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Growing evidence on autonomic nervous system (ANS) function in individuals with
Williams syndrome (WS) has begun to highlight aberrancies that may have important
implications for the social profile characterized by enhanced social motivation and
approach. In parallel, neurobiological investigations have identified alterations in the
structure, function, and connectivity of the amygdala, as well as prosocial neuropeptide
dysregulation, as some of the key neurogenetic features of WS. A recent social
approach/withdrawal hypothesis (Kemp and Guastella, 2011) suggests that autonomic
cardiac control may play a key role in regulating the relationship between oxytocin (OT)
and social behavior. This article discusses evidence from these critical, new strands of
research into social behavior in WS, to consider the extent to which data on WS may
provide novel insight into the determinants of social behavior. Future research directions
are suggested.
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INTRODUCTION
Elucidating the origins of human social behavior has relevance to
both typical and atypical development. In this vein, the unusual
social phenotype of Williams syndrome (WS) has been gaining
momentum among the neuroscience community. WS provides
an attractive model for social/cognitive neuroscience because the
hemideletion of 25–28 genes on chromosome 7q11.23 is well-
characterized (Korenberg et al., 2000). Further, the phenotype
comprising distinct socially positive and dysfunctional behaviors
that implicate several neural systems is observed with remarkable
consistency. The neurocognitive profile of WS is associated with
mean IQ of 50–60, with typically higher verbal than non-verbal
abilities (Searcy et al., 2004; Mervis and John, 2010).

The unusual social behavior of WS spans three discrete dimen-
sions: enhanced motivational social drive, atypical emotional
sensitivity, and increased salience of social stimuli (Järvinen et al.,
2013). Social limitations are underscored by paradoxes suggesting
that although such individuals keenly instigate social engage-
ment they lack the skill to sustain a conversation and make
friendships (Davies et al., 1998), and while they seem socially
uninhibited they suffer from diagnostically significant non-social
anxiety, attentional problems, and social maladjustment (Davies
et al., 1998; Leyfer et al., 2006). In short, the genetically deter-
mined expression of hypersociability of WS combines with inad-
equate tools and skills to navigate and act appropriately in
the social world. The profile of WS raises several fascinating
questions regarding the underpinnings of the enhanced social
drive.

There has been a recent expansion of research into the social
brain in WS (e.g., Haas and Reiss, 2012; Järvinen et al., 2013).
This body of work has indicated alterations in the structure and
function of the amygdala, fusiform face area (FFA), and insula.

In addition, atypical connectivity between the amygdala and the
FFA, the orbital-frontal regions, and the insula, as well as within
the frontostriatal pathway, has been reported. At the same time,
the role of the autonomic nervous system (ANS) function remains
an overwhelmingly under-researched area among researchers
addressing the social profile of WS. The link between the amyg-
dala, ANS function, and subsequent social behavior is a signifi-
cant one: the amygdala is critically involved in both appetitive and
aversive affective processing (Aggleton, 2000) and in emotional
evaluation that contributes to social behavior (Adolphs, 2009).
The amygdala further mediates affective arousal (LeDoux, 2000;
Laine et al., 2009), and direct amygdala stimulation results in a
robust skin conductance response (SCR) in humans (Mangina
and Beuzeron-Mangina, 1996). As evidence implicates aberran-
cies in both the amygdala (e.g., Meyer-Lindenberg et al., 2005;
Haas et al., 2009; Haas and Reiss, 2012) and ANS responsivity
(e.g., Doherty-Sneddon et al., 2009; Plesa Skwerer et al., 2009;
Järvinen et al., 2012; Riby et al., 2012a) in WS, the aim of this
mini-review is to examine the extent to which ANS function
may contribute to the characteristic social behavior of WS. We
begin by briefly discussing the role of the ANS function and
its regulation by prosocial neuropeptides in social–emotional
behavior generally, followed by a review of the relevant literature
on WS. We will discuss how the landmark social characteris-
tics of WS converge with the ANS features, to determine the
extent to which WS may offer insight into the origins of social
behavior.

