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Delay match to sample (DMS) experiments provide an important link between the theory
of recurrent network models and behavior and neural recordings. We define a simple
recurrent network of binary neurons with stochastic neural dynamics and Hebbian synaptic
learning. Most DMS experiments involve heavily learned images, and in this setting we
propose a readout mechanism for match occurrence based on a smaller increment in
overall network activity when the matched pattern is already in working memory, and a
reset mechanism to clear memory from stimuli of previous trials using random network
activity. Simulations show that this model accounts for a wide range of variations on the
original DMS tasks, including ABBA tasks with distractors, and more general repetition
detection tasks with both learned and novel images. The differences in network settings
required for different tasks derive from easily defined changes in the levels of noise and
inhibition. The same models can also explain experiments involving repetition detection
with novel images, although in this case the readout mechanism for match is based on
higher overall network activity. The models give rise to interesting predictions that may be
tested in neural recordings.
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INTRODUCTION
Over the past several decades, a large number of delay match
to sample (DMS) experiments has been performed with a vari-
ety of protocols (Fuster and Alexander, 1971; Miyashita, 1988;
Miller and Desimone, 1994; Miller et al., 1996; Yakovlev et al.,
2005, 2008, under review); See Figure 1 of accompanying paper
(Yakovlev et al., under review). Electro-physiological recordings
accompanying these experiments found stimulus selective neu-
rons that fire during the delay period. This activity was seen as
reflecting working memory and motivated work on recurrent
attractor networks (Amit and Brunel, 1997; Brunel and Wang,
2001; Amit et al., 2003). One distinction between protocols can
be found in Miyashita (1988). In one experiment, monkeys were
presented with stimulus sequences from a small fixed set of inten-
sively learned images, henceforth denoted fixed, and in another
they were presented with novel images. No persistently firing
neurons were detected for novel images. Nevertheless, interest-
ingly, the monkeys performed just as well with the novel images.
Later, the so-called ABBA modification was proposed (Miller
and Desimone, 1994), where among the distractors presented
between sample and match, two repeating stimuli were shown,
which the monkey learned to ignore. A new protocol, delay match
to multiple samples DMMS, was recently introduced (Yakovlev
et al., 2005), whereby any image in the sequence could act as
the sample, which the monkey needed to remember to signal
its repetition at some later point in the trial image sequence.
These trials have the form ABCDEC, where C is the sample,
which in this trial appears at image 3 and is repeated at image
6. One motivation for this protocol was to control for primacy

effects attributed to presentation of the sample as the first image
in a sequence. These experiments were performed with fixed
sets of images (Yakovlev et al., 2005). In later work the same
experiments were performed with novel images (Yakovlev et al.,
2008); consistent with the finding of Miyashita (1988) perfor-
mance was even better than with fixed images. Finally in Yakovlev
et al. (under review) we studied monkey behavior when they
switched between learned and novel images in the DMMS task,
and in particular their ability to handle false positives, signaling
an image from one of the previous trials as a repeat. A summary
of the different protocols is found in Figure 1 in Yakovlev et al.
(under review).

Attractor network models primarily address the problem of
maintaining one or more learned images as attractors in a
dynamic network of integrate and fire neurons. The model pro-
posed in Brunel and Wang (2001) presented a dichotomy in
parameter space between 1—the first pattern staying in working
memory and “preventing” other patterns from entering, and 2—
the most recent pattern entering working memory and knocking
out the previous one. Based largely on this model (Brunel and
Wang, 2001), it was found that the network can be tuned to hold
multiple images in memory (Amit et al., 2003). A model for a
network handling novel images (images seen only once) has been
proposed (Yakovlev et al., 2008), and the issues of readout and
reset mechanisms are handled there explicitly for the first time, as
follows:

Readout refers to the manner in which the network identifies
repetition through differential behavior for a repeat image ver-
sus a non-repeat. Earlier models for fixed images assumed that if
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the test image is already in working memory, by definition this
means that repetition is detected. No explicit readout mechanism
was proposed. With novel images nothing is present in working
memory, so repetition readout needs to be achieved otherwise. In
Yakovlev et al. (2008) the level of network activity while the stim-
ulus is still present is used. The slight synaptic trace present for
a once-seen image induces slightly larger network activity than
a never-seen image, although this trace is insufficient to sustain
delay activity after the stimulus is withdrawn. Reset refers to a
mechanism implemented between trials to erase images from pre-
vious trials from working memory. This is necessary to avoid
false positives, which occur when the monkey flags an image that
appeared in an earlier trial as a repeat.

The models mentioned above employed integrate and fire neu-
rons, and, in the case of fixed images, assumed no overlap between
the selective subsets of the stimuli in order to facilitate mean field
analysis. Recently, in modeling decision making in the framework
of DMS tasks, the different responses to the sample (A) and the
repeating distractors (B) were addressed (Engel and Wang, 2011).
This difference is achieved by assuming that the initial image has
privileged access to a particular network that can retain it in mem-
ory, whereas distractor images do not. This model would account
for avoidance of repetition detection among distractors, but does
not account for the mistakes initially occurring when monkeys
learn the ABBA task after performing the original DMS task. The
fact that without additional training, monkeys do consider BB a
repetition means that the B stimulus does reach the network that
maintains working memory. Indeed it indicates that false posi-
tives would be found in DMS trials if they were systematically
tested for. The dichotomy proposed in Brunel and Wang (2001) is
also not suitable to describe such a situation. Furthermore, in the
experiments described in Yakovlev et al. (2005) the first stimulus
has no special status, any stimulus could be repeated, so that any
stimulus must have access to the working memory network.

