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With the advent and development of modern neuroimaging techniques, there is an
increasing interest in linking extraversion and neuroticism to anatomical and functional
brain markers. Here, we aimed to test the theoretically derived biological personality
model as proposed by Eysenck using graph theoretical analyses. Specifically, the
association between the topological organization of whole-brain functional networks
and extraversion/neuroticism was explored. To construct functional brain networks,
functional connectivity among 90 brain regions was measured by temporal correlation
using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy
subjects. Graph theoretical analysis revealed a positive association of extraversion scores
and normalized clustering coefficient values. These results suggested a more clustered
configuration in brain networks of individuals high in extraversion, which could imply a
higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts.
On a local network level, we observed that a specific nodal measure, i.e., betweenness
centrality (BC), was positively associated with neuroticism scores in the right precentral
gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For
individuals high in neuroticism, these results suggested a more frequent participation
of these specific regions in information transition within the brain network and, in turn,
may partly explain greater regional activation levels and lower arousal thresholds in these
regions. In contrast, extraversion scores were positively correlated with BC in the right
insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG),
indicating that the relationship between extraversion and regional arousal is not as simple
as proposed by Eysenck.
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INTRODUCTION
In Eysenck’s personality theory, he proposed three fundamen-
tal dimensions of personality: extraversion, neuroticism, and
psychoticism (Eysenck, 1967; Eysenck and Eysenck, 1985). It
is now acknowledged that extraversion and neuroticism have
their biological bases (Matthews and Gilliland, 1999), while
the neuropsychology of the third dimension, psychoticism, has
not been worked out in detail. The arousal theory of Eysenck
(1967) related extraversion to arousability of the reticulo-
cortical circuit and proposed a higher arousal threshold in
cortex and higher levels of arousal tolerance in extraverts
(Eysenck, 1967; Eysenck and Eysenck, 1985; Fischer et al., 1998).
Neuroticism, on the other hand, is associated with arousability
of the limbic circuit, such that individuals with higher neu-
roticism scores have greater activation levels and lower thresh-
olds within subcortical structures (Eysenck, 1990; Wei et al.,
2012).

With the advent and development of modern neuroimaging
techniques, there is increasing interest in exploring neuroanatom-
ical or neurofunctional correlates of extraversion and neuroti-
cism, to test the theoretically proposed biological explanation of
the two fundamental dimensions. Neuroanatomical studies have
found extraversion was associated with structural/anatomic vari-
ations in the middle and inferior frontal regions, fusiform gyrus,
and insula (INS), whereas neuroticism was associated with varia-
tions in the orbitofrontal cortex, precentral gyrus (PreCG), and
amygdala (AMYG) (Rauch et al., 2005; Omura et al., 2005b;
Wright et al., 2006, 2007; Sollberger et al., 2009; DeYoung,
2010). In neurofunctional studies, functional magnetic resonance
imaging (fMRI) experiments have also demonstrated that spe-
cific brain regions that are engaged during cognitive-affective
tasks were associated with specific personality dimensions. For
example, activations in the prefrontal cortex, parietal cortex,
anterior cingulated cortex (ACC), and middle temporal gyrus
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(MTG) were correlated with extraversion (Canli et al., 2001;
Eisenberger et al., 2005; Hutcherson et al., 2008; Tamura et al.,
2012), while activations in the frontal cortex, dorsomedial pre-
frontal cortex, and AMYG were related to neuroticism (Canli
et al., 2001; Haas et al., 2007; Hooker et al., 2008; Harenski
et al., 2009). In addition, a positron emission tomography (PET)
study assessing resting regional cerebral blood flow (rCBF) found
that regions in ACC and temporal lobes were correlated with
extraversion (Johnson et al., 1999). Extraversion was associated
with regional cerebral glucose metabolism (rCMRglu) assessed
by PET in right putamen, while neuroticism was associated with
rCMRglu in the medial prefrontal cortex (MPFC) (Kim et al.,
2008). These studies indicated specialized, spatially distributed
regions were associated with personality dimensions of extraver-
sion and neuroticism, respectively, and provided neurobiological
evidence for the hypothesized biological model of Eysenck’s per-
sonality.