ANS FUNCTION AND SOCIAL BEHAVIOR
The postulated relationship between sociability and ANS func-
tion reflects an old idea: for example, in the 1960s, Eysenck
hypothesized that individual differences in the cortical processing
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of arousal are linked to emotional experience and social behav-
ior. Specifically, whereas extraverted individuals are characterized
by chronic under-arousal, which leads them to actively seek out
stimulation (e.g., social engagement), introverted individuals dis-
play the opposite pattern of both ANS arousal and subsequent
behavior (Eysenck, 1967, 1994, 1997, but see Beauducel et al.,
2006). Thus, relative to introverts, extraverts have been described
as inherently less aroused and arousable (Stelmack, 1990; Smith,
1994); exhibit decreased heart rate (HR) reactivity (Smith et al.,
1995); lower skin conductance levels (SCL) (Smith et al., 1986);
reduced phasic SCR (Smith et al., 1990); and faster electrodermal
habituation (Smith et al., 1995).

Honing in on the role of the ANS in human sociability,
the polyvagal theory (Porges, 2003, 2007; Porges and Furman,
2011) posits that specifically autonomic cardiac control is crit-
ically implicated in social behavior and attachment. An evolu-
tionarily important dynamic regulatory system enables adaptive
responses: when under threat, the “vagal brake” is released reflect-
ing survival-promoting energy consumption. In contrast, the
ANS promotes positive approach-related behaviors during secure
times. The neural circuit known as the social engagement system,
which is under cortical regulation, comprises a key component of
the social ANS (Porges, 2007). The heart is innervated in a dual
fashion by both the sympathetic and parasympathetic branches
of the ANS, with an acceleration in HR being linked to greater
sympathetic influence, and a decrease to greater parasympathetic
involvement. Consequently, HR variability (HRV) is regarded as
a direct index of parasympathetic NS activity (Bernston et al.,
2005). Indeed, it has been hypothesized that resting state HRV
is a biomarker reflecting an individual’s capacity for approach-
related motivations for social interaction (Kemp et al., 2012a,b;
Patriquin et al., 2013). For example, autism is associated with
decreased HRV (Bal et al., 2010), and higher baseline HRV ampli-
tudes have been linked to improved social behavior and receptive
language abilities in such individuals (Patriquin et al., 2013). The
link between social–emotional behavior and autonomic cardiac
control is thought to lie in the abundant connectivity between
brain regions modulating ANS activity and emotion perception
(Smith and DeVito, 1984; Thayer et al., 2009). Indeed, this psy-
chophysiological biomarker is a useful research tool since the key
aspect of social behavior, the motivation to approach or with-
draw, may not always be overt and observable (Kemp et al.,
2012b).

A further rationale for focusing on the ANS function in WS in
an attempt to illuminate the underpinnings of its unusual social–
emotional behavior comes from a recent study implicating the
endogeneous dysregulation of prosocial neuropeptides, oxytocin
(OT), and arginine vasopressin (AVP), in the social phenotype of
WS (Dai et al., 2012). More specifically, this investigation reported
increased baseline OT levels together with increased OT and AVP
responses to emotional stimulation, in individuals with WS con-
trasted with typical controls (Dai et al., 2012). A contrasting
profile is reported in autism, characterized by low plasma OT lev-
els (Modahl et al., 1998). These hormones are proposed to play a
key role not only in transient social behaviors but also in broader
states and orientations, such as anxiety, social motivation, and the
salience of social stimuli (Churchland and Winkielman, 2012).