Our goal in the current paper, motivated by previous work
(Brunel and Wang, 2001; Amit et al., 2003), is to integrate all
these phenomena in a single, parsimonious network model, and
account for the different protocols through changes in particu-
lar network parameters, assuming that these network parameters
are internally modified when confronted with new test circum-
stances. We concentrate on a network with binary neurons and
binary synapses. The learning framework is the same as pro-
posed by Amit and Fusi (1994) with binary synapses undergo-
ing dynamic Hebbian learning, starting from a stationary state
that corresponds to the natural assumption that large numbers
of patterns have already been learned. However, these authors
did not address network dynamics. Indeed dynamics in such
binary networks, with threshold and inhibition settings that max-
imize memory capacity despite significant noise levels, were only
addressed recently (Romani et al., 2008; Amit and Huang, 2010).
We now show that this single network can account for behav-
ior under these different DMS protocols, including the readout
and reset mechanisms. In contrast to the situation with novel
images, we propose a readout that is based on a smaller incre-
ment in network activity when a pattern present in working
memory is shown again. Reset uses the virtual presentation
of random unlearned patterns, essentially random background
activity, to “wash” out patterns present in working memory.

Network parameters (coding level, potentiation and depression
rates, threshold, and inhibition) are first set at a baseline level that
ensures maximal memory capacity. The different protocols are
implemented by appropriately modifying inhibition from base-
line, modulating noise level, and in one case modifying depres-
sion probability. In particular the form of readout we propose
offers a natural explanation for false positives observed in DMMS
trials with fixed images, which are not triggered by the previous
occurrence of the image in previous trials. To our knowledge this
is the first time such an integrated model has been proposed for
an array of DMS tasks without artificially limiting the number of
learned patterns. Furthermore, the proposed model sheds light on
behavior observed when monkeys are switched between different
tasks, specifically between DMMS with fixed and novel images.

METHODS AND PROCEDURES
SIMULATED NETWORK SETUP
The network has N binary neurons all with the same threshold θ.

The network is fully connected with binary synapses J ij = (0/1)

leading from neuron j to i. Images ξ
(k)
i , i = 1 . . . N, k = 1, . . . K ,

are sampled randomly with coding level f . Specifically for each k,
with probability f the i’th neuron is set to be selective for image

k, i.e., ξ
(k)
i = 1, independently for each i. S(k) denotes the ran-

dom set of selective neurons chosen for image k whose average
size is fN. The threshold is set based on criteria determined in
Amit and Huang (2010); Huang and Amit (2011), that guarantee
a low expected number of non-selective neurons firing based on
the average asymptotic field to such neurons.

Learning
Synapses are binary with state J = 0 corresponding to the
depressed state and J = 1 corresponding to the potentiated state.
When an image is presented to the network, depressed synapses
with active pre and post-synaptic neurons are potentiated with
probability q+ and synapses with active pre-synaptic neuron
and inactive post-synaptic neuron are depressed with probabil-
ity q− = αfq+. Learning is initiated from the stationary state of
the synaptic matrix, assuming a very large number of patterns
has been presented to the network, which randomly assigns about
π+ = 1/(1 + α) of the synapses to be potentiated.

Network dynamics
When image k is presented to the network the initial strong visual
stimulus is mimicked by activating the units in S(k) with some
level of noise. Each unit is assumed to be on independently with

probability pinitial, yielding the initial random active set A(k)
0 cor-

responding to this image. This is in addition to whatever other
units are already on in the network. The full set of active units at
step 0 is denoted A0. At step t there is a current active set of units
At .We randomly choose a neuron for updating from among the
N neurons in the network. If unit i is selected for updating at step
t its field:

hi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
N

( ∑
j ∈ At

Jij − ηinhib|At|
)

+ Ct if i ∈ A(k)
0

1
N

( ∑
j ∈ At

Jij − ηinhib|At|
)

if i /∈ A(k)
0
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is computed. The second-term represents inhibition and is lin-
ear in the number of active neurons. The default value of ηinhib is
the asymptotic probability of a synapse being potentiated, namely
π+ = 1/(1 + α) (see Amit and Huang, 2010). The third-term
Ct is contrast, which mimics the persistence of a strong signal
while the stimulus is present, albeit weaker than the initial sig-
nal. This is added only to neurons in the initial active image
set A(k) during the presentation period of the stimulus, which
corresponds to Tcontrast N updates. Subsequently contrast is set
to zero, corresponding to the period after stimulus presentation,
for an additional TdelayN updates, before an additional stimulus
is shown. If the computed field is above threshold, i.e., hi > θ

we set ξi = 1 with probability pfire, otherwise ξi = 0. The value
1 − pfire corresponds to the noise level in the system. In all models
the threshold of the neurons is fixed. The different protocols are
obtained by modifying the inhibition level, the noise level pfire,
the contrast level and in one instance the depression rate q−.

We note that setting the synaptic states to 0/1 is arbitrary
and any two values Jlow, Jhigh, would work with the proper
adjustments to the threshold, the contrast and inhibition.

READOUT MECHANISM FOR LEARNED IMAGES
On initial presentation the number of activated neurons is on
average given by �new = pinitialfN, and for an image not active
in memory, this would represent the average increase in network
activity. On the other hand if the image is currently in working
memory, the size of the active set of neurons for that image at

iteration t is given by
∣∣∣A(k)

t

∣∣∣ ∼ pfirefN. If the image is presented

to the network at step t + 1, the increment in network activity
would only be from those selective neurons of the image, which

are not in A(k)
t namely on average �old = pinitial

(
1 − pfire

)
fN.