Instead of detection activation paradigms by task-based fMRI,
resting-state fMRI studies observe intrinsic spontaneous fluctua-
tions in the blood oxygen level-dependent (BOLD) fMRI signal
while avoiding the constraints of task-based approaches (Raichle
et al., 2001; Fox and Raichle, 2007; Raichle and Snyder, 2007;
Adelstein et al., 2011). There is accumulating evidence for local
characteristics of resting brain functions associated with per-
sonality dimensions using resting-state fMRI (Kunisato et al.,
2011; Wei et al., 2011, 2012; Hahn et al., 2012). Using regional
homogeneity (ReHo) approach, our prior study found ReHo was
correlated negatively with extraversion in the MPFC, and corre-
lated positively in INS, cerebellum, and cingulate gyrus; whereas
neuroticism had negative correlation with ReHo in left middle
frontal gyrus (Wei et al., 2011). In addition, by using other local
characteristics, i.e., the fractional amplitude of low-frequency
fluctuations (fALFF), our previous study found positive correla-
tions between LFF amplitude at Slow-5 and extraversion in MPFC
and PCU, and between LFF amplitude at Slow-5 and neuroticism
in right PreCG; LFF amplitude at Slow-4 was negatively associated
with extraversion and neuroticism in left hippocampus (HIP) and
bilateral superior temporal cortex (STC), respectively (Wei et al.,

2012). Table 1 summarizes the main results on the characteris-
tics of resting brain functions associated with extraversion and
neuroticism in recent resting-state fMRI studies.

From a functional integration perspective in the human brain,
the multiple spatially distinct brain regions are functionally con-
nected with coherent temporal dynamics (Friston et al., 1997;
Sporns et al., 2000; Van Den Heuvel et al., 2009), making up
complex and reciprocal brain networks even when we are at rest
(Greicius et al., 2003; Damoiseaux et al., 2006; Van Den Heuvel
et al., 2009). Such networks are thought to provide the physiolog-
ical basis for information processing and mental representation
(Canli, 2004; Bullmore and Sporns, 2009). Furthermore, evi-
dence for small-world attributes of brain networks has been
reported in the relative studies (Sporns et al., 2004; Stam, 2004;
Eguiluz et al., 2005; Achard et al., 2006; Van Den Heuvel et al.,
2009), indicating that small-world architectures in brain networks
deviating from randomness reflect their specific functionality
(Watts and Strogatz, 1998; Latora and Marchiori, 2001; Stam and
Reijneveld, 2007; Bullmore and Sporns, 2009; Van Den Heuvel
et al., 2009; He and Evans, 2010). Since personality factors may
well be related to the networks in the brain (Canli, 2004; Wilt
and Revelle, 2009), the analysis of task-independent, resting-state
functional connectivity may reveal the intrinsically organized
functional brain networks (Biswal et al., 1995), and allow for
a better understanding of the neurobiological bases of extraver-
sion and neuroticism. The recent study by Adelstein et al. (2011)
found that extraversion and neuroticism were encoded within
resting-state functional connectivity between seed regions and
the lateral paralimbic regions and dorsomedial prefrontal cortex,
respectively (Adelstein et al., 2011). However, the study was seed-
based and lacked a network perspective on brain dynamics. In the
present study, we hypothesized that the topological organization
of the whole-brain functional networks would be associated with
inter-individual variations in extraversion and neuroticism, and
would link to Eysenck’s cortical arousal theory of the two dimen-
sions. To test our hypothesis, an exploratory analysis based on
graph theory was thereby performed on the resting-state fMRI
data of 71 healthy subjects, to detect the intrinsic resting-state

Table 1 | The main results on the characteristics of resting brain functions associated with extraversion and neuroticism in recent resting-state

fMRI studies.

Method fALFF (Kunisato et al., 2011) Seed-based (ACC and PCU)

FC (Adelstein et al., 2011)

ReHo (Wei et al., 2011) fALFF (Slow-5 and Slow-4 bands)

(Wei et al., 2012)

Extraversion Striatum PCU FC between seed INS MPFC and PCU at Slow-5

SFG regions and lateral MCG

paralimbic regions MPFC HIP at Slow-4

MTG

Cerebellum

Neuroticism MFG FC between seed regions MFG PreCG at Slow-5

PCU and the dorsomedial STC at Slow-4

prefrontal cortex

ACC, anterior cingulate cortex; fALFF, fractional amplitude of low-frequency fluctuations; FC, functional connectivity; HIP, hippocampus; INS, insula; MCG, middle

cingulate gyrus; MFG, middle frontal gyrus; MPFC, medial prefrontal cortex; MTG, middle temporal gyrus; PCU, precuneus; PreCG, precentral gyrus; ReHo, regional

homogeneity; SFG, superior frontal gyrus; STC, superior temporal cortex.
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functional connectivity mechanisms underlying the two person-
ality dimensions.

MATERIALS AND METHODS
PARTICIPANTS
We conducted the analysis with the same dataset in our previous
study (Wei et al., 2011). Eighty-seven healthy right-handed sub-
jects (48 males; age range: 17–36 yrs, mean age: 23.5 yrs) with
no history of neurological or psychiatric disorders participated in
the study. The present study was approved by the local Medical
Ethics Committee at Jinling Hospital, Nanjing University School
of Medicine, and the informed written consents were obtained
from all participants.

