
METHODS ARTICLE
published: 02 September 2013

doi: 10.3389/fnhum.2013.00520

Decreased small-world functional network connectivity and
clustering across resting state networks in schizophrenia:
an fMRI classification tutorial
Ariana Anderson* and Mark S. Cohen

Department of Psychiatry and Biobehavioral Sciences, Center for Cognitive Neuroscience, University of California Los Angeles, Los Angeles, CA, USA

Edited by:

Yong He, Beijing Normal University,
China

Reviewed by:

Chaogan Yan, The Nathan Kline
Institute for Psychiatric Research,
USA
Pierre Lafaye De Micheaux,
Université de Montréal, Canada

*Correspondence:

Ariana Anderson, Department of
Psychiatry and Biobehavioral
Sciences, Center for Cognitive
Neuroscience, University of
California Los Angeles,
760 Westwood Plaza, Suite 17-369,
Los Angeles, CA 90095, USA
e-mail: ariana82@ucla.edu

Functional network connectivity (FNC) is a method of analyzing the temporal relationship
of anatomical brain components, comparing the synchronicity between patient groups or
conditions. We use functional-connectivity measures between independent components
to classify between Schizophrenia patients and healthy controls during resting-state.
Connectivity is measured using a variety of graph-theoretic connectivity measures such
as graph density, average path length, and small-worldness. The Schizophrenia patients
showed significantly less clustering (transitivity) among components than healthy controls
(p < 0.05, corrected) with networks less likely to be connected, and also showed lower
small-world connectivity than healthy controls. Using only these connectivity measures,
an SVM classifier (without parameter tuning) could discriminate between Schizophrenia
patients and healthy controls with 65% accuracy, compared to 51% chance. This implies
that the global functional connectivity between resting-state networks is altered in
Schizophrenia, with networks more likely to be disconnected and behave dissimilarly
for diseased patients. We present this research finding as a tutorial using the publicly
available COBRE dataset of 146 Schizophrenia patients and healthy controls, provided as
part of the 1000 Functional Connectomes Project. We demonstrate preprocessing, using
independent component analysis (ICA) to nominate networks, computing graph-theoretic
connectivity measures, and finally using these connectivity measures to either classify
between patient groups or assess between-group differences using formal hypothesis
testing. All necessary code is provided for both running command-line FSL preprocessing,
and for computing all statistical measures and SVM classification within R. Collectively,
this work presents not just findings of diminished FNC among resting-state networks in
Schizophrenia, but also a practical connectivity tutorial.
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1. INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) is a four-
dimensional medical imaging modality that captures changes in
blood oxygenation over time, an indirect measure of neuronal
activation. Because fMRI scans are large, they are stored in spe-
cialized formats that make their direct access and manipulation
difficult. Statistical analyses are therefore limited to the software
the neuroscientist is able to use; pre-made routines are available
to perform general analyses such as linear models, but the tech-
niques and consequently the hypotheses that can be evaluated by
them are limited and inflexible. Analyses are dependent upon the
ability to create programs that not only can access directly subsets
of the data, but also can be tailored to unique statistical analy-
sis based on a priori hypotheses of the underlying neurological
disorders.

An increasing focus is the classification of either mental dis-
orders or states based on the fMRI signal variations within
and among brain networks. One method of accomplishing this
is through measurements of functional network connectivity
(FNC), which infers differences in temporal brain connectivity

that may depend on a disease or mental state (Biswal et al., 1995;
van de Ven et al., 2004). FNC investigates temporal connectivity
differences among either anatomical brain regions or functionally
defined networks. Herein, we present a tutorial to perform FNC
in R which can be altered easily for a unique hypothesis or dataset
(Tabelow et al., 2011; R Development Core Team, 2012).

The methods we discuss here closely follows those pre-
sented in Anderson et al. (2010), which describes in full
the motivation for, and findings of, using brain connectiv-
ity measures to classify between Schizophrenia patients and
normal controls during rest. We demonstrate this procedure
on a recently released dataset, publicly available for download
at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html and
studied previously in Calhoun et al. (2011), Hanlon et al. (2011),
Mayer et al. (2012). This dataset, which we will refer to as the
COBRE data, consists of 72 patients with Schizophrenia and 74
healthy controls, ranging in age from 18 to 65 years old. A full
demographic table is provided in Table 1.

The code contained in this article is available through the
Neuroimaging Informatics Tools and Resources Clearinghouse
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Table 1 | COBRE FCON-1000 data demographics.

N Age (SD) % Female % Right-Handed

Schizophrenia 72 38.16 (13.89) 0.19 0.83

Patients 74 35.82 (11.58) 0.31 0.96

(NITRC) at http://www.nitrc.org/projects/fmriclassify/. NITRC
is an NIH-sponsored project to categorize, compare, rate and
distribute software and data, created by and for neuroimaging
researchers. It contains both stand-alone programs and code snip-
pets such as this project. Its usefulness is quite evident given
the redundancies in research, where many labs develop indepen-
dently routines to perform similar analysis techniques such as
functional connectivity analysis. It is also useful for determin-
ing reproducibility, as users can test another’s analysis on their
own data to see if similar results are reached. This is particularly
appropriate in fMRI analysis, where conclusions are often reached
on quite small sample sizes since data are costly and difficult to
obtain. The reader is encouraged to download and modify this
code snippet from the NITRC website.

We demonstrate this analysis using preprocessing in FSL,
which performs brain extraction [bet (Smith, 2002)] to remove
non-brain tissue, motion-correction mcflirt (Jenkinson et al.,
2002) to correct for subject movement within the scan, and
ICA using melodic (Smith et al., 2004) with automatic com-
ponent estimation. A full FSL tutorial is available at http://
http://fsl.fmrib.ox.ac.uk/fslcourse/. We use independent compo-
nent analysis (ICA) to identify networks within each patient and
calculate properties of their temporal-connectivity, demonstrat-
ing this within FSL, implemented as “MELODIC”, and within R.
Using packages vegan (Oksanen et al., 2011) and AnalyzeFMRI
(Bordier et al., 2009), we extract possible neurological networks
and define distances among them as functional connectivity mea-
sures. This distance matrix is then converted into a graph struc-
ture, and properties of these connectivity graphs are computed
using igraph (Csardi and Nepusz, 2006). We use this connec-
tivity for classification with the Support Vector Machines (SVM)
algorithm in the package e1071 (Dimitriadou et al., 2010).

Because this analysis is heavily computational, we also demon-
strate how to perform this same process in parallel using the
package parallel (R Development Core Team, 2012). The ability
to code this in R with minimal function calls, or changing of the
original code, allows users to implement and test computation-
ally intensive analyses efficiently and simply. Parallel computing
is a specialized topic, and many researchers are uninterested in
learning methods such as MPI to implement their analyses, as
troubleshooting can often take as long as the time saved by run-
ning in parallel. Because of this, we demonstrate calling fork
clusters within R to perform parallel analysis, without making
major revisions to the code already created to run in serial. This
supplementary section is listed in the Appendix. We additionally
demonstrate in the Appendix using R to access fMRI data, includ-
ing how to perform ICA using the package AnalyzefMRI (Bordier
et al., 2009).