With any reasonable range of values for pinitial and pfire we have
�old � �new, providing a simple global signal from the network
that a match has occurred. The increment threshold for repeat
detection is set to be three standard deviations above the mean:

τ� = �old + 3
√

pinitial
(
1 − pinitial

) (
1 − pfire

)
fN.

RESET MECHANISM FOR LEARNED IMAGES
After each trial the network needs to remove active images from
memory, otherwise they will produce false positives on subse-
quent trials. Indeed monkeys need some time to learn to avoid
such false positives (Yakovlev et al., under review). The mech-
anism used here uses the presentation of a sequence of ran-
domly generated images with all parameters held fixed. For any
increase in network activity due to the presentation of the ran-
dom images there is a non-negligible probability that one of
the currently active images die out due to inhibition (see also
Miller et al., 1996). After several tens of presentations of random
images—Lrefresh—with high probability most images residing in
working memory will die out. The reset issue is mainly relevant
in the repeat detection experiments discussed in section Reset
Mechanism for Novel Images. In DMS experiments where the first
image holds a privileged position there is little effect of the activity
in previous trials.

READOUT MECHANISM FOR NOVEL IMAGES
A readout mechanism for this setting was proposed (Yakovlev
et al., 2008) based on the total level of activity in the network after

TcontrastN updates—before contrast is turned off. The assumption
is that the decision is made while the visual stimulus is present or
still affecting the network. In this setting we again start from the
stationary state of the synapses. Images are presented only once,
and the potentiation probability q+ < 1 is not sufficiently strong
to allow these to maintain stable activity in working memory after
the contrast period. Nonetheless, even a single presentation of an
image leaves a trace in the synaptic matrix and, when presented
again, yields a higher activity at the end of the contrast period rel-
ative to images that were never before presented to the network.
This allows us to determine an absolute activity threshold τabs that
is evaluated after the contrast period of each presentation.

RESET MECHANISM FOR NOVEL IMAGES
Since novel images do not reside in working memory attrac-
tor activity, the challenge is to eliminate the synaptic trace of
the once-seen images at the conclusion of the trial. Eliminating
the synaptic trace using the presentation of random images and
keeping all parameters the same would require on the order
of thousands of image presentations—the memory horizon of
familiarity recognition. It seems that the only alternative, as pro-
posed in Yakovlev et al. (2008), is to allow for high depression
probabilities during the inter-trial period while presenting ran-
dom images. In that paper, the authors used a much higher
coding level for the random images. Here we did not affect any
change to the coding level of the random images, and to main-
tain simplicity we assume a high depression probability during
the entire experiment and set q− = 1. In other words, any time
a presynaptic neuron is activated and the postsynaptic neuron is
off, the synapse is set to 0. Maintaining the depression rate this
high does not pose a problem for repetition detection with novel
images at small numbers of several tens of images, but would
sharply decrease the extent of familiarity recognition relative to
the optimal settings.

An alternative to the depression triggered by presenting ran-
dom images is some form of non-specific long-term depression
whereby each synapse independently reverts to state 0 with some
probability, pdepress. This may correspond to chemical LTD (see
Collingridge et al., 2010), which is not stimulus dependent. In
our experiments we chose to implement the former mechanism
but in effect they are equivalent. Note that for each seen image,
approximately q+(fN)2 synapses are potentiated. When present-
ing a random image, the probability that each such synapse
is between a selective and non-selective neuron is f (1 − f ) so
that approximately Rq+(fN)2f (1 − f ) are depressed by the end
of R random presentations, which is on average equivalent to
pdepress = Rf (1 − f ).

SUMMARY OF DMS PROTOCOLS
We summarize the different DMS protocols and the modifications
necessary for their implementation in the network:

• Default: Using the default parameters the network adds learned
images to working memory. Each image has equal proba-
bility of dying out at each step. Readout of repetition with
incremental threshold—smaller increment in neural activity.

• DMS: To maintain first image in working memory, contrast
time is set to zero (Tcontrast = 0), and noise level is decreased
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(pfire,high = 0.9) between image presentations, ensuring com-
pletion at a high fraction of the first image and preventing its
falling out of memory. Upon presentation of a new image the
noise level rises again to the default level (pfire = pinitial), giv-
ing those images present in working memory, which are active
at a higher proportion, an advantage over the newly presented
images. Thus, with high probability the first image remains
in working memory, some additional distractor images may
remain there as well. Repetition is read out based on the
increment in activity upon stimulus presentation.

• ABBA: Same as DMS but only first image should be maintained
in working memory. To ensure this, in addition to decrease in
noise level between image presentations, inhibition is slightly
increased (ηhigh = 0.34) throughout the experiment.

• Repeat detection with fixed images: Default parameters with
2% increase in inhibition at each step to obtain increase in
performance for fixed cue to test distance and longer trials.

• Repeat detection with novel images: high depression rate
−q− = 1. This enables elimination of synaptic trace during

reset period at the cost of significantly reduced extent of famil-
iarity memory. Readout based on activity after contrast period.
Absolute threshold τfamiliar = 11.

RESULTS
Network and synaptic dynamics are described in the Methods and
Procedures and summarized in Table 1, with parameters set to
maximize memory capacity, and assuming the synaptic states are
at stationarity: the network has already been trained on a large
number of patterns. In this setting we use simulations to illus-
trate the modifications that reproduce the different experimental
behaviors.