PERSONALITY QUESTIONNAIRES
The revised Eysenck personality questionnaire short scale for
Chinese (EPQ-RSC) (Eysenck, 1991; Qian et al., 2000) was used
to assess personality dimensions of extraversion, neuroticism, and
psychoticism of each subject before MRI scanning. Raw scores of
the three dimensions were then converted into T-scores using the
formula (Qian et al., 2000), respectively:

T = 50 + 10 × raw score − mean

SD
,

where mean represents the mean value of the personality scores
over all the subjects; SD is the standard deviation of the per-
sonality scores. We focused our analyses on extraversion and
neuroticism whose resultant T-scores were used for calculating
correlations with the brain network metrics.

IMAGE ACQUISITION
Resting-state fMRI images were acquired using a single-shot,
gradient-recalled echo planar imaging (EPI) sequence on a 3.0-T
Siemens Trio scanner (Jinling Hospital, Nanjing, China). The
acquisition parameters were: TR = 2000 ms, TE = 30 ms, field
of view (FOV) = 240 mm, image matrix size = 64 × 64, voxel
size = 3.75 × 3.75 × 4 mm3, 30 transverse slices without slice
gap, flip angle = 90◦, and a total of 255 volumes for each
subject.

DATA PREPROCESSING
Data preprocessing was performed using the Statistical
Parametric Mapping software (SPM8, http://www.fil.ion.

ucl.ac.uk/spm). The first five volumes were discarded to ensure
steady-state longitudinal magnetization. The remaining resting-
state fMRI images were first corrected by the acquisition time
delay among different slices, and then realigned to the first
volume for head-motion correction. The dataset with transla-
tional or rotational parameters exceeding ±1 mm or ±1◦ would
be excluded, according to our previous study on functional
connectivity network (Liao et al., 2010). The images of remaining
71 participants were further spatially normalized into a stan-
dard stereotaxic space at 3 × 3 × 3 mm3, using the Montreal
Neurological Institute (MNI) template in SPM8. In order to
avoid artificially introducing local spatial correlation, no spatial
smoothing was applied, as previous studies suggested (Salvador
et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007; Liao

et al., 2010). Since recent studies have showed that functional
connectivity analysis is sensitive to gross head motion effects
(Power et al., 2012; Van Dijk et al., 2012), we further evaluated
the framewise displacement (FD) (Power et al., 2012) to express
instantaneous head motion, and the threshold of 0.5 was sug-
gested. The mean ± SD of FD over subjects was: 0.1080 ± 0.0159.
Six subjects’ FD values were beyond 0.5, but only in one frame
for each subject. Scrubbing process was performed using toolbox
“ArtRepair” in SPM8.

The mean time series of each ROI was corrected by a linear
regression to remove the possible spurious variances including six
head motion parameters acquired from the SPM8 preprocessing,
the white matter (WM) and the ventricular brain signals averaged
from a WM mask and a ventricular mask respectively (Fox et al.,
2005; Salvador et al., 2005; Tian et al., 2006; Liao et al., 2010). The
residuals of these regressions were temporally band-pass filtered
(0.01 < f < 0.08 Hz) to reduce low-frequency drifts and physio-
logical high-frequency respiratory and cardiac noise (Biswal et al.,
1995), and linearly detrended for further functional connectivity
and graph-theory analysis (Tian et al., 2006; Liao et al., 2010).
The following approaches based on graph theory were performed
by an in-house program coded in MATLAB (The Mathworks,
Natick, MA).

COMPUTATION OF FUNCTIONAL CONNECTIVITY NETWORK
Node definition
To define the brain nodes, the anatomical parcellation was per-
formed using the automated anatomical labeling (AAL) template,
segmenting the images into 90 anatomical regions of interests
(ROIs) (45 ROIs for each hemisphere). The representative time
series in each ROI was obtained by averaging the fMRI time series
across all voxels in the ROI.

Edge definition
To define the network edges, the residuals of the regression anal-
ysis were used to compute the Pearson’s correlation, resulting in
a 90 × 90 correlation matrix for each subject. A Fisher’s r-to-z
transformation was applied to the correlation matrices of all the
subjects to improve the normality of the correlation coefficients
(r) (Liu et al., 2008). The undirected edge eij between node i and
node j is defined as:

eij =
{

1 when |rij| > T
0 otherwise

In general, if the absolute value of rij of a pair of brain regions,
i and j, exceeds a predefined threshold T, an edge is assumed
to exist; otherwise, no existence would be assumed (Liao et al.,
2010).

GRAPH THEORETICAL ANALYSIS
Network metrics
The topological properties of the brain functional networks can
be measured by both nodal and global network measures. In this
study, we calculated the nodal measures including the degree Ki,
the clustering coefficient Ci, the minimum path length Li, the
efficiency Ei, and the betweenness centrality BCi of a node i; the
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global measures including the average degree K, the network effi-
ciency involving the local efficiency Elocal and the global efficiency
Eglobal, the characteristic path length L, the clustering coefficient
of a network C, the normalized clustering coefficient γ, the nor-
malized characteristic path length λ, and the small-worldness σ.