We begin with a description of our approach, and follow with
an applications section where we provide and discuss the code

necessary to accomplish these methods. In this tutorial we assume
the reader has no specific knowledge of R, but does have gen-
eral knowledge of basic programming techniques. An R tutorial is
available at http://cran.r-project.org/doc/manuals/R-intro.html.
We hard-code as little as possible to ensure minimal changes
for a new users’ analysis. As this analysis focuses on connec-
tivity within subjects, spatial alignment across subjects is not
necessary, although procedures such as motion correction and
temporal filtering may be performed beforehand if desired. The
AnalyzeFMRI, vegan, igraph, and e1071 packages are used along
with their dependencies, and must be pre-installed. These pack-
ages are available at http://cran.r-project.org/web/packages. The
package parallel is a base package installed already within the
latest R release. As the bulk of this code is constructed to clas-
sify between distance matrices, these routines can be adapted
easily for a region of interest (ROI) analysis where distances
are sought not between independent components, but instead
between ROIs. More generally, these methods are applicable to
longitudinal data analysis where the temporal correlations among
units are indicative of a state or condition. Collectively, this arti-
cle demonstrates code that can be adapted easily to new data for
determining if functional connectivity differences exist between
groups of fMRI scans, and is meant to serve as a bridge between
neuroscientists interested in performing their own connectiv-
ity/classification analysis, and statisticians interested in seeing
these methods applied to real-world data.

2. BACKGROUND
2.1. OVERVIEW OF fMRI
Function magnetic resonance imaging is a modality that mea-
sures brain activity over time. The fMRI Blood Oxygen Level
Dependent (BOLD) signal is an indirect reflection of neuronal
activity captured during an fMRI scan, and analysis is per-
formed under the assumption that neuronal activity coincides
with increased blood flow. The blood flow increase in response to
neuronal activity is known as the hemodynamic response (Kim
et al., 1999). When activation occurs within a region, oxygenated
hemoglobin flows to that area to increase the local oxygen con-
centration. Deoxyhemoglobin has a faster MR signal decay rate
(T2∗) than oxyhemoglobin (Cohen and Bookheimer, 1994), so
the signal from well-oxygenated regions results in a stronger MR
signal intensity than areas lacking the increased blood flow. Areas
with increased neuronal activity therefore give off a greater MRI
signal, which indicates potential neural activity.

The four-dimensional fMRI picture can be used to discover
anatomical regions specific to certain tasks such as language pro-
cessing (Bookheimer, 2002), face recognition (Gauthier et al.,
1999), or even to diagnose regional impairment specific to cogni-
tive disorders such as Alzheimers disease, traumatic brain injury
(TBI), or schizophrenia (Ford et al., 2003; Anderson et al., 2010).
Such studies typically analyze regional blood flow to establish
areas active during a task, or to compare regional blood oxygena-
tion levels between two groups, such as Alzheimer’s patients and
normal controls, to find localized variation that could be the cause
of cognitive impairment.

FNC is used to test the hypotheses that synchronicity across
anatomically-defined brain regions or functionally-hypothesized
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networks are different, because of age, disease, or the task being
performed. Connectivity differences are thought to underly many
disorders such as autism (Koshino et al., 2005) and schizophre-

been used to explore directed influences between neuronal pop-
ulations in fMRI data (Roebroeck et al., 2005) using Granger
causality, and to examine differences between schizophrenia
patients compared to normal controls (Garrity et al., 2007; Jafri
et al., 2008; Anderson et al., 2010; Yu et al., 2011) using cross-
correlation measures. Within Schizophrenia, disrupted small-
world properties were found compared to healthy controls among
90 cortical and subcortical regions (Liu et al., 2008). Increased
regional functional connectivity in the 0.06–0.125 Hz interval
were found in Schizophrenia, along with decreased strength by
Bassett et al. (2008). Within the default mode network, abnor-
mally high functional connectivity and altered temporal fre-
quency have been found (Garrity et al., 2007; Whitfield-Gabrieli
et al., 2009). Schizophrenia patients had higher correlations
among seven selected resting-state networks than healthy controls
(Jafri et al., 2008), and different topological measures were found
between resting-state networks identified by group-ICA (Yu et al.,
2011). Collectively, these works and others propose that within
Schizophrenia, functional connectivity measures can be used to
identify traits that are characteristic of the disease itself.

Because connectivity depends on how networks or regions
are defined, and how the graphical properties of regions may be
measured (Toppi et al., 2012; Zalesky et al., 2012), it is vital for
researchers to be able to tailor connectivity analysis to their own
data, to allow pre-existing knowledge or certain hypothesis to be
tested. For example, Sato et al. (2010), implemented functional
connectivity analysis among regions of interest, while Chu et al.
(2011), analyzed connectivity among individual voxels. Similarly,
Yu et al. (2011) analyzed FNC among group-ICA components,
while we analyzed FNC among within-subject ICA components
(Anderson et al., 2010).

2.2. fMRI CLASSIFICATION
The primary challenge of fMRI classification is the abundance of
observations within a single scan, many of which are correlated
strongly both in space and time. Although many of these voxels
will be empty, they are not systematically empty across subjects
as a result of differences in brain size and shape. Because many of
these datapoints are redundant, dimension reduction techniques
are used by creating statistical summaries of individual voxels
(t-tests, correlation tests), isolating “regions of interests” (ROI)
or neural hotspots on which discrimination could be performed,
or implementing classical dimension reduction methods such as
principal components analysis (PCA) to decompose the entire
scan into orthogonal signal sources over time. Newer methods
such as ICA (Hyvärinen and Oja, 2000) and Sparse Component
Analysis (Georgiev et al., 2005) mimic the approach of PCA into
decomposing the scan into a limited number of spatial networks
operating over time, but alternatively impose assumptions such
as statistical independence or sparsity to estimate the underlying
signal sources.

Once the dimension reduction and feature extraction steps
are complete, the reduced data are fed into classifiers such as

SVM, random forests, and boosting algorithms. These classi-
fication techniques have been used previously to discriminate
between Positron Emission Tomography (PET) scans of HIV
positive and healthy individuals (Liow et al., 2000), to detect
deceptive individuals within a group using fMRI (Lee et al., 2002;
Fan et al., 2006), to separate drug-addicted patients from healthy
controls using fMRI scans (Zhang and Samaras, 2005), and to
discriminate between patients with Alzheimer’s, schizophrenia,
and TBI and healthy controls using fMRI scans (Ford et al.,
2003).

In “leave one out” cross-validation, these classifiers often
achieve around 90% accuracy, but because methods are con-
structed uniquely for each dataset they are difficult to validate
across different patient groups, or even within the same patient
group but with a new population. These studies are often per-
formed on excessively small samples (n ≈ 20). The reproducibil-
ity of such findings are often unverified, leaving open the criticism
that superior classification accuracy is due to mere chance or
model-mining, instead of underlying functional or anatomical
differences between patient groups. It can be difficult to pool data
taken across laboratories, because the scan parameters, resolu-
tion, and imaging sequences would have to be nearly equivalent.
Because of this, the ability to evaluate models on different datasets
would increase confidence in results, since the models acting on
the same patient group should produce identical results, holding
the scan environment constant.

2.3. R FOR fMRI
The R platform has important benefits for fMRI analyses because
of its availability and functionality. R is free and open source, so
licensing costs for research are not prohibitive and any researcher
is able to install it easily. Because of this, sharing code to vali-
date methods and reproduce findings is quite simple. R contains
thousands of packages that can perform cutting-edge statistical
and machine learning techniques; analyses and hypothesis are not
limited by the available models. R allows the user direct con-
tact with their data, with routines for fMRI that can efficiently
extract single timeseries, volumes, or planes. This is of particu-
lar value because fMRI scans are encoded in specialized formats
(ANALYZE or NIfTI) that are otherwise unaccessible. The ability
to access directly the data combined with the high-level statistical
methods available within the general R framework allows the user
to construct his own methods unique to his hypothesis.