The association between ANS function and social behavior is
underscored by recent evidence suggesting the mediating effect of
OT. Specifically, according to a recent social approach/avoidance
hypothesis (Kemp and Guastella, 2011; Quintana et al., 2013),
OT increases social approach behaviors and may either be adap-
tive or maladaptive. The paraventricular and optical nuclei of the
hypothalamus are responsible for the synthesis of OT, with direct
OT projections to the dorsal brain stem, which is vital for car-
diac regulation (Buijs et al., 1978). OT receptors are widespread in
the central and peripheral nervous system (NS), with pronounced
concentrations in brain regions critically implicated in complex
social behaviors (Landgraf and Neumann, 2004). Neuroimaging
data pinpoint contingencies between the effects of OT and the
nature of the stimulus: OT decreases amygdala responses for
fearful faces, while increasing responses for happy faces (Gamer
et al., 2010). Autonomic control may also be mediated by OT
via its actions on the amygdala, which expresses OT receptors
in high density (Tribollet et al., 1992), and mediates intricate
ANS responses (Davis and Whalen, 2001). The theory of Kemp
and Guastella (2011) is ultimately congruent with the polyva-
gal theory (Porges, 2007): increased HRV following extraneous
OT administration is observed (Kemp et al., 2012a,b), and the
socially withdrawn predisposition of autism is associated with
reduced HRV (Kemp et al., 2010). Animal studies have also sug-
gested the link between OT and HRV (Grippo et al., 2009).
Further support to the link between ANS function and OT is
provided by findings suggesting that intranasal OT administra-
tion elicits pupil dilation, which has been suggested to promote
approach behaviors (Wiseman and Watt, 2010). The exact mech-
anism via which OT influences central brain structures implicated
in autonomic cardiac control or social cognition is currently
poorly understood (Quintana et al., 2013). However, as new evi-
dence may suggest alterations in social reward, social salience, and
social motivational functions in WS (Dai et al., 2012), in light of
the above literature, the ANS emerges as an attractive candidate
for aspects of the altered social–emotional behaviors associated
with WS.

LINKING SOCIAL BEHAVIOR WITH ANS FUNCTION IN WS
WS is characterized by a robustly established increased appet-
itive drive toward social interaction (see Järvinen-Pasley et al.,
2008, for a review). Hallmark features of this characteristic
include an unusually gregarious, friendly, un-shy, and people-
oriented personality (Klein-Tasman and Mervis, 2003), increased
attraction specifically toward unfamiliar people (Bellugi et al.,
1999; Doyle et al., 2004), and a bias toward viewing faces
and eyes (Mervis et al., 2003; Riby and Hancock, 2008). Thus,
social information appears atypically salient for individuals
with WS, manifesting as an attentional bias toward social over
non-social stimuli (e.g., Järvinen-Pasley et al., 2008; Riby and
Hancock, 2009a,b), as well as more competent cognitive pro-
cessing of social than non-social stimuli (Järvinen-Pasley et al.,
2010). Taken at face value, these behavioral features may impli-
cate ANS responsivity patterns in WS that correspond to the
extraverted personality profile, increased HRV, and elevated
plasma levels of OT, indexing increased approach-related moti-
vation and heightened salience of social stimuli (Eysenck, 1967;
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Porges, 2007; Kemp and Guastella, 2011). As will become appar-
ent below, studies addressing HR and/or electrodermal activity
(EDA) in WS are sparse, and have produced mixed results.
The aim of the section below is to determine the extent to
which the social behavioral profile of WS appears in tune with
what is known about the underlying ANS function in the
syndrome.

EDA-BASED FINDINGS ON ANS FUNCTION IN WS
Initial evidence suggested reduced autonomic arousal to face
stimuli in individuals with WS (Plesa Skwerer et al., 2009). In this
study, participants with WS, CA-matched TD controls and those
with intellectual disabilities with were presented with dynamic
faces expressing anger, disgust, fear, happiness, sadness, surprise,
and neutral expression, while SCR and HR were monitored (Plesa
Skwerer et al., 2009). However, as a control condition included
neutral nature scenes, SCRs to social stimuli were increased rel-
ative to the non-social stimuli. Moreover, a subsequent study
hinted that the finding that suggested hypoarousal to faces in WS
may reflect the artificial nature of the face stimuli: the stimuli
used by Riby et al. (2012a) incorporated both live and video-
mediated displays of happy, sad, and neutral faces. Results showed
that while video-mediated faces failed to increase the SCL in indi-
viduals with WS, live faces elicited the typically observed increase
in arousal. Further, lower than typical SCLs were reported in par-
ticipants with WS, which were interpreted as reflecting general
hypoarousal in WS. Doherty-Sneddon et al. (2009) measured
changes in SCR in individuals with WS and CA-matched TD
controls during arithmetic tasks varying in both complexity and
the degree of eye contact with the experimenter. Another task
assessed the degree of gaze aversion related to cognitive load.
The results indicated that while individuals with WS showed
general hypoarousal and reduced gaze aversion in the natural-
istic, live social interaction context, similar to the TD controls,
their arousal levels elevated in response to face stimuli. This led
Doherty-Sneddon et al. (2009) to suggest that atypically low gen-
eral arousal level (Plesa Skwerer et al., 2009; Riby et al., 2012a)
may underlie the tendency of individuals with WS to hold gaze
for extended periods. At the same time, eye contact during cogni-
tive processing leads to the typical decline in performance also in
individuals with WS (Riby et al., 2012b), suggesting that holding
direct gaze is taxing for such individuals as well. The finding of
general hypoarousal in WS indeed appears consistent with that
linked to the extraverted personality profile (Eysenck, 1967), as is
that of reduced SCRs to social stimuli (Plesa Skwerer et al., 2009).
The only significant EDA-related finding reported by Järvinen
et al. (2012) showed a lack of typical habituation to faces in
individuals with WS, indexing increased novelty value of face
stimuli. In the visual component of the study, adults with WS and
CA-matched TD individuals were presented with static images
of happy, fearful, and neutral faces and non-social scenes. The
authors suggested that the absence of habituation to faces may
provide an ANS correlate for the increased interest in face stimuli
observed in WS, as faces may appear atypically novel and orig-
inal despite the repeated exposure in everyday life. This feature
may thus contribute to the increased approach-related motivation
in WS.

