
removing age-related variance from higher frequencies (>0.1 Hz)
typically removed the relationship between spectral power and
accuracy for most ICs. Only the SN (IC 65) maintained signifi-
cance at higher frequencies after removing age-related variance.
All of the BOLD spectra presented in Figure 5 show a clear peak

at 0.08 Hz (every 12.5 s). This peak reflects the presentation of the
stimuli and is not an artifact. Resting state data acquired immedi-
ately prior to the collection of this task was run through a similar
analysis pipeline and the 0.08-Hz peak was not present (Balsters
et al., 2013). Table 3 shows partial correlation values for BOLD
spectral power and task accuracy after age-related variance was
regressed out of the data. Partial correlations were run across all
subjects as well as young and old subjects only.

We also analyzed the extent to which RT related to IC features
(see Figure 6). In this case only the original values explained IC
features and there were no significant effects of residual values
(FM_r_RT or LM_r_RT). Both FM_RT and LM_RT were sig-
nificantly correlated to SM activity within motor lobules of the
cerebellum [left lobule HVI (85%) (Diedrichsen et al., 2009)]. LM
RT was correlated with 0.15–0.2 Hz spectral power in the thala-
mus [IC 12, Visual Thalamus (Behrens et al., 2003)], and FM RT
was correlated with 0.15–0.2 Hz spectral power in fusiform gyrus
(IC 46) and ACC (area 32; IC 62) (see Table 1 for details). In all
three cases 0.15–0.2 Hz spectral power was positively correlated
with RT (greater spectral power= slower RT). The relationship
between spectral power and RT was not present after variance
associated with age had been removed from the data.

GLM analyses
Faces vs. lines. Within group analyses showed significant activa-
tions in predicted regions. For example, a comparison of stimulus
type (faces vs. lines) showed greater activity in bilateral fusiform
gyrus for faces compared to lines. This was present both at the
time of the sample and probe cue. However, there were no signif-
icant group differences. The FDR thresholded main effect of faces
vs. lines was compared spatially with all the ICs found to corre-
late with task performance by overlaying these images in MRIcron.
There was no spatial overlap between any of these ICs and the main
effect of stimulus type. These results were consistent for HRF and
Fourier models.

Match vs. respond. Similarly, a comparison of task (match vs.
respond) showed greater activation in right middle/inferior frontal
gyrus, as well as ACC and bilateral insula for match compared to
respond. Overlaying this FDR thresholded activation map with ICs
found to correlate with task performance showed a clear spatial
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FIGURE 4 | Components showing a relationship between spectral
power and face match accuracy. Left column shows components where
spectral power significantly covaried with task accuracy. Red markers
indicate a positive relationship with task accuracy (greater spectral power
with higher accuracy), blue markers indicate a negative relationship

(greater spectral power with lower accuracy), black indicates their was no
significant difference after correcting for multiple comparisons. Right
column shows spatial maps for components which showed a significant
relationship with face match accuracy. All results are FDR thresholded
(p < 0.05).

overlap with the previously identified SN (IC65; see Figure 7).
There was no spatial overlap with any other of the ICs found to cor-
relate with task performance. Despite significant behavioural dif-
ferences (group× task interaction) there were no significant group
differences for this comparison. These results were consistent for
HRF and Fourier models.

Stimulus× task interaction. There were no significant within-
or between group activations for the stimulus× task interaction,

despite there being very significant behavioral differences. These
results were consistent for HRF and Fourier models.

Face match and task performance. In order to more
directly compare the ICA and GLM analyses, we performed
a one-sample t -test looking for correlations between accu-
racy and beta values associated with Face match condi-
tion (both sample and probe). There were no significant
correlations.
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Table 1 | Peak activations of spatial maps showing a relationship with task performance.