Finally, R contains packages to implement specifically fMRI
analysis. There are routines pre-built into R for fMRI that can
perform methods such as mixed effects analysis 3dMEMA (Chen
et al., 2010, 2012) to estimate the effect, which is implemented
indirectly in R by sourcing through AFNI (http://afni.nimh.

nih.gov/sscc/gangc/MEMA.html). The bread and butter of fMRI
analysis, the general linear models (GLM) can be implemented
in the package fmri (Polzehl and Tabelow, 2007), Bayesian multi-
level modeling analysis in cudaBayesreg (Ferreira da Silva, 2011)
and Granger Causality and structural equation modeling in
FIAR (Roelstraete and Rosseel, 2011). Functional connectivity
analysis also can be performed using the package brainwaver,
where ROIs are analyzed for connectivity using wavelet analysis,
and connections are trimmed with a hypothesis test (Achard
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et al., 2006). We refer the reader to a presentation at the use-
R! 2010 conference for a description of packages and options
in R for fMRI analyses, at http://www.r-project.org/conferences/
useR-2010/slides/Chen+Saad+Cox.pdf. Some packages require
installing the most recent versions of gfortran and tcltk
available for MacOS at http://cran.r-project.org/bin/macosx/
tools/.

3. METHODS
In this section, we cover the specific methods used for FNC
and fMRI classification presented in this paper. We first use the
ICA dimension-reduction technique to decompose each scan into
a set of spatial brain networks being modulated over time by
associated timecourses. We then create functional connectivity
matrices, by measuring the longitudinal correlations of the time-
courses for each network. Next, each matrix is converted into a
graph structure, and the connectivity properties of each graph are
measured. Finally, these connectivity properties are used as fea-
tures for an SVM classifier. We additionally use a t-test to evaluate
whether the small-world connectivity of ICA networks is different
between Schizophrenia patients and healthy controls. A flowchart
depicting this process is shown in Figure 1.

3.1. ICA FOR fMRI
As fMRI is composed of recordings that are highly-redundant in
both space and time, it is desirable to extract meaningful features
prior to classification. This serves two purposes. Firstly, it lowers
the noise by essentially tossing out signals that have no common-
ality with other signals. This is based on the assumption that noise
is independent across observations; a signal seen only in a single
location is more likely to be noise than a signal observed con-
sistently throughout the brain. Secondly, reducing the scan to a
manageable number of consistent signals reduces the tendency

FIGURE 1 | Functional network connectivity (FNC) and classification:

the first step in FNC is to define the scale of connectivity to observe.

In this case, we use whole-brain networks obtained from ICA, but this
analysis also can be implemented on the region-of-interest or the voxel
scale. The connectivity is defined and measured to identify differences
between either groups or conditions.

of overfitting in the classification process. The classification com-
plexity is a function of the number of dimensions (features).

Although there are many methods of extracting common sig-
nals across the brain, ICA in particular has gained popularity
in fMRI. It can isolate networks corresponding to neurological
activity, as well as motion artifacts, where signals that operate
most strongly on the peripheral regions along the scalp are taken
to be motion. ICA has been validated through bootstrapping
and clustering methods, identifying components that exist across
subjects and scans that correspond to functionally identifiable
brain networks (McKeown et al., 2003; Anderson et al., 2011).
In this implementation we run ICA within subjects, rather than
implementing a group-ICA which would have identified common
networks across all subjects. This is based upon the hypothe-
sis that there are a different set of networks operating within
Schizophrenia, and assuming that the same exact networks oper-
ate within both patient groups would dampen any between-group
differences.

Under the hypothesis that the activity of the brain is con-
structed of anatomical networks acting together to produce
meaningful psychobehavioral cognitive states, the aggregate activ-
ity is decomposed into subcomponents in ICA. Prior to this, space
is “unrolled” where the four dimensional scan (3 dimensions of
space, 1 of time) are transformed into a matrix of dimension space
by time, so that a scan array of dimension (X, Y, Z, T) would
become a matrix of dimension (T, X∗Y∗Z). An fMRI scan of time
length T and spatial dimension S and can be expressed as a lin-
ear combination of M < T components and the corresponding
timeseries:

Xts =
M∑

μ= 1

AtμCμs

where Xts represents the raw scan intensity at timepoint t ≤ T and
spatial location s ≤ S, Atμ is the amplitude of component μ at
time t, and Cμs is the spatial magnitude for component μ at spa-
tial location s. An example of a spatial map output by R is shown
in Figure 2.

The components c are estimated to be statistically indepen-
dent as possible by solving instead the inverse problem via the
FAST-ICA algorithm. To estimate the signal sources c in x = Ac,
the inverse problem of y = w′x is solved where w is a row of
A−1, or the inverse of the mixing matrix. Then y = w′x ⇒ y =
w′Ac. Substituting z = A′w, y = z′c. W is optimized such that
y = w′x = z′c is as non-Gaussian as possible, leading to even
less Gaussian sources c because of the Central Limit Theorem.
Maximizing the kurtosis, minimizing the entropy, and maximiz-
ing the negentropy over w are all methods of finding the least
Gaussian y = w′x = z′c.

Negentropy = J(y) = H(yGauss) − H(y)

H(y) = −
∑

i

P(y = ai)log[P(y = ai)]

In the continuous case this becomes

H(y) = −
∫

f (y)log(f (y dy

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 520 | 4

))

http://www.r-project.org/conferences/useR-2010/slides/Chen+Saad+Cox.pdf
http://www.r-project.org/conferences/useR-2010/slides/Chen+Saad+Cox.pdf
http://cran.r-project.org/bin/macosx/tools/
http://cran.r-project.org/bin/macosx/tools/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Anderson and Cohen Small-world fMRI analysis and classification in schizophrenia

FIGURE 2 | Spatial map produced by independent components analysis within R. Each component is a set of spatially weighted regions modulated by
the time course. The total longitudinal contribution of a component to the activity observed is the spatial map multiplied by the timecourse.

By default R and FSL use FAST-ICA. The default parameter set-
ting in R is for parallel extraction, and also includes temporal
normalization, 1000 maximum iterations for the algorithm using
negentropy: G(u) = 1

α
log

[
cosh(αu)

]
where α ∈ [1, 2] is the con-

stant used for the negentropy approximation. An example of a
ICA spatial map is shown in Figure 2.

We implement here spatial ICA the only option in FSL, which
sought statistical independence of the spatial maps. We alterna-
tively could have implemented temporal ICA, which would have
maximized independence of the time-courses. A presentation of
this using the AnalyzeFMRI, and a demonstration of how to
implement temporal ICA within R using the AnalyzeFMRI is
provided in (Bordier et al., 2011). We allowed the number of com-
ponents to be determined within the data following (Allen et al.,
2011).

3.2. CREATING FUNCTIONAL CONNECTIVITY MATRICES
A temporal interaction plot for a schizophrenia patient and a nor-
mal control is shown in Figure 3, showing the joint longitudinal
activity by two components within each subject, (Aμ1 , Aμ2 ). Since
graphical interpretation is subjective, a fixed measure of this joint
activity is established by computing a correlation-based distance

metric. The distance function is a transformation of the maximal
absolute cross-correlation between two timeseries. This computa-
tion is done for each possible pair of components within a subject,
thus transforming the original fMRI scan into a matrix. This is a
measure of the functional connectivity between components for a
given subject, but is only one of many possible metrics that can be
changed by the end user within this tutorial. This is but one exam-
ple where R allows the user to change the methods according to
the hypothesis and data being evaluated.

The cross-correlation function (CCF) between these timeseries
is calculated over a range of temporal lags. We subtract the maxi-
mal absolute cross-correlation from 1 to create a pseudo distance
measure, d(Aμi , Aμj), given by

d(Aμi , Aμj ) = 1 − max[∣∣CCF(Aμi , Aμj , l)
∣∣]

where

CCF(Aμi , Aμj , l) = E[(aμi,t+l − Aμi)(aμj,t − Aμj)]√
E[(aμi,t − Aμi )

2]E[(aμj,t − Aμj)
2]

(1)
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FIGURE 3 | Temporal activity plot of two primary components within a

subject, depicting the relationship between two components over

time. This phase space transition between pairs of components are
measured for the functional connectivity analysis, to calculate the similarity
of the components’ behavior.