Degree. The degree at each node, Ki, i = 1, 2, . . . , 90, is defined
as the number of nodes in a subgraph Gi, which is the graph
including the nodes that are direct neighbors of node i. Briefly,
Ki denotes to which extent the node is connected to the rest of the
network (Bullmore and Sporns, 2009; Wang et al., 2010). A node
with a higher degree has more connections (where each connec-
tion is counted once). The average degree K is the mean of Ki of
all the nodes in the network.

Clustering coefficient. The absolute clustering coefficient Ci of
a node is the ratio between the number of existing connections
and the number of all possible connections in the subgraph Gi.
Ci quantifies the level of local connectedness within a network
(Bullmore and Sporns, 2009; Van Den Heuvel et al., 2009; He and
Evans, 2010)

Ci = ei

Ki(Ki − 1)/2
,

where ei is the number of edges in the subgraph Gi. The clustering
coefficient of the network C is the mean of Ci of all the nodes in
the network.

Minimum path length. The nodal minimum path length Li is
defined as the mean shortest absolute path length of node i to
other nodes in a network (Bullmore and Sporns, 2009), which
quantifies the level of routing efficiency or the capability for paral-
lel information propagation of a network (Van Den Heuvel et al.,
2009; He and Evans, 2010; Liao et al., 2010)

Li = 1

N − 1

∑
i �= j ∈ G

min{Li, j},

where min {Li,j} is the shortest absolute path length between
node i and node j, and the absolute path length is the number
of edges included in the path connecting two nodes. The char-
acteristic path length L is the mean of Li of all the nodes in the
network.

Efficiency. The nodal efficiency Ei is the inverse of the harmonic
mean of the length between node i and all other nodes in the net-
work, to deal with the disconnected graphs, non-sparse graphs or
both (Latora and Marchiori, 2001; Bassett and Bullmore, 2006;
Wang et al., 2010)

Ei = 1

N − 1

∑
j ∈ G
j �= i

1

min{Li, j} .

The global efficiency Eglobal of the network is the mean of Ei of all
the nodes in the network.

In the subgraph Gi, we can calculate the local efficiency of node
i as:

Ei_local = 1

NGi(NGi − 1)

∑
j,k ∈ Gi

j �= k

1

min{Lj, k} .

The local efficiency Elocal of the network is then similarly defined
as the mean of Ei_local of all the nodes in the network (Rubinov
and Sporns, 2010).

Betweenness centrality. The betweenness centrality BCi is
defined as the fraction of all shortest paths in the network that
pass through node i (Rubinov and Sporns, 2010). BCi describes
the central nodes that participate in many short paths within a
network, and consequently act as important controls of informa-
tion flow (Freeman, 1978)

BCi = 1

(N − 1)(N − 2)

∑
j, k ∈ G

i �= j �= k

ρj, k(i)

ρj, k
,

where ρj, kis the number of shortest paths between node j and k;
ρj, k(i) is the number of shortest paths between j and k that pass
through node i (Rubinov and Sporns, 2010).

Small-world parameters. Compared with random networks
characterized by a low clustering coefficient and a typical short
path length, networks with a small-world organization have a
higher clustering coefficient and similar path length, i.e., γ =
C/Crandom > 1, λ = L/Lrandom ≈ 1, namely normalized clustering
coefficient and normalized characteristic path length, respec-
tively (Watts and Strogatz, 1998). These two conditions can also
be summarized into a quantitative measurement, σ = γ/λ > 1,
namely small-worldness (Humphries et al., 2006; Wang et al.,
2010). Crandom and Lrandom were calculated as the averaged
clustering coefficient and characteristic path length of a set of
100 random networks with the same degree distribution as that of
the examined functional connectivity network (Van Den Heuvel
et al., 2009; Liao et al., 2010). The random networks were gen-
erated based on a Markov-chain algorithm, according to our
previous study (Liao et al., 2010).

Threshold selection
The threshold T was defined as the total number of edges in a
graph divided by the maximum possible number of edges (Achard
and Bullmore, 2007), namely wiring cost. We investigated the
topological properties of brain functional network over a range of
Tmin ≤ T ≤ Tmax. (1) Tmin was selected by thresholding all net-
works to construct a sparse graph with the average degree K ≥ 2×
log (N) (here N = 90 represents the number of nodes); (2) Tmax

was selected to ensure the small-worldness σ of the thresholded
networks be larger than 1.1 for all participants (Liao et al., 2010;
Zhang et al., 2011). The resultant threshold range of 0.10 ≤ T ≤
0.31 was used in our study. This range of sparsity allows the
thresholded networks to be estimable for small-worldness and the
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number of spurious edges to be minimized (Watts and Strogatz,
1998; Achard and Bullmore, 2007; He et al., 2008; Zhang et al.,
2011).