Component # (Iq) Brain region Cluster size t Co-ordinates Cytoarchitectonic BA

(probability if available)

x y z

FACE AND LINE MATCH ACCURACY

71 (0.93) Left anterior cingulate cortex 3091 26.91 0 32 14 Area 24

FACE MATCH ACCURACY

14 (0.98) Left putamen 3277 31.42 −18 8 0 n/a

Right putamen 3123 29.83 28 4 0 n/a

15 (0.98) Left calcarine gyrus 6131 46.69 −2 −84 −2 Area 17 (90%)

26 (0.98) Right insula lobe 4400 27.11 38 −20 0 Insula (Ig2) (90%)

Left superior temporal gyrus 188 10.77 −46 −12 −2 Insula (Ig2) (10%)

48 (0.97) Right precuneus 6738 32.23 6 −70 34 SPL (7M) (60%)

Left angular gyrus Same cluster 16.14 −38 −60 40 hIP2 (10%), hIP3 (10%)

Right angular gyrus Same cluster 10.86 36 −58 42 hIP1 (20%), hIP3 (10%)

63 (0.97) Left insula lobe 3811 25.19 −40 4 0 Area 48

Right insula lobe 1083 16.6 42 0 6 Area 48

Right angular gyrus 319 11.41 52 −56 26 IPC (PGa) (50%)

Left supramarginal gyrus 224 9.06 −58 −34 28 IPC (PF) (90%)

Right anterior cingulate cortex 93 7.86 4 16 28 Area 24

65 (0.97) Right superior medial gyrus 1495 24.05 4 20 42 Area 32

Right insula lobe 1209 21.1 40 10 −2 Area 48

Left insula lobe 563 17.9 −36 16 −10 Area 48

LINE MATCH ACCURACY

47 (0.98) Right caudate nucleus 3655 29.34 8 18 2 n/a

Left caudate nucleus Same cluster 27 −8 16 0 n/a

FACE MATCH RT

46 (0.98) Left inferior temporal gyrus 1121 18.89 −48 −62 −6 Area 37

Right inferior temporal gyrus 862 16.13 46 −60 −14 Area 37

Left cerebellum 445 17.29 −4 −78 −12 HVI (6%)

Right superior parietal lobule 180 12.18 24 −72 48 SPL (7P) (40%)

Left precuneus 152 11.11 −4 −52 18 Area 30

Left middle cingulate cortex 90 9.8 −2 14 38 Area 24

62 (0.97) Left anterior cingulate cortex 4681 30.48 −6 42 20 Area 32

Left inferior frontal gyrus (p. orbitalis) 295 13.95 −48 24 −14 Area 47

The quality index (Iq) associated with each RSN is listed in parentheses adjacent to the component number. Cluster size refers to the number of voxels in each cluster,

negative x co-ordinates refer to left hemisphere activations. Cytoarchitectonic probabilities were established where possible by using the Anatomy toolbox (Eickhoff

et al., 2005, 2006, 2007).

DISCUSSION
It has been repeatedly shown that elements of executive function,
such as working memory, degrade with age (Grady and Craik,
2000). As in other studies (Grady et al., 1995, 1998) we found that
elderly participants performed significantly worse than young con-
trols on a DMS task (both in terms of error rate and RT), with the
group difference being largest when matching facial stimuli (see
Figure 2). Whilst standard GLM-based approaches failed to dis-
tinguish between age groups or task performance, a combination
of ICA and multi-taper spectral analyses illustrated a number of
functional networks where BOLD spectral power tracked task per-
formance. Multivariate statistics further demonstrated that task

accuracy was the strongest predictor variable for BOLD spectral
power within these networks, stronger than age, head movement,
gender, or any neuropsychological variables (Figure 3).

AGE-RELATED CHANGES IN FUNCTIONAL NETWORKS DURING DMS
PERFORMANCE
The functional networks identified as tracking task performance
regardless of age included the primary visual network, temporal-
parietal network, posterior default-mode network, SN, and basal
ganglia. The visual, posterior DMN, and SNs also showed higher
frequency BOLD oscillations that negatively correlated with both
task accuracy and age. The differences between high and low
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Table 2 | Linear regression between event-related task timecourses and IC timecourses.

IC Sample line

respond

Sample face

respond

Sample line

match

Sample face

match

Probe line

respond

Probe face

respond

Probe line

match

Probe face

match

1 SAMPLE t -TEST

14 (BG) Y Y Y Y Y

15 (Visual) Y Y Y Y Y Y Y

26 (Left STG) Y

48 (Posterior DMN) Y Y Y Y

63 (Insula) Y Y Y Y

65 (Salience) Y Y Y Y Y

71 (ACC) Y Y Y Y

46 (Fusiform) Y Y Y Y Y Y Y

62 (ACC) Y Y Y Y Y Y

2 SAMPLE t -TEST

14 (BG) Y Y

15 (Visual) Y Y Y Y

26 (Left STG) Y Y Y

48 (Posterior DMN) Y Y

63 (Insula) Y

65 (Salience) Y Y

71 (ACC) Y

46 (Fusiform) Y Y Y

62 (ACC) Y Y Y Y

Y indicates a significant relationship (as measured by beta values) between task regressors and IC timecourses (1 Sample t-test) or a significant difference between

groups (2 Sample t-test). Significance thresholded at p < 0.05 uncorrected.