FIGURE 4 | Normalized distance matrices of two subjects, where rows

and columns correspond to components within a subject and the

intensity represents the functional connectivity between those

components.

where l is the time lag separating the two timeseries Aμi

and Aμj , and Aμi is the mean of the entire timeseries Aμi =
(aμi,1, aμi,2, . . . , aμi,T). The timeseries are calculated at lags
ranging from 0 to 3 points (6 seconds), as higher lags results
in fewer time points to calculate the correlation and a more
noisy estimate, and also lacks biological plausibility given our cur-
rent understanding of neurological coupling. Within R, the lag
parameter is specified using lag.max.

The matrices by themselves are uninterpretable, since they
are merely representations of a set of connected objects. An
example of this is shown in Figure 4. Moreover, the rows and
columns of these matrices, representing unique independent
components within subjects, are themselves not comparable
across subjects. Our ultimate goal is to measure this connectiv-
ity; not only how closely connected they are, but also how it
changes with respect to patient diagnosis. For example, do all
networks interact with all other networks? Are there subgraphs
that are fragmented from the original graph? Does the number
of steps to travel among nodes differ? Are some graphs more
densely connected than others? To answer these questions, we
must convert the connectivity matrices to graph objects, so we
can use R packages designed purposefully for graph connectivity
analysis.

3.3. GRAPH CREATION AND MEASUREMENT
Each matrix represents a structure of completely connected points
on a high-dimensional manifold, where each point is an indepen-
dent component and the distance between two points measures
the similarity of their temporal activity. Every point is linked to
every other point regardless of similarity. To create graphs out
of the connectivity matrices, we prune weak connections among
points and then embed the simplified structure into a lower-
dimensional space using the ISOMAP procedure (Tenenbaum
et al., 2000). Then, we measure the graph-theoretic connectivity
to summarize the connections between resting-state networks.

3.3.1. Graph creation
Conceptually, any set of points contained in a distance matrix
of dimension d can be embedded into a space of dimension
d − 1 without any information loss (preserving all the distances
between points). Usually such a transformation assumes the space
on which the points lie is linear. This, however, may not be
the case. Consider if you were trying to measure the distance
from Sacramento, California to Shanghai, China, using only the
(x, y, z) grid coordinates of each city. The linear distance between
the cities, while calculable, would assume that the correct path
from Sacramento to Shanghai went through the core of the earth.
Instead, a more reasonable way to measure the distance would be
to travel along the flight-paths, from Sacramento to Los Angeles,
Los Angeles to Tokyo, and finally from Tokyo to Shanghai. This
method of measuring distance is known as the geodesic distance,
or path-distance among points. It assumes that travel among dis-
tant points usually requires routing through intermediate nodes,
as shown in Figure 5. It is this concept we will now use to sever
weak connections and create graphs out of the matrices.

We transform each matrix into a graph structure using an ini-
tial geodesic distance calculation implemented in the function
isomap in the library vegan. Weak ties among points are then
severed; points can be connected if they are within a certain dis-
tance, ε, of each other (|x − y| ≤ ε), or they can be connected
if they are within a set of k-nearest neighbors. The distances
are recomputed after pruning, where the distance between con-
nected points is the same as it was originally, but the new distance
between unconnected points is computed as the shortest path
through intermediary connecting nodes. Combined with multi-
dimensional scaling to obtain a coordinate system for embedding,
this procedure is called ISOMAP (Tenenbaum et al., 2000). An
example of such a graph created by a geodesic distance transfor-
mation and a multidimensional scaling embedding is shown in
Figure 6.

The two definitions of connectivity (nearest-neighbor vs. ε-
distance) can lead to different results; establishing connectivity
by ε-distance, also called edge density (sparsity), may lead to the
graph becoming fragmented, with some portions of the graph
having no connections, direct or indirect, to other subgraphs.
This would be caused by some point(s) being too distant to oth-
ers to maintain a connection with the main graph. This is an
instance where the a priori knowledge about the disease may
inform the parameter choices of the methods. In diseases such
as Schizophrenia or autism, a hypothesis of disconnectivity may
be tested directly by computing, for example, the fragmentation
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FIGURE 5 | Geodesic distance calculation. The distance between A and
C is calculated as the manifold path distance from A to B to C, instead of
the direct path from A to C. This eliminates the assumption that the points
occupy a linear space when using a Euclidean distance.

FIGURE 6 | Graphs representing connectivity of two subjects, obtained

by converting the distance matrices for each subject into a structure

where each node represents a component, and the distance between

nodes represents the connectivity or similarity of their behaviors.

Nodes close together demonstrate a higher functional connectivity
measure. This map is obtained by recalculating the connectivity matrices
using geodesic distances, and then embedding the points in a two
dimensional space for plotting. Dim 1 and Dim 2 represent the weightings
on the two primary dimensions, similar to multi-dimensional scaling.

rate of the patients versus controls. By allowing the user to choose
these parameters within R, specific theories of neuropathology
may be tested.

We threshold points as being connected using a modified near-
est neighbor method. We select the k-nearest neighbors of all
nodes to be connected by defining k as 10% of total compo-
nents for that subject, or 2, whichever is greater. This enforces the
graph be completely connected, unlike the edge density method.
We select this parameter choice because we are using weighted
graphs; edge density methods typically binarize the adjacency
matrix by assigning weights above a given threshold a unit value,
and a zero value to all below such as in Rubinov and Sporns
(2010). Since we are using weighted graphs, we allow sufficiently

“close” points to retain their given weights, and prune all other
points which are not sufficiently close. This parameter could be
investigated further, but because we are using these metrics for
performing classification then optimizing the adjacency pruning
method would lead to biased estimates of the accuracy.

3.3.2. Graph measurement
At this point, each brain scan has been transformed into a graph-
ical structure, where each node represents a brain network and
the connectivity between nodes represents the similarity in the
activity of these networks. Each graph can then be summarized
by its connectivity properties. There are many such measure-
ments available within R within the package igraph. A tutorial by
Gabor Csardi on Network Analysis with the package igraph is at
http://igraph.sourceforge.net/igraphbook/. A description of net-
work measures of brain connectivity is available at Rubinov and
Sporns (2010), which describes in detail the graph-theoretic mea-
sures discussed only briefly here, and additionally describes other
connectivity measures such as modularity. An additional connec-
tivity measure which we used in a previous study to discriminate
between Schizophrenia patients and healthy controls (Anderson
et al., 2010) is the “eigenvector centrality,” which can be computed
here using the command eigen(d)$values.

Creating graphs out of each matrix using a non-linear dis-
tance metric such as the geodesic distance not only allows for a
more efficient low-dimensional projection of the matrix, but also
encourages the graph to be connected more efficiently by trim-
ming poor connections while maintaining stronger ones. This
fragmentation allows us to determine how many strong connec-
tions are within the subject, how many subnetworks (subgraphs)
exist, what the sizes of these subnetworks are, and how effi-
ciently the points are connected overall. These properties, all
interrelated, give quantitative measurements of the connectivity
that can be used to fingerprint the networking differences asso-
ciated with different disorders. These individual metrics can be
compared directly between groups if multiple comparisons are
adjusted for.

Some of these available measures within igraph are:

• Average path length: average path length between all connected
vertices.