CARDIAC-BASED FINDINGS ON ANS FUNCTION IN WS
Plesa Skwerer et al. (2009) reported increased interest in faces
in individuals with WS, on the basis of findings of increased
HR deceleration to such stimuli. This finding is consistent with
the WS social profile. By contrast, utilizing more complex HR-
derived analyses than those in the previous studies, Järvinen et al.
(2012) found a general acceleration in mean HR for face stimuli
in individuals with WS as compared to TD controls, together with
decreased HRV to such stimuli. These results suggest increased
emotional reactivity to the affective face stimuli in WS, as vagal
control was diminished for social–affective information. This
ANS profile is in fact in line with that associated with social anx-
iety (Elsesser et al., 2006; Wieser et al., 2009). This is surprising
in light of findings that WS is specifically associated with anxiety
that is non-social in nature (Leyfer et al., 2006). At the same time,
approach-related motivation is also associated with increased
autonomic arousal (Pönkänen and Hietanen, 2012). In the audi-
tory modality, happy, fearful, and sad vocal relative to musical
emotional stimuli elicited increased HRV in participants with WS
only, suggesting reduced arousal to auditory social information.
This pattern is in contrast to that reported in the visual domain.
Additionally, WS was characterized by greater HRV as compared
to the TD controls. Järvinen et al. (2012) interpreted the results to
suggest that human vocalizations appeared more engaging than
the music stimuli for individuals with WS, as HR deceleration
reflects increased focused attention. Across the visual and audi-
tory modalities, WS was further associated with elevated HRV
to happy stimuli. This result indexing greater vagal involvement
is in line with the positive bias frequently documented in indi-
viduals with WS (Dodd and Porter, 2010), as positively valenced
emotional stimuli are specifically socially engaging promoting
approach-related motivations (Porges, 2007).

PUPIL DILATION AS AN INDEX OF ANS ACTIVITY IN WS
Studies quantifying pupil dilation in WS have reported attenuated
pupil dilation in response to social stimuli in such individuals
relative to CA and mental age (MA) matched TD participants,
suggesting decreased ANS arousal to social information (Plesa
Skwerer et al., 2011). In this study, participants were presented
with social and non-social images, and notably, all groups exhib-
ited increased arousal to the social as compared to non-social
visual stimuli. The participants with WS also showed reduced
pupil dilation to negative facial expressions as compared to
controls. This finding is consistent with both behavioral and
neurobiological reports indicating insensitivity to negative social
information in individuals with WS (Meyer-Lindenberg et al.,
2005; Haas et al., 2009; Santos et al., 2010), a feature that is
thought to contribute to the increased affiliation with unfamil-
iar people in WS. Taken together, the ANS findings suggest a
complex pattern of ANS function indexed by EDA, cardiovascu-
lar reactivity, and pupil dilation, underpinning the social profile
of WS.