frequency BOLD oscillations will be discussed below. Studies using
the delayed match-to-sample task have typically found increased
activity within the frontal-parietal network (FPN) and decreased
activity within the DMN (Grady et al., 2010; Spreng et al., 2010;
Salami et al., 2012). When investigating aging populations it has
been further shown that the DMN decreases less during task per-
formance with age whilst the FPN increases with age (Grady et al.,
2010; Salami et al., 2012). There has been some indication that
this increased FPN activity is compensatory, whilst others argue
that this may indicate reduced neural efficiency (see Grady, 2012
for review). The results of this study move the focus away from
prefrontal regions in working memory and place a greater empha-
sis on the DMN. It is well established that DMN connectivity
decreases with age during rest (Damoiseaux et al., 2008; Allen
et al., 2011; Balsters et al., 2013), however there is more debate
surrounding DMN connectivity during task performance. Whilst
some studies have shown increased DMN activity during task com-
pared to young controls (Grady et al., 2010) others have shown
a continued decrease in DMN functional connectivity (Andrews-
Hanna et al., 2007; Sambataro et al., 2010). Sambataro et al. (2010)
scanned young and old participants during a working memory
task (1- and 2-back tasks) and showed reduced DMN connectiv-
ity with age, and that increased connectivity within this network
was correlated with better performance. In line with the results of
this study the Sambataro et al. (2010) also showed reduced low
frequency BOLD spectral power (0.03–0.08 Hz) in the posterior
DMN related to age and increased BOLD spectral power within the
same band limits as task difficulty increased. Garrett et al. (2013)

also found reduced BOLD variability with aging in regions of the
posterior DMN during task performance (including DMS task)
compared to rest. The precise role of the DMN in cognitive con-
trol is unclear, however these findings add to previous suggestions
that the posterior nodes of the DMN are involved in memory
retrieval (Menon, 2011; Vannini et al., 2011).

The SN was the only network which showed both low and high
BOLD frequency correlates of task accuracy after accounting for
age-related variance (Figure 5F). The SN comprises of bilateral
anterior insula and ACC. The insula has been shown to be an
important node in functional connectivity, linking multiple brain
regions, and functional networks (see Menon and Uddin, 2010 for
review). Two of the key roles proposed for the SN are: (1) detection
of salient events and (2) switching between large-scale functional
networks once a salient event has been detected (Menon and
Uddin, 2010; Menon, 2011). Along with being the only IC to track
accuracy at both high and low BOLD frequencies, this was also the
only IC to overlap with GLM-based results (match > respond).
As in our study, Sridharan et al. (2008) found a strong overlap
between the SN found using ICA and GLM-based analyses. The
behavioral results of our study showed a strong effect of task on
RTs and accuracy (poorer performance on match trials compared
to respond trials) indicating that the match task was more difficult.
It is therefore likely that increased attentional demands were placed
on the match blocks compared to the respond blocks, thus high-
lighting the SN in the GLM analyses for match > respond events.
Control signals from the SN are believed to have a top-down influ-
ence on multiple networks including basic sensory networks and
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FIGURE 5 | Group spectral profiles and correlations with face match
accuracy. Left column shows spectral power distributions for young and old
participants. Shaded error bars show the standard error. Black markers
underneath highlight where spectral power covaried with task accuracy
(these are the same values shown in Figure 4). Middle and right columns
show correlations with spectral power and accuracy after age was regressed

out of the data. Middle column shows correlations for significant frequency
points at lower frequencies (<0.1 Hz). The right column shows correlations for
significant frequency points >0.1 Hz. (A) Putamen (IC 14), (B) Visual cortex (IC
15), (C) right STG (IC 26), (D) precuneus (posterior DMN; IC 48), (E) left insula
(IC 63), (F) cingulo-insula network (salience network; IC 65). In all plots red
refers to young participants and blue to elderly.
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Table 3 | Partial Correlations between BOLD frequency power and task performance with age-related variance removed.