ASSOCIATION BETWEEN NETWORK ORGANIZATION AND
PERSONALITY DIMENSIONS
All the nodal and global measures were thresholded repeat-
edly over the range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01,
and the area under the curve (AUC) for each network metric
was calculated, which provides a summarized scalar for topo-
logical characterization of brain networks independent of single
threshold selection (Zhang et al., 2011). The partial correlation
was then calculated between the AUC of each network metric
and extraversion/neuroticism scores, with age and gender being
covariates.

To assess the statistical significance of the correlation, the
null distribution for each network metric was obtained by non-
parametric permutation tests. Accordingly, 5000 subject specific
random networks were generated at each threshold as null-model
reference networks. The correlations between the AUC of each
network metric and the personality scores were recalculated to
obtain the null distribution. 1/number of regions was used as a
false-positive correction, which implied that there was less than
one false positive regional result per cortical map at this threshold
(Lynall et al., 2010; Fornito et al., 2011).

LEAVE-ONE-OUT PREDICTION
To test the validity of the significantly correlated measures in
predicting personality scores of extraversion and neuroticism,
a leave-one-out cross-validation strategy was applied. The sig-
nificantly correlated measures acted as explanatory variables in
the linear regression models to predict the personality scores. The
predicted results of all the subjects were assessed by calculating the
Pearson’s correlation between the predicted values and the origi-
nal values. The precision of individual prediction was assessed by
the average of the absolute relative errors between the predicted
and original scores.

RESULTS
DESCRIPTIVE STATISTICS OF THE PERSONALITY DIMENSIONS
Table 2 describes the scores of the three personality dimen-
sions from the EPQ-RSC questionnaire, and Table 3 describes
the correlations across the scores of the three dimensions. As
two dimensions concerned in the present study, extraversion had

Table 2 | Descriptive Statistics of the three personality dimensions of

71 participants.

Category Data

Gender (male/female) 38/33

Age (years) 23.219 ± 2.031

Extraversion (E) 56.172 ± 8.703

Neuroticism (N) 43.048 ± 12.822

Psychoticism (P) 46.581 ± 8.229

Age and personality scores are displayed as mean ± SD.

a moderate negative correlation with neuroticism (r = −0.238,
p = 0.046). The result was concordant with many prior studies,
suggesting an inverse relationship between extraversion and neu-
roticism (Rusting and Larsen, 1997; Wright et al., 2006; Kim et al.,
2008). Therefore, we added extraversion (or neuroticism) scores
as covariate when calculating the partial correlation between neu-
roticism (or extraversion) and the AUC of each network metric,
to obtain effects that were uniquely driven by each personality
dimension.

THE ASSOCIATIONS BETWEEN NETWORK METRICS AND
EXTRAVERSION
Among all the global measures of the network calculated in the
present study, only the AUC of normalized clustering coefficient
γ showed significant correlation with extraversion (Figure 1). As
for the nodal measures, results indicated that only the AUC of BCi

showed significant correlations with extraversion. Extraversion
significantly increased with BCi in left INS, while significantly
decreased with BCi in bilateral MTG. Figure 2 demonstrates the
brain regions showing significant correlations between their BCi

and extraversion scores along with the corresponding correlation
coefficients.

Figure 3 depicts the topological characteristics of network
metrics which have significant associations with extraversion, as
a function of wiring cost thresholds. The asterisk indicates the
threshold where the significant correlation between the metric
and extraversion was detected (permutation testing, p < 1.90).
The inset figure indicates the correlation between the metric and
extraversion at wiring cost = 0.22.

Table 3 | Correlations between scores of the three personality

dimensions.

p N

N 0.106 (p = 0.379)
E −0.205 (p = 0.086) −0.238 (p = 0.046*)

E, extraversion; N, neuroticism; P, psychoticism. *p < 0.05.

FIGURE 1 | The correlation between the area under the curve (AUC) of

γ and extraversion scores (p < 1.90). AUC was calculated over the range
of 0.1 ≤ T ≤ 0.31 with an interval of 0.01.

Gao et al. Personality and brain’s topological properties
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FIGURE 2 | The brain regions showing significantly correlations between

AUC of BCi and extraversion scores (p < 1.90). AUC was calculated over
the range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01. The cyan color

represents the negative correlations, while the magenta color represents the
positive correlations. INS, insular; L, left; MTG, middle temporal gyrus;
R, right.

THE ASSOCIATIONS BETWEEN NETWORK METRICS AND
NEUROTICISM
No global measures showed significant correlation with neuroti-
cism. Significant correlations were revealed in the AUC of BCi,
too. Neuroticism scores showed increased significant correla-
tion with BCi in right PreCG, right olfactory cortex (OLF), right

caudate nucleus (CAU), and bilateral AMYG. No significantly neg-
ative correlation was found. Figure 4 indicates the brain regions
showing significant correlations between BCi and neuroticism
scores along with the corresponding correlation coefficients.