DEFAULT SETTING
Images are learned with the default parameters (Table 1), starting
from a stationary synaptic matrix of about one in four poten-
tiated synapses. These images are then shown in random order
and network dynamics is computed. Upon image presentation,
units selective to the presented image are moved into their active

Table 1 | Notation formulas and default parameter settings for neural and synaptic dynamics of network and modifications for DMS, ABBA,

DMMS trials with novel images.

N = 5000 Number of neurons in network

Jij = 1/0 State of synapse between neurons j and i

f = 0.02, fN ∼100 Coding level—average number of selective neurons in each pattern

q+ = 1.0 (0.3) Synaptic potentiation probability for fixed images, (novel images)

q− = 3fq+ = 0.059, (q− = 1.0) Synaptic depression probability for fixed images, (novel images)

Potentiation: If ξj = 1, ξi = 1, Jij = 0 �⇒ Jij ↗ 1, with probability q+

Depression: If ξj = 1, ξi = 0, Jij = 1 �⇒ Jij ↘ 0, with probability q−

pinitial = 0.45 Probability a selective neuron is on at stimulus presentation

pfire = 0.45 Probability neuron fires if field is above threshold

θ = 0.004 Neuron threshold

π+ = 0.254 Stationary probability for synapse to be potentiated

ηinhib = π+ = 0.254, (0.34) Inhibition factor, (for ABBA trials)

C = θ Contrast - level of external input when stimulus is present

hi = 1
N

⎛
⎝∑

j ∈ At

Jij − ηinhib |At |
⎞
⎠ + Ct

i Field of neuron i at iteration t . If hi > θ neuron is on with probability pfire.
Ci

t - contrast at neuron i at step t . Only at level C if neuron is an initially
activated selective neuron and t < NTcontrast

τ� = pinitial(1 − pfire)fN + 3
√

pinitial(1 − pinitial)(1 − pfire)fN = 36 Activity increment threshold, below which repeat is called for fixed images

Tcontrast = 0, (3) Multiple of N updates with contrast for fixed images, (novel images)

Lrefresh = 40 Number of random images presented during reset period

τabs = 11 Absolute activity threshold above which repeat is called for novel images

pfire, high = 0.9 Low noise level for DMS trials after each new stimulus
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state, with a noise-dependent probability pinitial, but irrespective
of their state before image presentation. This probability repre-
sents the uncertainty involved in the actual appearance of the
stimulus, and the processing it undergoes in the brain until reach-
ing the recurrent network. It is not an internal network parameter
and is therefore fixed and not modulated. A number of network
iterations is then performed with “contrast,” i.e., assumed fur-
ther external input to these image-selective units corresponding
to a period of continued image presence, albeit at a lower level
of input than that due to the initial signal. These two stages
of input may be seen as corresponding to the initial transient
and later steady state responses ubiquitous in sensory physiol-
ogy. Then external input is removed and dynamics continues
with no “contrast,” driven only by the internal fields generated
by the network. At all times there is a level of inhibition on all
units, which is proportional to the total number of active units. If
the net input to a unit (by synapses from other active units and
“contrast” from presentation of the image to which it is selec-
tive, less general inhibition) is above a fixed threshold, the unit
is moved to its active state with a probability pfire. Note that pinitial

and pfire are inversely related to the corresponding noise levels.
To reiterate, pinitial refers to the uncertainty in the signal arriv-
ing at the network and remains fixed, whereas pfire refers to the
uncertainty in above threshold neural firing in the recurrent net-
work and can be modulated. Several important phenomena are
observed.

Large memory capacity
The network can stably recall a large number of learned images. It
has been shown that a network with 5000 neurons has a capacity
of approximately 200 learned images and a network of 100,000
neurons has a capacity of approximately 60,000 (Amit and Huang,
2010).

Completion
The network reliably performs image completion. If the noise
level during the dynamics is lower than the initial stimulus noise
at presentation, i.e., pfire > pinitial the network quickly evolves
from an initial proportion of about pinitial, active selective neu-
rons to a higher proportion of about pfire active selective neurons.
This is demonstrated in Figure 1. This fundamental property of
recurrent network models provides for elimination of noise and
convergence toward a more abstract representation of the stim-
ulus. In Figure 1, each grid square corresponds to a neuron (the
grid-like arrangement is used for ease of presentation; the net-
work is fully connected, without topological structure). Blank
squares are inactive neurons, not selective to the current image.
Full red squares are active selective neurons and smaller red dots
show inactive selective neurons.

Sustained activity following stimulus removal
If no additional learned stimuli are presented to the network,
following image-presentation completion, the attractor state cor-
responding to the stimulus will remain active for long periods and
be robust to noise level changes (see below). However, this is not
the natural situation since learned stimuli are ubiquitous and will
constantly be appearing. This leads to the following.

FIGURE 1 | Completion. Each square corresponds to a neuron. Blank
squares are inactive non-selective neurons. Grid arrangement is just for
presentation—network has no topological structure. (A) In red the selective
neurons of the image. Full squares—active. Small dots—inactive. Initially
approximately 45% are active; we set pinitial = 0.45. (B) Completion: after
network dynamics with pfire, high = 0.9, approximately 90% of selective
neurons are active. (C) Box plots showing, for 100 simulations, the
distribution of the fraction of active selective neurons, immediately
following initial presentation and after completion by network dynamics
(red line: median; top and bottom of box: upper and lower quartiles;
horizontal lines: quartiles ± 1.5 interquartile range).