IC Low frequency (0–0.1 Hz) High frequency (0.1–0.25 Hz)

Group Young Old Group Young Old

r p r p r p r p r p r p

14 (BG) 0.7451 <0.001 0.6869 0.0136 0.4522 0.0519

15 (Visual) 0.6414 0.001 0.6414 0.001 0.0655 0.79 −0.2419 0.1898 −0.2833 0.3722 −0.3849 0.1037

26 (Left STG) 0.8085 <0.001 0.0962 0.7662 −0.1585 0.5168

48 (Posterior DMN) 0.7468 <0.001 0.627 0.0291 0.5326 0.0189 −0.293 0.1097 −0.219 0.4941 −0.5345 0.0184

63 (Insula) 0.7695 <0.001 0.7959 0.002 0.5348 0.0183 −0.3017 0.09 −0.6288 0.0285 −0.4624 0.0462

65 (Salience) 0.758 <0.001 0.7899 0.022 0.5322 0.019 −0.4991 0.0042 −0.6403 0.0249 −0.4347 0.0629

p-Values marked in bold were significant (p < 0.05, uncorrected).

functionally complex networks like the DMN and FPN. It is pos-
sible that control signals from the SN were impacting on BOLD
oscillations within other identified networks such as the posterior
DMN and visual cortex, however we did not find a significant
correlation between these networks after correcting for multiple
comparisons. One would also predict based on previous studies
that the SN signal would elevate activity within the FPN rather
than the DMN. This may suggest that an increase in FPN connec-
tivity is not directly correlated with task accuracy in aging and may
indeed index inefficient neural activity. As mentioned previously,
there is still a great deal of debate about whether increased FPN
connectivity is a positive or negative marker of executive function
in aging (Grady, 2012).

MULTIPLE BOLD FREQUENCIES DIFFERENTIALLY CONTRIBUTE TO TASK
PERFORMANCE
Our results suggest two broad relationships exist between task
accuracy and BOLD oscillations; power at BOLD frequencies
below 0.1 Hz were positively correlated with working memory per-
formance and unrelated to the age of the subjects, whilst power
at frequencies above 0.1 Hz were negatively associated with task
performance and typically contained age-related variance (the SN
being the only exception). Previous studies have also shown that
multiple oscillatory dynamics are contributing to low frequency
fluctuations in the BOLD signal and that these different oscil-
lations may have distinct functional roles (Salvador et al., 2008;
Baria et al., 2011; Niazy et al., 2011). Studies by Garrity et al.
(2007), Malinen et al. (2010), and Calhoun et al. (2011) have
shown that control groups had stronger BOLD fluctuations below
0.05 Hz whilst patient groups (schizophrenic, bipolar, and chronic
pain patients) had stronger high frequency BOLD fluctuations
(>0.1 Hz). Similarly, Allen et al. (2011) showed decreasing BOLD
frequency power (<0.15 Hz) with age, whilst some RSNs showed
increasing spectral power with age at frequencies greater than
0.2 Hz. All of these studies would suggest that increased higher
frequency BOLD oscillations, present in schizophrenic patients,
bipolar patients, chronic pain patients, and healthy aging, are a
negative symptom (although none of these studies directly linked
higher frequency oscillations to behavioral or neuropsychologi-
cal measures). Our results are in keeping with the idea that high
frequency BOLD fluctuations are a negative symptom given that

we find a negative correlation with working memory performance
and high frequency BOLD spectral power. One difference between
this study and the studies of Garrity et al. (2007), Malinen et al.
(2010), and Calhoun et al. (2011), is that our data was collected
during task performance whilst the other studies report used rest-
ing data. Although it is likely that differences in the underlying
causes of BOLD oscillations will differ between rest and task, Cal-
houn et al. (2008) showed that decreased low and increased high
frequency BOLD spectral power was present in the same schizo-
phrenic patients during both task performance (auditory oddball)
and rest.