Figure 5 depicts the topological characteristics of BCi as a
function of wiring cost thresholds, in the brain regions whose BCi
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FIGURE 3 | The topological characteristics of network metrics which

have significant associations with extraversion, as a function of wiring

cost thresholds. The asterisk indicates the threshold where the significant

correlation between the metric and extraversion was detected (permutation
testing, p < 1/90). The inset figure indicates the correlation between the
metric and extraversion at wiring cost = 0.22.

values have significant associations with neuroticism. The aster-
isk also indicates the threshold where the significant correlation
between the metric and neuroticism was detected (permuta-
tion testing, p < 1.90). The inset figure indicates the correlation
between the metric and neuroticism at wiring cost = 0.22.

THE PREDICTION OF PERSONALITY SCORES BY LEAVE-ONE-OUT
APPROACH
Figure 6 shows the predicted and original pairs of extraversion
(Figure 6A) and neuroticism (Figure 6B) scores, respectively. The
Pearson’s correlation coefficients of the predicted and original
personality scores were 0.536 (p = 0.146 × 10−7) for extraver-
sion, and 0.547 (p = 0.784 × 10−8) for neuroticism. The preci-
sions of individual prediction were 11.4% for extraversion and
21.7% for neuroticism.

DISCUSSION
METHODOLOGICAL CONSIDERATIONS
The present study differed from our previous studies in both
hypothesis and analysis methods. In the previous studies, the
purpose was to identify the associations between the personality

dimensions and the local synchronization of spontaneous BOLD
activity (Wei et al., 2011), or between the personality dimen-
sions and the fLFF in individual brain regions (Wei et al., 2012).
Thereby the analysis method as well as the results obtained was at
the functional segregation level.

Since the multiple spatially distinct brain regions are function-
ally connected with coherent temporal dynamics, the topological
properties of the brain functional networks may predict individ-
ual differences in the two fundamental personality dimensions.
To test this hypothesis, in the present study, we applied the graph
theory method to explore the correlation between the network
metrics in the resting-state brain network and the personality
dimensions of extraversion and neuroticism at the functional
integration level. To the best of our knowledge, the present study
is among the first demonstrations of an association between
personality dimensions and the properties of the resting-state
functional network.

EXTRAVERSION AND THE NETWORK METRICS
The present results showed that compared to individuals with
lower extraversion scores, individuals with higher extraversion
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FIGURE 4 | Continued
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FIGURE 4 | The brain regions showing significantly correlations between AUC of BCi and neuroticism scores (p < 1.90). AUC was calculated over the
range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01. AMYG, amygdala; CAU, caudate nucleus; L, left; OLF, olfactory cortex; PreCG, precentral gyrus; R, right.

FIGURE 5 | The topological characteristics of BCi as a function of wiring

cost thresholds, in the brain regions whose BCi values have significant

associations with neuroticism. The asterisk also indicates the threshold

where the significant correlation between the metric and neuroticism was
detected (permutation testing, p < 1/90). The inset figure indicates the
correlation between the metric and neuroticism at wiring cost = 0.22.

scores had larger AUC of normalized clustering coefficient γ. γ

quantifies the extent of local cliquishness or local efficiency of
information transfer of a network (He and Evans, 2010). Our
results indicated that the whole functional brain networks of indi-
viduals with higher extraversion scores were more clustered than
these of individuals with lower extraversion scores.

In Eysenck’s biological theory of extraversion, extraverts have
a higher threshold for cortical arousal, as they are assumed
to be chronically “under-aroused” (Eysenck, 1967; Tran et al.,
2006; Wilt and Revelle, 2009). It is this chronic intrinsic under-
arousal which is thought to drive highly extraverted people to

engage in typically extraverted behaviors in order to enhance their
low arousal states (Eysenck, 1994; Kehoe et al., 2012). Thereby
extraverts should, on average, respond more and faster than intro-
verts (in order to increase their arousal) during performance tasks
(Eysenck, 1994; Wilt and Revelle, 2009). Furthermore, this under-
arousability enables extraverts to tolerate much higher levels of
arousal than introverts, who withdraw to avoid further increases
in arousal which they find difficult to withstand (Eysenck, 1967,
1994; Kehoe et al., 2012).

From a network perspective, compared to random network
which has low clustering coefficient and short path length,
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FIGURE 6 | The correlations between the predicted and original personality scores. (A) Extraversion scores (r = 0.536, p = 0.146 × 10−7); (B) neuroticism
scores (r = 0.547, p = 0.784 × 10−8).

small-world network has higher clustering coefficient than a ran-
dom network. The lower γ in the brain networks of introverts
suggested that functional brain networks in introverts had a trend
toward a randomized configuration. Random networks have less
modularized information processing or fault tolerance compared
with small-world networks (Latora and Marchiori, 2001; Zhang
et al., 2011). A higher arousal threshold in cortex and higher
level of arousal tolerance in extraverts could be interpreted by
more clustered configuration in functional brain networks of
extraverts.