Sustained activity for multiple images
The network can simultaneously maintain several images in
working memory, that is, synapses among neurons selective to
the same image are sufficiently strong to maintain activity even
in the presence of many other active neurons, and the accompa-
nying higher level of inhibition. However, since inhibition grows
with the number of active neurons, as additional learned images
are presented to the network, older ones gradually die out. This
depletion of image representations occurs mainly during the
period that each new image is presented. At this time, the con-
trast being applied to the newest image reduces its probability of
dying out, giving it an advantage over other images currently res-
ident in memory. On the other hand, when this newest image is
no longer being presented, all image representations have equal
probabilities of dying out due to inhibition. Thus, the probabil-
ity that an image has survived decreases with age. In Figure 2 we
show the probability of an image staying in memory as a func-
tion of its age (in units of additional images presented) counting
back from the latest one presented. All network parameters are
at the default setting and we allow pfire to vary between 0.35 and
0.55. Note the different rates of decay of survival probability as a
function of age.

READOUT—INCREMENTAL THRESHOLD
The question of how a network codes for a “match,” i.e., a rep-
etition of a previously presented image, has not received much
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FIGURE 2 | Retention of multiple images in recurrent activity. Probability
of image maintaining recurrent activity as a function of its age for different
levels of pfire and all other parameters at default levels given in Table 1.

attention in the literature. With fixed images the increase in net-
work activity on presentation of the match is smaller relative to
presentation of a non-match image. This is illustrated in Figure 3.
Panel (B) shows the increment, in green, when an image is pre-
sented which is not currently sustained in the network and thus
has little overlap with the image currently in memory. Recall that
at the moment of the new stimulus presentation, images in mem-
ory are sustained at the low noise level. In contrast panel (G)
shows the increment, in green, when the first image is repeated
with both the first and second images in memory. We suggest that
the fact that the increment is smaller is used by the network as an
indication that the last image presented is a match to the origi-
nally presented cue image. This decreased increment signal does
not require that the network has any knowledge of which images
are in working memory nor that the network directly compare the
neurons that are selective of the test image to the active neurons
in the network.

DMS TRIALS
To strengthen and maintain activity of the neurons represent-
ing the first presented image that acts as the cue for which a
match is to be found, we enhance the probability, pfire, of fir-
ing for neurons with above-threshold activation, i.e., we reduce
the internal noise level, except during presentation of subsequent
images. This periodic modulation of noise level (high when an
image is presented, low otherwise) allows units representing the
first image to remain active with high probability, and may also
prevent other images from remaining active. The two possibilities
are illustrated in Figure 3. As in Figure 1, the first image appears
with about 45% of its selective units activated, and after several
network iterations at the lower noise level, (i.e., higher probabil-
ity of above threshold firing), the image representation completes
to about 90% active (Figures 1B, 3A). When the second image is
presented the initial stimulus noise is high and the representation
is at approximately 45%, whereas the first image representation is

still at ∼90% (Figure 3B). Then the network works again at the
higher noise level, which reduces the first image representation
from 90% to about 50%, leaving the newer image representation
at about 15% (Figure 3C). The initial disadvantage of the new
image sometimes suffices so that despite reverting to lower noise,
with the first image representation growing back to 90%, the sec-
ond newer image representation dies out completely (Figure 3D).
In these cases, a repetition of the second image will induce a large
response increment and thus not be perceived as a repetition.
Sometimes, however, both images arrive at representations of
about 45% active selective units (as seen in Figure 3E, first image
represented by red units, second image by blue). In this case, when
the network reverts to the low noise level during the delay period,
both images reach 90% activity (Figure 3F). In this case, when the
first (or equally when the second) image is repeated and the incre-
ment (in green) is small, this signals a repeat (Figure 3G). Thus,
in this second case, where the second image representation does
not die out, it, too, would trigger the repeat signal if it were pre-
sented again, failing the ABBA protocol test. The extent of such
false positives has not usually been tested in standard DMS exper-
iments. These changes in incremental activity upon stimulation
are summarized in Figure 3H.

In Figure 4 we illustrate some statistics of these dynamics.
For the initial sample we show a boxplot of the distribution
of activity of selective neurons after each epoch of high noise
and low noise regimes over 100 simulations (central red line:
median; upper and lower lines of the box: first and third quartiles;
two horizontal lines quartiles ±1.5 interquartile range; addi-
tional points—outliers.). The epochs start upon presentation of
an image with the network running at high noise level. The sam-
ple image activity oscillates stably between the 45% range to the
90% range (left panel). Test images are presented while the sample
image is at high activity after an epoch of low noise level, putting
them at a disadvantage during the high noise epoch immediately
following their presentation. In the right panel of Figure 4 we
show the fraction of active selective neurons for the intermedi-
ate test images immediately upon presentation and after the high
noise epoch. There is a reduction in activity of the selective neu-
rons in the second boxplot, some die out, whereas others maintain
activity at a very wide range around the 45% median, see also the
two examples of Figure 3.