PROSOCIAL NEUROPEPTIDES AND ANS FUNCTION IN WS
In this section, we attempt to consolidate the ANS data on WS
with some relevant findings on OT and AVP. In the context of
the broader literature on prosocial neuropeptides, the findings
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of elevated base line levels as well as peak release of OT and
AVP to emotional stimulation in WS relative to TD (Dai et al.,
2012) appear consistent with the social profile of WS that is asso-
ciated with increased approach and proclivity toward engaging
the eyes, as well as maladaptive behaviors. Importantly, Dai et al.
(2012) reported a positive association between basal OT level
and approach, and a negative correlation with adaptive social
behaviors, for individuals with WS, suggesting that some aspects
of the increased OT indeed are maladaptive. The finding link-
ing intranasal OT administration to pupil dilation (Wiseman
and Watt, 2010) appears surprising in light of the data of Plesa
Skwerer et al. (2011) indicating reduced pupil dilation in WS,
as perhaps the opposite could have been expected. Intranasal
OT administration has also been suggested to be associated with
increased HRV (Kemp et al., 2012a,b). Järvinen et al. (2012)
reported decreased HRV within the visual domain, and increased
HRV within the auditory domain, in individuals with WS, sug-
gesting context-dependent or unstable HRV in WS. In the study
of Dai et al. (2012), no significant associations between HR
and blood pressure measures and neuropeptide function were
observed, also suggesting a complex mechanism in WS. Future
studies should thus establish HRV in WS in the resting state.
Further, studies employing sensitive cardiac indices of ANS func-
tion in WS are acutely needed to clarify the inconsistencies in
the current literature, and to allow the data to be linked to the-
ories of social behavior. At the same time, the existing evidence
may reflect some degree of heterogeneity in ANS function in
WS, which may be further exacerbated by the fact that individ-
uals with WS commonly present with hypertension and cardiac
abnormalities (Pober, 2010), which may impact ANS function.
In a similar vein, Dai et al. (2012) noted in their study that OT
and AVP function was variable in their sample of individuals
with WS.

DETERMINANTS OF SOCIAL BEHAVIOR: INSIGHTS
FROM WS
The picture of ANS function that is emerging from investiga-
tions of individuals with WS suggest that virtually in all studies,
the typical elevation in arousal in response to (live) face stim-
uli in such individuals is present, despite the fact that baseline
arousal levels may appear atypically low. This finding is typically
seen in EDA-based analyses, while cardiac-based indices indicated

hyperarousal to faces in WS (Järvinen et al., 2012). Thus, the evi-
dence does not suggest hyporesponsivity to faces in WS per se.
Further, individuals with WS were found to lack the typical habit-
uation effect to face stimuli, suggesting that social information
may retain its originality for those with the syndrome. Evidence
further supported the uneven patterns of neural and behavioral
responsivity across positive (preserved) vs. negative (compro-
mised) social information (e.g., Haas et al., 2009) in WS, as such
individuals demonstrated diminished arousal as indexed by pupil
dilation to negative facial expressions (Plesa Skwerer et al., 2011),
while within both visual and auditory social domains, increased
HRV to happy stimuli was evident. This constellation of evidence
fits in well with the social-behavioral characteristics of WS.

Future studies should determine the degree of heterogene-
ity within the WS population with respect to ANS function by
testing sizeable sample of participants; this is crucial for being
able to ultimately map social–emotional profiles in terms of
behavior, and neural and hormonal characteristics, onto pat-
terns of ANS function reliably. Contributing factors to some of
the inconsistencies in the existing, scarce literature may include
differences in experimental paradigms (ranging from arithmetic
tasks to static/dynamic displays of affective faces), age ranges
of participants, whether ANS activity was assessed using EDA
vs. HR derived measures, and whether the effects of endoge-
neous vs. extrageneous OT were measured (cf. Churchland and
Winkielman, 2012). Of the studies addressing ANS function in
WS, only Järvinen et al. (2012) utilized indices of HRV, allowing
more direct comparisons with the tenets of the polyvagal the-
ory (Porges, 2007) and the social approach/avoidance hypothesis
(Kemp and Guastella, 2011). Nevertheless, the evidence discussed
in this article highlights that the study of ANS function in tan-
dem with neuropeptide systems promises to open up an exciting
avenue for the quest toward understanding the underpinnings
of the social behavior of WS, including its positive as well as
maladaptive features. Such studies may also prove helpful in
identifying sensitive areas for intervention.
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