• Clique number: number of elements in the largest subgraph.
• Graph density: ratio of the number of edges to the number of

possible edges.
• Edge connectivity (also called graph adhesion): minimum

number of edges needed to obtain a graph which is not strongly
connected.

• Median closeness: median number of steps required to access
every other vertex from a given vertex.

• Median Degree: median number of edges incident to a vertex,
with loops being counted twice.

• Vertex Count: number of Vertices in the graph.
• Edge count: number of Edges in the graph.
• Maximum degree: maximum number of edges incident to a

vertex, with loops being counted twice.
• Transitivity: probability that two vertices are connected. This is

also called the clustering coefficient.
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We use two of these measures to compute the small-world
property generated by the Erdős-Renyi game (Erdős and Rényi,
1961). Alternative methods of computing this are presented by
Rubinov and Sporns (2010). The small-world measure σ is com-
puted as

σ = γ

λ

where γ is the ratio of the clustering coefficient of the real network
to the mean of the clustering coefficient of n random networks
with an equivalent number of edges and weights as the real
(data-derived) network but randomly rewired. λ is the similar
to γ but uses characteristic path length. The variable n is usually
somewhere between 500 and 5000. Typically, biological networks
have:

• γ >> 1, i.e., greater local clustering than a random network
• λ ≈ 1, i.e., similar characteristic path length to a random

network

Any network with σ >> 1 is considered to be “small world”
(Humphries and Gurney, 2008).

3.4. CLASSIFICATION USING SVM
We have transformed each subject’s fMRI scan into a graph, where
the nodes of the graph represent functional networks and the dis-
tances between nodes represents the similarity of the activity of
the nodes. We have measured the connectivity of these graphs,
or the FNC. We now wish to use these connectivity features for
classification. R has an immense number of libraries available for
classification. Packages are continually being added that imple-
ment new machine learning algorithms, and packages for specific
algorithms can be found at http://www.rseek.org. In this paper
we use the basic SVM algorithm, included in the package e1071.

The SVM algorithm attempts to find a hyperplane that best
separates different classes, using only the points contained in the

margin (or region of overlap.) For a set of points (xi, yi) where
(xi) ∈ Rn is the set of graph measurements for the graph Gi cor-
responding to subject i, a member of class yi ∈ (−1, 1) (patient
or control), SVM will learn the hyperplane which best divides the
classes (−1, 1). If a hyperplane is modeled by w · xi − b where
w are the vectors normal to the hyperplanes, the parallel hyper-
planes separating the observations can be defined by w · xi − b ≥
1 for yi = 1 and w · xi − b ≤ −1 for yi = −1. The optimization
problem becomes to maximize the distance between planes, 2

‖w‖ ,
such that yi(w · xi − b) ≥ 1

Using the graph properties (path length, clique number,
etc...) as features, we can then perform classification between
schizophrenia patients and healthy controls.

4. APPLICATIONS
4.1. PREPROCESSING AND COMPONENT EXTRACTION IN FSL
Our first step was to perform motion correction and skull-
stripping on the fMRI data, and to run ICA within each scan
to extract the networks of interest. We specifically use automatic
component estimation in FSL because our previous research has
suggested differences in the number of independent components
for Schizophrenia patients and healthy controls. An example of an
ICA map produced by FSL is shown in Figure 7.

Assuming the COBRE data has been downloaded and
installed, then we can run FSL from the command line to pro-
cess all scans, which includes motion correction, skull-stripping,
smoothing with a 6 mm filter, high-filtering at 100 Hz, and
finally running Melodic with automatic component estimation
within each subject. This script is tailored to the COBRE data,
and requires that the variable STUDY_DIR be changed for the
users’ specific path. Following this script the melodic_mix files
containing the patients’ ICA timecourses will all be located
in the folder ./COBRE/COBRE_MELODIC. To create a sim-
ilar script for a new dataset, one can simply run Melodic
from the GUI, and copy the command-line input from the
log file.

#!/bin/sh
# Subject directories (Change Me)
STUDY_DIR="/u/home/of/my/COBRE";
#############
# CONSTANTS #
#############
subjects="0040000 0040005 0040010 0040015 0040020 0040025 0040030 0040035 0040040
0040045 0040050 0040055 0040060 0040065 0040070 0040075 0040080 0040085 0040090

FIGURE 7 | Spatial map produced by independent components analysis in FSL.
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0040095 0040100 0040105 0040110 0040115 0040120 0040125 0040130 0040135 0040140
0040145 0040001 0040006 0040011 0040016 0040021 0040026 0040031 0040036 0040041
0040046 0040051 0040056 0040061 0040066 0040071 0040076 0040081 0040086 0040091
0040096 0040101 0040106 0040111 0040116 0040121 0040126 0040131 0040136 0040141
0040146 0040002 0040007 0040012 0040017 0040022 0040027 0040032 0040037 0040042
0040047 0040052 0040057 0040062 0040067 0040072 0040077 0040082 0040087 0040092
0040097 0040102 0040107 0040112 0040117 0040122 0040127 0040132 0040137 0040142
0040147 0040003 0040008 0040013 0040018 0040023 0040028 0040033 0040038 0040043
0040048 0040053 0040058 0040063 0040068 0040073 0040078 0040083 0040088 0040093
0040098 0040103 0040108 0040113 0040118 0040123 0040128 0040133 0040138 0040143
0040004 0040009 0040014 0040019 0040024 0040029 0040034 0040039 0040044 0040049
0040054 0040059 0040064 0040069 0040074 0040079 0040084 0040089 0040094 0040099
0040104 0040109 0040114 0040119 0040124 0040129 0040134 0040139 0040144";

umask 0002;
######################
# PROCESSING COMMANDS #
######################

# Change to STUDY_DIR
cd $STUDY_DIR;
mkdir COBRE_MELODIC

# Loop through subjects
for i in $subjects; do

if [ ! -f "$STUDY_DIR/COBRE_MELODIC/${i}_melodic_mix_new" ]; then
cd $STUDY_DIR/${i}/session_1/rest_1
rm -r *.ica*
rm rest_mcf*

rm prefiltered*
rm filtered*
mcflirt -in rest.nii.gz -out prefiltered_func_data_mcf -mats -rmsrel -rmsabs
fslmaths prefiltered_func_data_mcf -Tmean mean_func
bet2 mean_func mask -f 0.3 -n -m; immv mask_mask mask
fslmaths prefiltered_func_data_mcf -mas mask prefiltered_func_data_bet
fslstats prefiltered_func_data_bet -p 2 -p 98
fslmaths prefiltered_func_data_bet -thr 100.8095459 -Tmin -bin mask -odt char
fslstats prefiltered_func_data_mcf -k mask -p 50
fslmaths mask -dilF mask
fslmaths prefiltered_func_data_mcf -mas mask prefiltered_func_data_thresh
fslmaths prefiltered_func_data_thresh -Tmean mean_func
susan prefiltered_func_data_thresh 614.340225 2.12314225053 3 1 1

mean_func 614.340225 prefiltered_func_data_smooth
fslmaths prefiltered_func_data_smooth -mas mask prefiltered_func_data_smooth
fslmaths prefiltered_func_data_smooth -mul 12.2082189881 prefiltered_func_

data_intnorm
fslmaths prefiltered_func_data_intnorm -bptf 25.0 -1 prefiltered_func_

data_tempfilt
fslmaths prefiltered_func_data_tempfilt filtered_func_data
fslmaths filtered_func_data -Tmean mean_func
melodic -i filtered_func_data --nobet --bgthreshold=3 --tr=2.0000000000 -d 0

--mmthresh=0.5
cp filtered_func_data.ica/melodic_mix

$STUDY_DIR/COBRE_MELODIC/${i}_melodic_mix_new
fi
done #END "Loop through subjects..."
echo "Processing complete.";
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4.2. GRAPH CREATION AND MEASUREMENT IN R
4.2.1. Computing functional network connectivity using lagged

correlations
FNC requires breaking down the original temporal scans into a
series of units modulated by time-series, where the correlations
of the timeseries determines their similarity. We begin by calling
the necessary libraries for this analysis:

> library(igraph)
> library(vegan)
> library(e1071)

For the COBRE data we can create the list of filenames using:

> setwd("/path/to/my/directory")
> filenames <-

dir (pattern="melodic_mix_new")

Otherwise, we can read in the filenames from a text document
using the scan() command.