ABBA TRIALS
The above protocol will succeed if the only repeated image shown
in the sequence is the initial sample. If a test stimulus is repeated
and happens to have stayed in memory it would trigger a low
increment match response. It was reported that when monkeys
were initially trained on the standard DMS task they did signal
repeats of the test images (BB) (Miller and Desimone, 1994) as
predicted by our simulation. Additional training was needed for
them to learn to avoid the B repeats. In our setting this type of
error is avoided by increasing inhibition to level ηinhib,high above
the baseline level ηinhib that was originally set to optimize the
capacity of the network. The increased inhibition raises the com-
petitive advantage of the first image, which is at 90% activity
level relative to the incoming images that start out at 45% activity
level. An example of the dynamics in an ABBA trial is shown in
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FIGURE 3 | DMS Simulation. Full squares—active selective units, small
dots inactive selective units; color indicates neuron’s preferred image;
fN ∼ 100. (A) Situation following presentation of first image and several

(Continued)

FIGURE 3 | Continued

iterations for completion by network dynamics with pfire,high = 0.9. (B)

Second image added with pinitial = 0.45, the noise level of the incoming
stimulus. First image (red) still sustained at low noise level: pfire,high = 0.9.
Increment in green units is large, ∼ 45—response is: no repetition seen.
(C) After a few iterations at higher noise level: pfire = 0.45, first image (red)
sustained at 45% and second image (blue) sustained at about 15% and will
die out (D) following inter-trial iterations, only first image completes to
90%. (E) New Trial. After presentation of second image (and despite first
image having completed to 90%) and after a few iterations at pfire = 0.45,
first image (red) and second image (blue) sustained at about 45%—both
survive (F) Completion of both images to 90% level. Had second image
been presented the increment would be small and a repeat flagged. (G)

First image presented again to network. Increment (shown in green)—5
units: repeat detected. (H) Summary of activity for different stimulations
described above.

Figure 5. Due to the higher inhibition, the second image, which
in 5(A) activated about 45 selective neurons (in green), has nearly
died out in 5(B). The increment on repeated presentation of the
second image in 5(C) is around 45 since very few of its selective
neurons remain active. In contrast when image A is repeated in
5(D), since its representation is at a high activity level of around
90 selective neurons, the increment is particularly small—about
10 neurons.

In Figure 6 we show the same statistics as in Figure 4 for the
new ABBA protocol. Note the much greater decrease in activity of
non-match test patterns after presentation right panel of Figure 6.

In both standard DMS and ABBA trials we set the contrast
period Tcontrast = 0, since contrast breaks the symmetry in favor
of the newest stimulus; the opposite of what we need to maintain
the activity of the first image. This is equivalent to a faster decrease
of the strength of the sensory stimulus or lower steady state con-
dition. The opposite is required for detection of repetition with
novel images, where contrast is an essential ingredient (see section
Summary of DMS Protocols).

DMMS TRIALS, FIXED IMAGES
The natural model for DMMS is to have all presented images
stay in working memory (Amit et al., 2003). Modulation of noise
and inhibition is not needed. The performance plots in Yakovlev
et al. (2005) and Figure 2 of Yakovlev et al. (under review) show
that the larger the distance between the sample and its repetition,
the worse the performance. This is consistent with the default
network setting where older images gradually die out and new
ones have an advantage due to the contrast period. The deterio-
ration of performance as the lag increases seems to indicate that
the method employed by the brain is indeed that of maintain-
ing the reverberating activity of attractors corresponding to the
different images. One twist is that for the same lag between sam-
ple and repeat, performance improves the longer the trial. This
is achieved in the simulations using a gradual decrease in inhibi-
tion at each image presentation, and may correspond to a growing
expectation for a repeat.

In Figure 7 we show the results of running the network with
the default parameters and a 2% decrease in inhibition after
each stimulus. The network was trained on 20 images and tri-
als were of length 1–6 with repetitions of images at all locations,
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FIGURE 4 | DMS trials. Left panel: distribution of fraction of active
selective units for the sample (first) image at each stage of the trial
(100 simulations). Each stage shows a pair of boxplots. The first shows
the resulting activity after the network is run in the high noise regime
pfire = 0.45. The second shows the resulting activity after the low noise

regime pfire,high = 0.9. Right panel: fraction of selective units active on
intermediate test images. First boxplot shows the initial activity upon
presentation of the image. The second boxplot shows the activity after
running the network in the high noise regime, starting with the high
activity level of the sample image.

FIGURE 5 | ABBA simulation. Same parameters as Figure 3 with
inhibition increase (A) Image B added at pinitial = 0.45, first image (red) still
at 90%. Increment in green ∼45%—no repeat. (B) After iterations at
pfire = 0.45, ηinhib,high = 0.34, image A (red) at ∼45% activity, image B died
out. (C) Image A completed to 90% level, image B repeated (BB) increment
in green ∼45%—no repeat. (D) Second presentation of image B dies out,
image A completes to 90%, and after repeat of image A—small increment
of 5 units (green)—repeat.

with multiple random orderings. When the repeated image is
presented the incremental activity is measured and compared
to threshold. Results are similar to those reported in Yakovlev
et al. (2005, under review), both for the success rates as a
function of stimulus position for different trial lengths and the
success rates for fixed lags at different trial lengths. To achieve

results corresponding to experiments, both in terms of detec-
tion probabilities and in terms of false positive rates, we varied
one parameter: pfire. The top row of Figure 8 shows the detection
probabilities for pfire = 0.4, 0.45, 0.5, respectively. With pfire =
0.4 the survival probability of the patterns is very low (see also
Figure 2) and detection probabilities are far lower than those in
the experiments. With pfire = 0.5 the survival probabilities of the
patterns is very high and detection probabilities are far higher
than those in the experiments. Interestingly the value of pfire that
yields the best match to experimental results in terms of detec-
tion probabilities also yields the best match to the experimental
results in terms of the false positive rates, see the bottom row of
Figure 8.