As one of the nodal centrality metrics, increased BCi suggested
the strengthened roles of coordinating whole-brain networks
(Zhang et al., 2011). The brain regions with relatively higher BCi

participate more in information transition and consequently act
as important controls of information flow. The greater activation
levels and lower arousal thresholds in these regions with higher
BCi may seem conceivable.

BCi in left INS was found to be positively correlated with
extraversion, whereas BCi values in bilateral MTG were found to
be negatively correlated with extraversion in this study.

INS is thought to play a central role for one’s emotional
processing (Iaria et al., 2008; Lamm and Singer, 2010) and is
involved in various neuropsychiatric diseases such as mood dis-
orders, depressive disorders, and panic disorders (Paulus and
Stein, 2006; Nagai et al., 2007; Fitzgerald et al., 2008; Liu et al.,
2010; Guo et al., 2011). There were many studies providing
direct evidence for a link between INS activation and extraver-
sion or extraversion-related dimension (Johnson et al., 1999;
Omura et al., 2005a; Sollberger et al., 2009; Kehoe et al., 2012;
Tamura et al., 2012). For example, a PET study showed the cor-
relation between blood flow of INS and extraversion (Johnson
et al., 1999). A fMRI study revealed that extraversion correlated
with neural responses to positive word stimuli in bilateral INS
(Omura et al., 2005a). A recent fMRI study suggested that INS
activity may “mediate” the development of extraversion (Tamura
et al., 2012). Our previous study found a positive association

between extraversion and ReHo in INS. Positive correlation has
also been found between extraversion and gray matter volume
of INS in a morphometric study (Sollberger et al., 2009). The
relation between BCi and extraversion scores detected in INS in
the present study further demonstrated that the regional charac-
teristics of INS suggested individual differences in extraversion
dimension. However, the positive correlation was unexpected
according to Eysenck’s predictions about this dimension. The
expected negative correlations were revealed between extraversion
and BCi in bilateral MTG.

MTG was found to participate in both emotional process-
ing and encoding tasks (Critchley et al., 2000; Dolcos et al.,
2004; Olson et al., 2007). Abnormal functions of middle temporal
areas in patients with borderline personality disorder (BPD) were
reported both in resting MRI (Wolf et al., 2011) and emotional
task MRI studies (Guitart-Masip et al., 2009). In normal late ado-
lescents, fMRI study found correlations of age and extraversion
with neural activation in MTG (Tamura et al., 2012). Our previ-
ous study also showed a negative association between extraversion
and ReHo in MTG (Wei et al., 2011). These results demonstrated
that MTG played a role in extraversion and the dysfunction of
MTG was associated with personality disorders. Our study fur-
ther showed the BCi of bilateral MTG was negatively correlated
with extraversion scores, suggesting that extraverts demonstrated
lower levels of cortical arousal and higher arousal thresholds in
bilateral MTG. This is consistent with Eysenck’s arousal hypothe-
sis of extraversion.

The results on the relationship between extraversion and
arousal in specific brain regions some of which contradict
Eysenck’s predictions about this dimension while some of which
agree with it have also been found in other studies (Kehoe
et al., 2012; Wei et al., 2012). This may imply that the relation-
ship between extraversion and arousal is a more complex story
than that originally proposed by Eysenck (Kehoe et al., 2012).
Researchers may face more complicated situations when look-
ing into various brain regions. Further research is required to
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elucidate if and how arousal processing differences are a central
feature of extraversion (Kehoe et al., 2012).

NEUROTICISM AND THE BETWEENNESS CENTRALITY
The other main finding of this study was significantly positive
associations between BCi and neuroticism scores in brain regions
including right OLF, right CAU, and bilateral AMYG.

According to Eysenck’s biological theory of personality, high
levels of neuroticism are theorized to reflect increased reactivity of
the limbic system (Eysenck, 1991, 1994; Kehoe et al., 2012). Our
results provided some supporting evidence for this hypothesis,
with individuals high in neuroticism showing higher BCi values
in right OLF, right CAU and bilateral AMYG. The limbic system
supports a variety of functions involving motivation, emotion,
learning, and memory. Especially, AMYG has been associated
with anxiety and mood disorders, for which neuroticism is a risk
factor (Haas et al., 2007). Individual differences in neuroticism, a
dimension characterized by experiences of negative emotion, anx-
iety, and emotional lability (Cunningham et al., 2010), have been
shown to correlate with greater AMYG activation during unpleas-
ant picture stimuli (Harenski et al., 2009), during fear learning
(Hooker et al., 2008), during trials of high emotional conflict
(Haas et al., 2007), and greater amygdala-dorsolateral prefrontal
cortex connectivity while viewing angry and fearful facial expres-
sions (Cremers et al., 2010). All these studies suggested a greater
activation levels in AMYG during stimuli in individuals with
high neuroticism, which were concordant with Eysenck’s arousal
theory of neuroticism. Here, our results further demonstrated
that in resting-state functional brain networks, individuals high
in neuroticism exhibited higher BCi values in AMYG as well as
in OLF and CAU, suggesting greater activation levels and lower
arousal thresholds in these regions in the resting brains of high
neuroticism subjects.