With FSL the number of ICA components was determined
uniquely for each subject. We first determine the number of
components within each file to store within the vector, s.

> num_subjects <- length(filenames)
> s <- c(rep(0,num_subjects))
> for (i in 1:num_subjects)
{ s[i] <- dim((read.table(as.character

(filenames[i]))))[2] }

We next read in each melodic_mix file and use these to cre-
ate a distance matrix. We define the distance matrix as the
maximal normed cross-correlation for a lag distance of 3. The
distance between the timeseries for each component is calcu-
lated and stored in data_array_distance. The mapply
function is used to apply the distance function to all ele-
ments in the upper-triangular part of the distance matrix,
instead of using a nested for loop to calculate each item
individually.

> data_array_distance <- array(NA, c(num_subjects, max(s), max(s)))
> for (i in 1:num_subjects)
{ ##Read in ICA results

temp <- as.matrix(read.table(as.character(filenames[i])))
for(j in 1:s[i])
{ for(k in j:s[i])

{ data_array_distance[i,k,j] <- 1-max(abs(ccf(temp[,j], temp[,k],
plot = FALSE, lag.max = 3)$acf))

data_array_distance[i,j,k] <- data_array_distance[i,k,j] }}
diag(data_array_distance[i,,]) <- 0 }

At this point the fMRI scans of each subject have been con-
verted: first by decomposing them into independent components,
and then creating a functional connectivity matrix measuring

the temporal connectivity among components within each sub-
ject. Every melodic_mix file has been converted into a functional
connectivity distance matrix.

4.2.2. Graph creation and analysis
Next, we transform each matrix into a graph structure and mea-
sure the connectivity properties of each graphs. We first use the
ISOMAP embedding algorithm to compute the distances among
elements using the geodesic framework, and prune weak connec-
tions with package vegan. We then create a graph structure whose
connectivity can be measured using functions in igraph. Because
the data type output in vegan is different than the type needed
for igraph, we create an internal conversion function named
makegraph. This graphical structure uses weighted edges in a
dissimilarity matrix, where ‘0’ indicates that two points are not
connected. Because of this, we use the inverse of the distance
to define the weights between two vertices when the ISOMAP
algorithm has computed they are connected.

> makegraph <- function(my_iso)
{ ##dim is dimension of matrix

my_dist <- as.matrix(dist(my_iso
$points[]))

k <- dim(my_dist)[1]
my_net <- matrix(0, nrow = k,

ncol = k)
which.rows <- my_iso$net[,1]
which.cols <- my_iso$net[,2]
for(j in 1:length(which.rows))
{ my_net[which.rows[j],

which.cols[j]]
<- 1/my_dist[which.rows[j],
which.cols[j]]

my_net[which.cols[j],
which.rows[j]]
<- 1/my_dist[which.cols[j],
which.rows[j]]

}
my_net }

We next analyze the properties of these graphs. We create a
function to calculate the coefficients γ and λ of a random graph.
This is used to compute the small worldness of the actual graph
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proposed by the data. We call this function smallworld; it
takes in 2 parameters: n = the number of vertices, and m = the
number of edges. The value γ is a transitivity measure, of the
probability that adjacent vertices are connected. This is some-
times called the clustering coefficient. This function is called later
to compute the values γ and λ later for the randomly reconnected
graph, and is averaged across 5000 random graphs. These val-
ues are used to form the ratio to calculate σ, the small-worldness
measure.

> smallworld <- function(n,m)
{ smallworld <- matrix(nrow=5000,ncol=2)

for(k in 1:5000)
{ g <- erdos.renyi.game

(n,m, type="gnm")
smallworld[k,1] <- transitivity(g)
smallworld[k,2] <- average.path.

length(g) }
colMeans(smallworld) }

We next run our geodesic-distance pruning procedure
(ISOMAP) within vegan, convert the data structure using
our function makegraph, and then measure the connec-
tivity using igraph. We compute separately the small-world
measure, σ, which is a vector output, by the routine called
my_small_worldness. We threshold points as being con-
nected using the k-nearest neighbors method.

> my_small_worldness <- matrix(NA, nrow = num_subjects, ncol = 1)
> my_feature_matrix <- matrix(NA, nrow = num_subjects, ncol = 12)
> randomsmallstore <- matrix(NA, nrow = num_subjects, ncol = 2)
> for(i in 1:num_subjects)
{ d <- matrix(data_array_distance[i,1:s[i],1:s[i]], nrow = s[i])

my_iso <- isomap(d[1:s[i],1:s[i]],axes=3, k=max(floor(s[i]/10),2), ndim = 15,
fragmentedOK=TRUE)

my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net )
transitivity(d2)
n=vcount(d2)
m = ecount(d2)
randomsmall <- smallworld(n,m)
sigma <- (transitivity(d2)/randomsmall[1])/(average.path.length(d2)/randomsmall[2])
randomsmallstore[i,] <- c(randomsmall)
my_small_worldness[i,] <- sigma
my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net, weighted = TRUE )
my_feature_matrix[i,] <-c(average.path.length(d2),clique.number(d2),graph.density(d2),

edge.connectivity(d2),median(closeness(d2)),median(graph.coreness(d2)),
max(degree(d2)),median(degree(d2)),min(degree(d2)),vcount(d2),ecount(d2),
transitivity(d2)) }

> my_feature_matrix <- cbind(my_feature_matrix,my_small_worldness)

Finally, we label the columns.

> colnames(my_feature_matrix) <- c("Average Path Length", "Clique Number","Graph Density",
"Edge Connectivity", "Median Closeness", "Median Graph Coreness","Max Degree",
"Median Degree", "Min Degree", "Vertex Count", "Edge Count","Transitivity",
"Small Worldness")

We began with functional connectivity matrices, turned each
matrix into a graph, and measured the connectivity of each graph.
We used a total of 13 connectivity measures, include the small-
world calculations. The feature vectors collectively form a feature
matrix that will be used for classification in the following section.

4.3. SVM CLASSIFICATION IN R
In this section we demonstrate SVM Classification using
the package e1071 that contains an interface to the lib-
svm C++ package by Chih-Chung Chang and Chih-Jen Lin.
The R vignette (http://cran.r-project.org/web/packages/e1071/
vignettes/svmdoc.pdf) details the functionality of this package,
which includes many other classification routines besides SVM.
The SVM method within this package has an optional bene-
fit of cross-validation, which simplifies coding dramatically by
implementing the training and testing steps within a single func-
tion call. In the following code we demonstrate classification of
our feature vector using 10-fold cross-validation, but this is an
adjustable parameter. There are many options within the svm()
method that can be specified such as kernel choices, but we use
the default parameters here (“radial basis function”) for the sake
of conciseness and clarity.

We create a vector my_cat with the response variables, in
the case the patient diagnosis of each scan. This can alternatively
be read in using the function read.table(). Because within
the COBRE data two patients were disenrolled, we exclude those
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patients from this analysis. As R read in the list of files alpha-
betically and the COBRE demographic spreadsheet has patients
entered in order of age, we reorganize the file formats to ensure
that our patient labels read in from the spreadsheet match up with
the data matrix already created.