Reset mechanism and false positives
After each trial the network needs to remove active images from
memory, otherwise they produce false positives on subsequent
trials. Monkeys need to learn to achieve this since, as in the default
network setting, it is not the standard behavior. In simulations
reset is achieved by pseudo-presenting a sequence of randomly
generated patterns (see Methods and Procedures).

One form of False Positive (FP) is then a result of the read-
out mechanism and is due to random fluctuations in the size of
the increment. Even if an image is not in memory there is a non-
negligible probability that the size of the set of selective neurons
initially activated for that image is less than increment threshold
for repeat detection, τ�. Thus, there is no need to use “pop-in”
events for learned images as proposed in Yakovlev et al. (2005),
which in fact were never observed in our simulations. The second
and more prevalent form of FP is due to the failure of the reset
mechanism to erase from memory all images from previous tri-
als. With the default parameter settings we obtain the following
numbers consistent with experimental numbers (Yakovlev et al.,
2005, under review): 5.6% of all test presentations led to FPs.
Of these, 4.9% are due to the second mechanism, i.e. the image
remained in memory from previous trials. The remaining 0.7%
are due to random fluctuations. In Figure 8 we show for three
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FIGURE 6 | ABBA trials. Left panel: distribution of fraction of active
selective units for the sample (first) image at each stage of the trial
(100 simulations). Each stage shows a pair of boxplots. The first shows the
resulting activity after the network is run in the high noise regime pfire = 0.45.
The second shows the resulting activity after the low noise regime

pfire,high = 0.9, Right panel: fraction of selective units active on intermediate
test images. First boxplot show the initial activity upon presentation. The
second boxplot shows the activity after running the network in the high noise
regime starting with the high activity level of the sample image. In contrast to
the DMS case, the increased inhibition causes most test images to die out.

FIGURE 7 | DMMS performance. Left panel: each curve corresponds to a
trial of different length, i.e., number of samples before the match, as
shown in the legend. Success rates as a function of the location of the
sample in the trial: the later the sample position and the shorter the trial
length, the shorter the lag between sample and repeat, and the less time
for the attractor to dissipate, so the better the performance. Right panel:

each curve corresponds to a fixed lag between sample and repeat, as a
function of trial length. Unexpectedly, the longer the trial, the better the
performance, perhaps due to growing expectation—and vigilance—for a
match, modeled by gradually decreasing inhibition. Note that the data
points in the two panels are the same; they are just connected differently
to produce different curves.

different values of pfire (0.4, 0.45, 0.5) the detection rates as in
Figure 7, and the false positive rates due to repetition of patterns
from 1 to 6 trials back. Compare the plots for pfire = 0.45 to data
in Figure 2 in Yakovlev et al. (under review).

REPEAT DETECTION, NOVEL IMAGES
A lingering puzzle in the context of DMS experiments is suc-
cessful performance with entirely novel stimuli (Yakovlev et al.,
2008, under review). It is unlikely that novel stimuli are learned to
the point that they can sustain delayed activity in working mem-
ory. Indeed it was already noticed that neurons do not exhibit
delay activity with novel stimuli (Fuster and Alexander, 1971).
This implies that a different readout mechanism is detecting the
repetition.

Readout mechanism with novel images
The images are presented once and the synaptic modifications are
unable to sustain delay activity. Nonetheless, some trace is present

in the synaptic matrix and, when presented again, the stimulus
yields higher activity at the end of the contrast period, relative to
images that were never seen before. Detecting this higher activity
allows us to stably identify repeats over vast numbers of images
presented only once. That is, having seen thousands of images,
and not seen thousands more, we (and monkeys) can identify a
currently presented image as belonging to the seen-once or never-
seen group. It has been demonstrated (Romani et al., 2008) that
with values of q+ on the order of 0.1–0.3, and depression rate
q− = αfq+ set to its optimal level, once-seen images are not sus-
tained in delay activity, however, repeat detection is possible over
many thousands of images. Success probability, based on the pro-
posed readout mechanism, is thus constant over many tens if
not hundreds of images, consistent with behavioral observations
(Yakovlev et al., 2008), and in contrast to performance with a
fixed set of images. Attractor working memory is thus a liabil-
ity for simple repeat detection. However, anything more complex,
such as the ABBA task would be impossible with novel images,
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FIGURE 8 | Detection rates and false positives for different levels of pfire. Left: pfire = 0.4, Middle: pfire = 0.45, Right: pfire = 0.5. Top: detection rates,
Bottom: false positive probability for repetition of a pattern from 1 to 6 trials back.

FIGURE 9 | False positives for novel images. False positive rates as a function of age in past trials. Blue: previous trial. Red: two trials back. Horizontal lines
correspond to means. (A) 20, (B) 30, (C) 40 random image presentations in the Inter-trial period.

as there is no way to suppress the effect of the repeat of the B
sample.

Comparison of readout mechanisms
The readout mechanism proposed for novel images differs from
that of a fixed set of images that trigger reverberating activity of
an attractor. The signal telling the system which readout to use
could be presence or absence of network activity prior to stimulus
presentation. The former means presence of images in working
memory and readout is based on activity increment (small incre-
ment means repeat); the latter means no images are in working
memory and readout is based on absolute activity level, (greater
activity indicates repeat).