Interestingly, most significantly correlated brain regions were
located in the right hemisphere, suggesting the lateralization of
these regions with regard to neuroticism. Electroencephalogram
(EEG) researchers have found that dimensions related to the with-
drawal aspect of neuroticism are associated with greater activation
of right frontal lobe relative to left (Zuckerman, 2005; Shackman
et al., 2009). The brain’s right hemisphere appears to be preferen-
tially involved in emotions and motivational states associated with
withdrawal, whereas left hemisphere is preferentially involved in
approach (Davidson, 2002; DeYoung, 2010). Our results provided
neurofunctional evidence from the point of view of functional
brain networks in resting-state.

THE PREDICTION OF PERSONALITY SCORES
In the present study, the leave-one-out cross-validation strategy
was applied to test the validity of the significantly correlated mea-
sures in prediction personality scores. Our results showed very
strong correlations between the original and predicted personal-
ity scores. The results suggested that statistically the functional
brain network measures detected in our study did play roles in
the prediction of personality. However, when considering the
precision of individual prediction, the averages of the absolute rel-
ative errors for the prediction were 11.4% (range: 0.3–42.3%) for
extraversion and 21.7% (range: 0.2–48.0%) for neuroticism. This

implied the network measures alone were not able to precisely
predict the individual personality. There have been some stud-
ies trying to predict individual personality from subjects’ social
behaviors (Bai et al., 2012) or emotional cognition tasks (Jackson,
2005). These studies combined with our findings shed light on
the future work of precise prediction of personality, and further
suggested that to integrate the information of individual’s outer
behaviors and inner topological properties of resting-state func-
tional brain networks may give new clues to the neuropsychology
of personality dimensions.

LIMITATIONS
Since this was an exploratory study, no prior hypothesis for the
relation of a certain measure to personality was proposed. The
false-positive correction used in the present study, which was
1/number of regions, was not as conservative as a Bonferroni
or false discovery rate (FDR) correction (Lynall et al., 2010).
Thereby type I error was not able to be strongly controlled in
our analyses. In addition, whether extraversion/neuroticism is
correlated with intelligence is still under controversial. Studies
on the Big five model of personality and intelligence found
associations between extraversion/neuroticism and intelligence.
Extraversion and intelligence were found to be significantly neg-
atively correlated (Ackerman and Heggestad, 1997; Wolf and
Ackerman, 2005); however, further study argued extraversion
might be related to some aspects of intelligence test-taking, rather
than to actual intelligence (DeYoung, 2011). Neuroticism exhib-
ited a small but reliable negative correlation with intelligence
(Ackerman and Heggestad, 1997) though; this correlation was
likely to be due to the mediation by test anxiety (Moutafi et al.,
2006). Higher-order traits may exist above the Big Five, but they
do not appear to be related to intelligence (DeYoung et al., 2008).
In Eysenck’s personality theory, he asserted that intelligence is
unrelated to personality (Eysenck, 1994). A study assessing per-
sonality by EPQ_R demonstrated that affective dimensions of
personality are independent of intelligence (Gray et al., 2005).
Since the present study aimed to test the Eysenck’s personal-
ity theory of cortical arousal on extraversion and neuroticism,
personality traits was asserted to be unrelated to intelligence.
Further investigations of the relations between intelligence and
extraversion/neuroticism are required in future studies.

CONCLUSIONS
By applying the graph theoretical analysis to the resting-state
fMRI data, the present study found that the normalized clus-
tering coefficient values of the whole-brain functional networks
were positively correlated with extraversion scores, suggesting an
association between extraversion and the global network measure
which quantifies the clustered configuration in the brain network.
The more clustered configuration in brain functional network of
extraverts may result in a higher arousal threshold in cortex and
higher levels of arousal tolerance. However, extraversion scores
were positively correlated with BCi in right insula, while nega-
tively correlated with BCi in bilateral MTG, indicating that the
relationship between extraversion and regional arousal is not as
simple as that proposed by Eysenck. On the other hand, neuroti-
cism scores showed consistently positive associations with BCi in
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specific brain regions in the PreCG and limbic system, provid-
ing some supporting evidence for Eysenck’s biological theory of
neuroticism. Furthermore, the right lateralization of these regions
with regard to neuroticism gave neurofunctional evidence to
the preferential involvement of brain’s right hemisphere in emo-
tions and motivational states associated with withdrawal aspect of
neuroticism.
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