> cobre <- read.csv
("COBRE_phenotypic_data.csv")

> cobre <- cobre[order(cobre[,1]),]
> my_cat <- cobre[,5]
> my_data_matrix <- my_feature_matrix

[my_cat!="Disenrolled",]
> my_cat <- my_cat[my_cat!="Disenrolled"]
> my_data_matrix <- cbind

(my_cat,my_data_matrix)

Finally, the library is loaded and the model is trained and tested
using 10-fold cross-validation.

> my_svm <- svm(as.factor(my_cat)~.,
data = as.data.frame(my_data_matrix),
cross=10)

> pred <- fitted(my_svm)

The structure my_svm contains many details of the model. We
can see the average cross-validation accuracy within each kth-fold
using my_svm$tot.accuracy.

4.4. HYPOTHESIS TESTING
Alternatively, we can test for between-group differences using for-
mal hypothesis testing. For example, if we wished to test the
individual metrics between patients and controls, we could do so
using:

> for(i in 2:14)
{ print(t.test(na.omit(my_data_matrix

[my_cat=="Patient",i]),
na.omit(my_data_matrix[my_cat=

="Control",i]))) }

All the computed graph-connectivity measures are correlated;
for example, a graph with a low median closeness measure would
imply that there is a short distance between two vertices, thus
increasing the transitivity. Because of this, to compare the 13 mea-
sures we would have to adjust for multiple comparisons. Using
a Bonferroni correction, only p-values below 0.05/13 = 0.0038
would be considered significant.

5. RESULTS AND DISCUSSION
We briefly present here the results of this analysis.

Patients had a significantly lower clustering coefficient
than healthy controls (p < 0.05, corrected). Lower cluster-
ing implies networks are less likely to be connected to each
other in Schizophrenia, indicating that the networks are them-
selves less synchronized and more independent of each other.
Patients had lower small-world measures of connectivity than
healthy controls, although both groups exhibited small-world

connectivity among independent components. This differ-
ence was not statistically significant when using unweighted
graphs, but was statistically significant when using weighted
graphs.

Using just the scripts provided here, our 10-fold cross-
validation accuracy is 65%, compared to a chance accuracy
of 50.7%. There are quite a number of things we could do
to improve this accuracy, which we omitted intentionally here
because they are outside the scope of this tutorial. We performed
no quality-control on this data to exclude scans with exces-
sive motion or scanner artifacts. We also took no measures to
identify and exclude ICA networks that were related to motion,
scanner noise, or physiological artifacts. We did not use any of
the demographic information (patient gender, age, etc...) which
would likely have improved accuracy, both by controlling for
functional brain changes and also by controlling for sampling
variation. For example, in this sample males were more likely to be
Schizophrenia patients than females, so knowing this information
would have permitted classification based upon this information,
which is parallel to the actual functional connectivity analysis.
Finally, we implemented only the basic SVM algorithm without
any parameter tuning, and similarly did not optimize the defi-
nition of “connectivity” among points. Connectivity definitions
have been shown previously to affect the final results, with differ-
ent thresholds for connectivity having significant effects on the
final graph-theoretic measurements (Toppi et al., 2012). Given
the simplicity of our methods, it is perhaps somewhat remarkable
that we were able to achieve the classification accuracy realized
here and significant small-world differences between patients and
controls.

6. CONCLUSION
Collectively, we have provided methods to determine whether
functional connectivity differences exist between groups, and to
demonstrate that the resting-state functional connectivity dif-
ferences in schizophrenia can be useful for automated patient
diagnosis. Functional connectivity measures can be used to
discriminate between patients and controls, and schizophrenia
patients show lowered clustering of networks than healthy con-
trols, indicating that networks within Schizophrenia are more
disconnected.

The analysis outlined here is intended to be adjusted and
altered by the end user, even those who aren’t regular users
of R. The user has flexibility in altering parameters such as
distance metrics, classification machines, and feature selection
choices. For example, another method of implementing func-
tional connectivity is through Granger causality among ROIs such
as in Sato et al. (2010), whereas this presentation implements
functional connectivity through correlations among functional
networks determined by ICA. Other distance metrics could have
been used, which would be optimal given the recent finding that
using correlation metrics to compute distance automatically leads
to non-random graphical structures (Zalesky et al., 2012). We
performed SVM classification in R, a “black-box” model which
ironically is remarkably simple to implement with a single func-
tion call to both train and test the model using cross-validation.
Because R is an established package in the statistics research

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 520 | 12

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Anderson and Cohen Small-world fMRI analysis and classification in schizophrenia

community, many newer machine learning procedures can easily
be implemented to compare with more established classification
machines.

This analysis and tutorial is not without limitations; primar-
ily, we took no steps to identify and discard artifacts in the ICA
data, which almost certainly would have increased the classifi-
cation “accuracy” we obtained. This omission was intentional
given the intentions of this tutorial; manually identifying arti-
facts within ICA is outside the scope of this manuscript, and
other tutorials to perform to identify fMRI artifacts and clean
data further are available elsewhere. We wish here to illus-
trate how functional connectivity can be measured in a graph-
theoretic approach, and to provide a working framework for other
researchers to alter and improve. Moreover, there are scripts avail-
able at http://www.nitrc.org/plugins/mwiki/index.php/fcon1000:
ScriptUse to process this data and compute a variety of con-
nectivity measures outside of the ICA-based measures presented
here. These could be easily integrated with the methods outlined
here to measure the connectivity properties once the connectivity
matrices are established.

Although this analysis was created for analysis of fMRI data,
more generally it applies to problems where the relationship
among signal sources may determine the category to which an
object belongs. The joint behavior of the signal sources (inde-
pendent components) was observed as a graph object, where the
distances between the sources represented the similarity of their
behavior. Although second order measures were used to assess the
functional connectivity (correlations), it is possible that as much
discriminatory power exists using higher-order measurements
that take into account the cohesiveness of triplets of components,
or even more. Functional connectivity is one technique, of many,
that should be assessed from multiple angles.
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APPENDIX
R FUNCTIONS AND FEATURES TUTORIAL
We begin by calling the library AnalyzeFMRI which must be pre-installed. When installing any package within the GUI, the option of
“install dependencies” should be selected to install packages called by the main package. Once this package is installed, it is called, and
the proper directory is navigated to. The current working directory can be obtained using getwd(). This directory needs to contain
a list of scan names, filenames.txt, and the set of scans. We use here a scan produced by the FSL script supplied on the data
available for download from NITRC.

> library(AnalyzeFMRI)
> rm(list = ls())
> setwd("/path/to/my/directory")

A scan can be read directly into R, and consequently held in memory, using

> myimage <- f.read.nifti.volume("rest_mcf_brain.nii")

We can get preliminary statistics using

> summary(myimage)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 129.0000 0.0006 1639.0000

We can access the header information using

> f.nifti.file.summary("rest_mcf_brain.nii")

File name: rest_mcf_brain.nii
Data Dimension: 4-D

X dimension: 64
Y dimension: 64
Z dimension: 33

Time dimension: 150 time points
Voxel dimensions: 3.75 x 3.75 x 4.55000019073486

Data type: (32 bits per voxel)

We can alternatively verify the dimensions of the scan using the command dim, since the image is held in memory.