Reset mechanism
In Figure 9 we show the impact of different numbers of random
image pseudo-presentations (20, 30, 40) in the inter-trial period
and a very high depression rate of q− = 1. In all three experi-
ments the mean activity of a previously presented image after
the end of the contrast period, was around 16 (with SD = 4)
selective neurons, compared to the average of 45 at noise level
pfire = 0.45. The mean activity of an image that was never seen
before was 8 with the same SD. We set the absolute readout
threshold to provide just over 90% detection rate so that τabs =
11. This threshold yields the false positives shown in Figure 6
for the three experiments. As the number of inter-trial pseudo-
presentations of random images increases, the synaptic trace

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 408 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Amit et al. Modeling DMS

of the once seen images decreases, as does the FP rate. Panel
9(C), with 40 inter-trial presentations yields FP rates similar to
those described behaviorally (Romani et al., 2008; Yakovlev et al.,
2008).

SWITCHING PROTOCOLS
Other experiments provide further challenges for modeling DMS
(Yakovlev et al., under review). Monkeys are transitioned from
one protocol to another and behavior is recorded. In Experiment
I, monkeys B and T start out with the fixed images protocol,
achieve performance similar to that presented in section DMMS
Trials, Fixed Images, and are then transitioned in Experiment II to
novel images. This is compared to monkeys D and L who start out
with novel images and are transitioned to fixed images. Monkeys
BT learn to control FPs in Experiment I, since they are penalized
for declaring repeats that aren’t from the same trial. Monkeys DL
do not learn about FPs because all images are novel. In a following
test stage, an occasional “catch” image is inserted, which is a repeat
of a novel image from a previous trial. With high probability this
image triggers a response from the monkey. Indeed FP rates for
monkeys in group DL are at 90% for images from the preceding
trial.

When monkeys BT are transitioned to novel images the FP
rate drops rather quickly to levels comparable with Experiment
I. This is in contrast to monkeys DL who start out with novel
images (Yakovlev et al., under review). Furthermore, monkeys
BT exhibit an increase in detection rates originally observed with
monkeys DL for novel images. A possible explanation is that mon-
keys BT have already developed the strategy for avoiding FPs
(section Reset mechanism and false positives) and only need to
increase depression rates to eliminate synaptic traces, as opposed
to the easier task of eliminating sustained activity. Furthermore,
as no sustained activity is present, the monkey uses absolute read-
out. With these modifications network performance matches that
shown in the experiments.

On the other hand, monkeys DL encounter the challenge of
FPs for the first time in Experiment II. Images are gradually
learned together with the reset mechanism, and the fixed images
protocol is applied.

DISCUSSION
Recognition memory is widely believed to be composed of at
least two functionally distinct processes: recollection and famil-
iarity. Recollection is defined as the ability to accurately describe
an event or object that was encountered before. Familiarity, on
the other hand, only involves signaling that an event was encoun-
tered in the past, but without the ability to recall any details.
The relation between recollection and familiarity is unclear.
According to the dual-process view, recollection and familiarity
are based on different neurological substrates (Mandler, 1980;
Jacoby et al., 1993; Yonelinas, 1994; Brown and Aggleton, 2001)
and different networks (Bogacz et al., 1999, 2001). In contrast,
single-process models assume that recollection and familiarity
reflect strong and weak memories, respectively, and that these
two processes differ only quantitatively (Rotello et al., 2005;
Squire et al., 2007; Wixted, 2007; Cohen et al., 2008). In pro-
viding a unified model for DMS tasks, in a single network,

for both novel and fixed images, we are promoting the single-
process model, where the difference between these two types
of memory stems directly from the number of presentations
of the images during learning. An image presented only once
leaves a weak synaptic trace and cannot sustain recurrent activ-
ity, as opposed to an image presented several times. Both types
of image can be simultaneously stored in the network. The dif-
ference in the strength of the synaptic trace has a major impact
on the dynamics of the network upon presentation of the image
in the testing stage. As a result, the readout mechanism must
be different. For familiarity detection with novel images that do
not reside in attractor working memory, we use the absolute
network activity, for recollection with fixed images we use the
increment in activity, since the image is assumed to be currently
in working memory. An important advantage of this model-
ing approach is parsimony—one mechanism can account for
multiple phenomena.

The ability to learn, forget, and maintain recurrent activity in
binary networks with simple Hebbian learning offers a rich com-
putational setting to explore a range of experimental phenomena.
Although the temporal evolution of neural responses is absent,
the ensemble behavior of these discrete networks is similar to
those with more elaborate neural modeling (Brunel and Wang,
2001; Amit et al., 2003; Romani et al., 2008; Yakovlev et al., 2008).
On the other hand, since the simulations are fast and can be per-
formed for very large networks on a simple PC, this is an exciting
test bed for many interesting scenarios.

Our model offers a number of predictions that can be experi-
mentally tested. We mention a few:

• Noise modulation. This was a necessary component for keep-
ing the first stimulus in memory despite the initiation of
multiple distractors throughout the trial.

• Modulation of inhibition. We found it necessary to increase
inhibition in ABBA trials to remove distractors that may repeat.
Can inhibition levels be tested and compared for a monkey
trained initially on a DMS task and then transitioned to an
ABBA task?

• Increase in depression rates. This was required to reset the
synaptic trace in the repeat detection for novel images. Can this
be measured together with its effect on memory retention?

• Random image presentation for reset. Is there evidence of
higher firing activity between trials?

• Upon a third transition of monkeys DL from novel back to
fixed, the network may maintain a high depression rate and
have difficulties learning the new fixed set. Detection perfor-
mance would then be at the higher level observed with novel
images.

The transition from one protocol to another is an interest-
ing framework for testing our hypotheses regarding particular
changes in network parameters through careful analysis of behav-
ior and electrophysiology during the transition.
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