It has been proposed by Garrity et al. (2007) and Malinen
et al. (2010) that increased higher frequency oscillations might be
indicative of reduced connectivity within the functional network.
It is well established that both structural and functional connectiv-
ity decreases with age (Andrews-Hanna et al., 2007; Damoiseaux
et al., 2009; Allen et al., 2011), therefore an increase in BOLD spec-
tral power at higher frequencies may represent reduced network
synchronization. Cohen (2011) had participants perform a similar
working memory task and investigated the delay period between
the sample and probe using EEG. Cohen (2011) found a significant
negative relationship between performance and peak oscillatory
frequency (faster oscillations= poorer performance) during the
delay period. Peak oscillatory frequency was also strongly neg-
atively correlated with the structural connections between the
hippocampus and ventrolateral PFC. These results add to the
evidence that slower frequencies are necessary for encoding and
maintaining complex information (Cohen, 2011; Honey et al.,
2012), whilst changes in higher frequency oscillations might be
indicative of reduced functional and structural connectivity.

A number of previous studies have suggested that resting state
BOLD fluctuations >0.1 Hz are noise (Wise et al., 2004; Birn et al.,
2006; Zou et al., 2008; Zuo et al., 2010), and might reflect cardiac or
respiratory signals. One must therefore ask whether the >0.1 Hz
effects seen in this study might be related to cardiac or respiratory
signals. Unfortunately, we did not collect cardiac or respiratory
recordings so we can not completely rule out this possibility, but
we would argue based on previous resting state studies that BOLD
fluctuations >0.1 Hz can contain meaningful information. First,
it has been shown that ICA is capable of isolating physiological
noise sources from functional networks (Birn et al., 2008; Beall and
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Balsters et al. BOLD oscillations track working memory

FIGURE 6 | Components showing a relationship between spectral power
and face match reaction time (RT). (A) Components where spectral power
significantly covaried with face match RT. Red markers indicate a positive
relationship (greater spectral power= slower RT), black indicates their was no

significant difference after correcting for multiple comparisons. (B) Significant
covariation with voxel intensity and face match RT within left cerebellar lobule
HVI. (C) IC 46 spatial map. (D) IC 62 spatial map. All results are FDR
thresholded (p < 0.05).
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FIGURE 7 | Overlap between IC 65 (salience newtork) and SPM results.
Red voxels show the spatial map for IC 65 which was identified to track
task accuracy at both low (<0.1 Hz) and high (>0.1 Hz) frequencies.
Activations in yellow were from the SPM analysis showing common
activations between both groups for match compared to respond blocks.
Both sets of activations were FDR corrected (p < 0.05).

Lowe, 2010; Allen et al., 2011). By excluding 28 components that
correlated with white matter and CSF,displayed ringing around the
edge of the brain, or had a variable decomposition, we believe we
have managed to remove some physiological noise sources. Similar
studies to ours were able to assess the impact of cardiac and res-
piration signals on BOLD oscillations at rest, and in both studies
their results were not explained by these noise sources (Malinen
et al., 2010; Baria et al., 2011). However, we would also reiterate
that the strongest relationship between task accuracy and BOLD
spectral power was at frequencies below 0.1 Hz that are widely
acknowledged to reflect underlying neural fluctuations (He et al.,
2010; He, 2011; Honey et al., 2012).

ADVANTAGES AND DISADVANTAGES OF ICA/SPECTRA APPROACH
COMPARED TO GLM APPROACHES
A number of studies have previously demonstrated that BOLD sig-
nal correlates with task performance (Pessoa et al., 2002; Todd and
Marois, 2004; Nagel et al., 2011). However, we believe there are a
number of advantages to using BOLD frequency power instead of
GLM-based values such as beta values or percent signal change. As
mentioned previously, fluctuations in the BOLD signal are com-
posed of a number of different oscillatory signals (Zuo et al., 2010;
Baria et al., 2011; Niazy et al., 2011). As such, just investigating one
oscillatory signal may not capture the underlying complexities
that exist within BOLD data. Although BOLD variability has been
shown to be more sensitive than mean BOLD signal, this approach
still fails to take into account different BOLD frequency bands. For
example, Garrett et al. (2013) found there was very little difference

in BOLD variability within the elderly population between fixa-
tion and delayed match-to-sample performance. By investigating
the entire BOLD spectrum we were able to find BOLD fluctu-
ations that significantly correlate with delayed match-to-sample
performance across young and old participants, as well as addi-
tional BOLD dynamics that are related to age. We therefore believe
that this approach is more sensitive to brain-behavior relationships
than other approaches such as GLM-based approaches and BOLD
mean/variability measurements.