> dim(myimage)
[1] 64 64 33 150

This image is stored as an array, which we can verify using

> is.array(myimage)
[1] TRUE

Functions such as f.read.nifti.volume, f.read.nifti.ts, and
f.read.nifti.slice.at.all.timepoints can allow direct access to specific pieces of data. For example, if we wanted to
access a single timeseries from the 4D scan at voxel location (30,30,10) without holding the entire scan in memory, we can do so by:

> f.read.nifti.ts("rest_mcf_brain.nii",30,30,10)

where the input parameters are the filename and the (x,y,z) coordinates of the voxel desired. We can also access this from the scan held
in memory using myimage[30,30,10,] which is noticeably faster.
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We next wish to perform ICA within R, but this is available only for Analyze format scans. We write out our scan as Analyze format
with:

> f.write.analyze(myimage,file="rest_mcf_brain")

If we wish to see all the parameter options available for ICA, we can access this using

> help(f.ica.fmri)}

We next run ICA on the example fMRI scan.

> g <- f.ica.fmri("rest_mcf_brain.img", n.comp=20, alg.type = "deflation")

This performs ICA on the scan called “rest_mcf_brain.img”, extracting 20 components and storing the results in the object
g. It is necessary to state the number of components to be extracted with the parameter ncomp. The number of components is
somewhat arbitrary; the ICA extraction is performed here using the deflation approach where components are individually estimated
and then subtracted out, so limiting the number of components theoretically should not change the structure of the components that
are extracted. We set the default value, (num_components), to 20 according to (?). Use help(f.ica.fmri) to see the full list of
options within the function

There is also the option of using a GUI to run this analysis, using the command f.ica.fmri.gui().
The object g contains several attributes:

> attributes(g)
$names
[1] "A" "S" "file" "mask"

The timeseries for the components are contained in g$A:

> dim(g$A)
[1] 150 20

The spatial maps are contained in the array g$S, the filename in g$file, and the mask (if used) in g$mask.
We can view a single component as shown in Figure 2, in this case the second of the set, by using

> f.plot.ica.fmri(g,2,cols=rainbow(100))

This image isn’t thresholded, but can be roughly thresholded by adjusting the color options within rainbow(), by changing the
number of colors to display to 3 and adjusting the saturation.

> f.plot.ica.fmri(g,2,cols=rainbow(3,alpha=.8))

We can also manually threshold using the spatial map g$S[, , ,2]. Here, we threshold the second component into the 10-th and
90-th percentile:

> g_thresholded <- g
> g_thresholded$S[,,,2][g$S[,,,2]>quantile(g$S[,,,2],probs=c(.1,.9))[2]] <- 3
> g_thresholded$S[,,,2][g$S[,,,2]<quantile(g$S[,,,2],probs=c(.1,.9))[2]] <- 2
> g_thresholded$S[,,,2][g$S[,,,2]<quantile(g$S[,,,2],probs=c(.1,.9))[1]] <- 1

The image can be written out using:

> f.write.analyze(g_thresholded$S[,,,2],file="MyThresholdedImage")

creating files called “MyThresholdedImage.img” and “MyThresholdedImage.hdr” in the working directory.
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This concludes our example of the package AnalyzefMRI. This is not an exhaustive list of the functions available in this package,
but a brief tutorial showing direct fMRI data access in R. For a full list of functions within this package, please see the manual at http://
cran.r-project.org/web/packages/AnalyzeFMRI/AnalyzeFMRI.pdf.

ICA FOR fMRI IN R USING PREPROCESSED DATA
R can also perform ICA on Analyze format scans, so we demonstrate doing this in a loop. ICA within R uses the FAST-ICA algorithm,
which is similar to FSL. This implementation will not work directly on the COBRE data since the function f.ica.fmri requires
Analyze format data and the COBRE data is NIfTI, although the FSL command fslchfiletype will convert between the two
formats. The filenames (“myfilename1.img”) are written on a text file called filenames.txt, where each line contains a separate filename.
The lines that will need to be changed for the user are as follows:

> setwd("/path/to/my/directory")
> filenames <- read.table("filenames.txt")
> filenames <- filenames[i,1]
We can alternatively create the list of filenames using:
> filenames <- dir(pattern="melodic_mix")

We then create a loop to read in our files, perform ICA on each scan using the function f.ica.fmri() within the library
AnalyzeFMRI, extract the timeseries associated with the components, and create a distance matrix for each component.

> library(AnalyzeFMRI)
> num_subjects <- dim(filenames)[1]
> num_components <- 30
> data_array_distance <- array(NA, c(num_subjects, num_components, num_components))
> my_distance <- function(x,y)
{ 1-max(abs(ccf(x, y, plot = FALSE, lag.max = 3)$acf)) }

> for (i in 1:num_subjects)
{ #Perform ICA on each file

temp <- f.ica.fmri(as.character(filenames[i,1]), n.comp = num_components,
alg.type="deflation")

for(j in 1:num_components)
{ j.vals <- rep(j,(num_components-j+1))

k.vals <- (j:num_components)
data_array_distance[i,j,j:num_components] <- c(mapply(x=j.vals,

y=k.vals, function(x,y) my_distance(temp$A[,x],temp$A[,y])))
data_array_distance[i,j:num_components,j]

<- data_array_distance[i,j,j:num_components] }
diag(data_array_distance[i,,]) <- 0 }

This performs ICA on this ith scan listed in filenames.txt, and stores the results into an object called temp. This object has
several attributes, one of which is the timeseries associated with each component called temp$A.

PARALLEL ANALYSIS IN R
We now demonstrate parallel computing by using the base package parallel in R 2.1.4 as presented by http://www.bytemining.com/
files/talks/larug/hpc2012/HPCinRrev2012.pdf which provides an extensive explanation of parallel data analysis using R. The package
cudaBayesreg also provides parallel analysis of fMRI data using multi-level Bayesian modeling.

The package parallel wraps together packages multicore and snow. We assume the computing is being done on the local machine
here with multiple cores, but these methods can easily be extended to run on a cluster. The number of available cores can be detected
using Windows will report the number of logical CPUs, which may exceed the number of physical cores.

> library(parallel)
> mc <- detectCores()
> mc
[1] 2
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To perform the parallel analysis, we create a new function func_network_connectivity which takes as an argument the file
number, and performs within each scan the FNC analysis.

> data_array_distance <- array(NA, c(num_subjects, num_components, num_components))
> num_components <- 20
> func_network_connectivity <- function(i){

temp <- f.ica.fmri(as.character(filenames[i,1]), n.comp = num_components)
for(j in 1:num_components)
{ j.vals <- rep(j,(num_components-j+1))

k.vals <- (j:num_components)
data_array_distance[i,j,j:num_components] <-

c(mapply(x=j.vals,y=k.vals, function(x,y)
1-max(abs(ccf(x, y, plot = FALSE, lag.max = 3)$acf)))

data_array_distance[i,k.vals,j.vals] <- 1/data_array_distance[i,j,
j:num_components] }

diag(data_array_distance[i,,]) <- 0
d <- (data_array_distance[i,,])
my_iso <- isomap(d,axes=1, ndim = 10,epsilon=median(d),

fragmentedOK=TRUE)
my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net, weighted = TRUE )
c(as.character(filenames[i,1]),average.path.length(d2),clique.number(d2),

graph.density(d2),edge.connectivity(d2),median(closeness(d2)),
median(graph.coreness(d2)),max(degree(d2)),median(degree(d2)),
min(degree(d2)),vcount(d2),ecount(d2),transitivity(d2)) }

The new func_network_connectivity function is called by the parallel function parLapply, which is similar to mapply
but operates in parallel. Using this, we perform ICA, establish functional connectivity and measure the graph structures in parallel.
The function makeForkCluster is called to create multiple identical R processes on the same machine with a copy of the master
workspace. This function will not work in Windows since Windows does not have a fork system call, so sockets must be used instead.

> cl <- makeForkCluster()
> clusterSetRNGStream (cl, 123)
> res <- parLapply(cl, seq_len(4), func_network_connectivity)
> stopCluster(cl)
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