It may also be possible to integrate the spectral analyses con-
ducted within this study with GLM approaches. For example, one
could apply this spectral analysis to regions identified using a
GLM approach instead of using ICA timecourses. However, GLM-
based approaches require additional assumptions about the hrf. A
number of studies have shown that BOLD response is far from
canonical, changing across brain areas (Handwerker et al., 2004;
Eichele et al., 2008; Wall et al., 2009), subjects (Aguirre et al.,
1998), clinical populations (Rombouts et al., 2005), and in healthy
aging (D’Esposito et al., 1999). In this study we used both the
canonical HRF as well as more flexible Fourier basis functions
to model events. The results were consistent across both GLM
approaches, and neither of these highlighted the results established
using ICA/spectral approaches. However, even if one uses multiple
basis functions, or generates a custom HRF per subject, this still
assumes that response functions are consistent from trial-to-trial.
In event-related designs such as the one used in this study there is
likely to be a great deal of trial-to-trial variability. By analyzing the
spectral content of the whole time course we overcome this issue.
However, this is also the main disadvantage of this approach. By
analyzing the entire timecourse of the experiment we are not able
to establish whether these BOLD spectral changes are time locked
to specific cue types or task phases. Early investigations into work-
ing memory changes with age using the delayed match-to-sample
task found that the deficit was specifically at the time of encoding
rather than at the recognition/decision phase (Grady et al., 1995).
Unfortunately, we are not able to address this question regarding
the encoding and recognition phases of the experiment. It is pos-
sible to perform temporal regression on IC timecourses as we have
done in this study (Table 2). However, this requires us to make
assumptions about the shape of the hrf and trial-to-trial variabil-
ity, which for reasons mentioned above may not be valid. Another
alternative would be use a block design experiment where spectral
content of encoding and recognition phases can be analyzed sep-
arately. Recent studies by Allen et al. (2012), Smith et al. (2012),
and Sakoglu et al. (2010) are also investigating changes within and
between functional networks over time. A modified version of
these approaches may also allow us to investigate BOLD spectral
changes in an event-related manner.

It is possible that the experimental design used in this study
favored ICA/spectral analyses and biased against GLM approaches,
however, we do not believe this to be the case. In this study we col-
lected a long timeseries of data (∼34 min) which consisted of long
4.14 min blocks of task performance. Such a design is certainly
amenable for Fourier transforms, however we do not believe that
this unfairly biases against GLM approaches. Long, single session
acquisitions such as the ones used in this study are recommended
by a number of fMRI papers (Josephs and Henson, 1999; Smith
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et al., 2005,2007). In addition the results of our study are consistent
with previous studies of BOLD oscillations/variability conducted
by Salvador et al. (2008) and Garrett et al. (2011) who used
much shorter task blocks of 48 and 36 s (DMS task) respectively
for their analyses. It may still be the case that the experimen-
tal design used in this study is inefficient for GLM approaches,
both to identify significance and accurately model response mag-
nitude. Different filtering procedures were also used in the ICA
analysis compared to the GLM-based analyses which could have
impacted on the results. However, given the consistency with pre-
vious studies (Garrett et al., 2010, 2011, 2013; Samanez-Larkin
et al., 2010; Baria et al., 2011), we believe that ICA/spectral analy-
ses are tapping into brain-behavior relationships that are lost in
GLM approaches.

CONCLUSION AND FUTURE DIRECTIONS
This study demonstrates for the first time that BOLD spec-
tral power is a useful index of brain-behavior relationships that
appears to be more sensitive than traditional GLM approaches.
Unfortunately the sluggish nature of the BOLD response does not

make it possible to directly compare BOLD spectral measures with
similar EEG and MEG spectral measures. Simultaneous EEG/fMRI
studies have begun to investigate the relationships between EEG
frequency bands and fMRI SMs (Mantini et al., 2007; Balsters
et al., 2011, 2013), however in order to understand the relationship
between M/EEG oscillations and BOLD oscillations one must con-
tend with the fact that M/EEG oscillations are significantly faster
than events used in a task paradigm whereas BOLD oscillations are
more likely to be directly influenced by the task paradigm. Further
research is necessary to establish (a) the potential relationships
between EEG and fMRI frequency bands and (b) the reliability of
>0.1 Hz BOLD fluctuations in both task and rest.
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