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The transcranial application of weak currents to the human brain has enjoyed a decade of
widespread use, providing a simple and powerful tool for non-invasively altering human
brain function. However, our understanding of current delivery and its impact upon neural
circuitry leaves much to be desired. We argue that the credibility of conclusions drawn
with transcranial direct current stimulation (tDCS) is contingent upon realistic explanations
of how tDCS works, and that our present understanding of tDCS limits the technique’s
use to localize function in the human brain. We outline two central issues where progress
is required: the localization of currents, and predicting their functional consequence. We
encourage experimenters to eschew simplistic explanations of mechanisms of transcranial
current stimulation. We suggest the use of individualized current modeling, together with
computational neurostimulation to inform mechanistic frameworks in which to interpret the
physiological impact of tDCS. We hope that through mechanistically richer descriptions of
current flow and action, insight into the biological processes by which transcranial currents
influence behavior can be gained, leading to more effective stimulation protocols and
empowering conclusions drawn with tDCS.
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Since the demonstration that transcranial direct current stimu-
lation (tDCS) can modulate the size of motor evoked potentials
(MEPs) elicited over human primary motor cortex (Nitsche and
Paulus, 2000), tDCS has become a popular approach for non-
invasive neurostimulation of the human brain. The success of
the technique, as gauged by the breadth of publications, is strik-
ing, being employed over numerous brain areas, in variety of
behavioral tasks, and in the treatment of a wide range of diseases
(Brasil-Neto, 2012; Brunoni et al., 2012). It appears, however, that
the growth in reported applications for tDCS has outstripped the
growth in our understanding of the mechanistic underpinnings of
direct current (DC) stimulation, both in terms of current delivery
and the subsequent effect of electrical fields upon the cortex.

This imbalance has been exacerbated by the impressive and a
priori surprising trend for tDCS, particularly when the anode is
placed over the cortical region of interest, to facilitate behavioral
performance (but see Iuculano and Kadosh, 2013). We believe that
a deeper and more critical querying of (a) where currents actually
flow when one applies transcranial DC stimulation and (b) the
effects upon cellular and network activity, will help focus efforts
to capitalize upon the remarkable achievements of the field to
date. We here briefly summarize recent work on these issues, and
highlight some of the key conclusions and remaining questions
that are pertinent to current and future users of tDCS.

WHICH NEURAL STRUCTURES ARE TARGETED BY DC
STIMULATION?
The arrangement of anode and cathode used by Nitsche and Paulus
(2000) that led to a potentiation and suppression of MEP’s is

pictured in Figure 1A. This “classic montage” consists of a pair of
sponges, one of which is placed over the motor cortex contralateral
to the limb in which MEPs are measured, with the other positioned
over the forehead of the opposite hemisphere. It is appropriate to
recall here that in any montage using DC, an anode and a cathode
will be present; which electrode is deemed the“reference” is merely
a matter of convention and depends only upon the predicted effect
of stimulation upon the measured behavior. It is also relevant to
point out that in their original paper and subsequent work, Nitsche
and co-workers do not attribute the observed change in MEP size
to the stimulation of any one cortical area per se. Moreover, this
group is careful to distinguish between montage-specific effects
(e.g., the passage of current in various patterns across the brain)
and focality (limited current flow to one region) (Nitsche et al.,
2007). This discretion is not consistently observed in subsequent
studies but is vindicated by neuroimaging data that implies that
the classic montage influences numerous cortical areas (Lang et al.,
2005; Zheng et al., 2011), and that standard DC stimulation pro-
tocols influence the excitability of numerous muscles (Roche et al.,
2009).

One can be fairly confident, therefore, that conventional tDCS
stimulation protocols, with two large electrodes placed across the
head, induce widespread currents of varying intensity and there-
fore widespread changes in cortical activity, a conclusion further
supported by numerous modeling approaches (Datta et al., 2009;
Bikson et al., 2012; Ruffini et al., 2012) There is an important dis-
tinction between putting one electrode “over” a brain region, and
targeting that brain region with focal current delivery – and indeed
the peak brain currents in a bipolar array may be at some point
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FIGURE 1 | Examining current distributions in the cortex. (A) The
classic montage used by Nitsche and Paulus (2000) to modulate MEP
size. (B) Finite element modeling of current distribution with the classic
montage illustrates the broad swathes of cortex affected. (C) Voltage
drops across membranes considered as resistors explain the mixture of

hyperpolarization and depolarization seen in. (D) Superficially depolarizing
currents produce hyperpolarization in dendrites and depolarization in the
cell soma. (E) The direction of current flow varies considerably within
the stimulated area. All figures bar (C) reprinted with permission from
Rahman et al. (2013).

between the two electrodes. This interim conclusion suggests that
we are rarely in a position to make conclusive inferences about
the function of a specific stimulated area based upon an observed
behavioral effect alone; the impact upon networks of activity is
simply too broad for topologically specific statements, though it
may be reasonable to suggest behavioral effects are consistent with
modulation of at least one region of interest. We note that there is a
subtle distinction between this phenomenon and network effects
elicited by transcranial magnetic stimulation (TMS), where the
initial intervention is relatively focal, but then is likely to propa-
gate poly-synaptically to interconnected regions (Bestmann and
Feredoes, 2013). By contrast, with conventional tDCS montages
the primary effects are likely to occur in a non-spatially specific
way (Nitsche, 2011).

The use of mathematical, finite element models for predicting
current flow offers a principled way to estimate current distribu-
tions, optimize current delivery to target areas, and to circumscribe
conclusions about the brain basis of observed effects (Figure 1B;
Dmochowski et al., 2011; Bikson et al., 2012; Miranda et al., 2013).
The use of individual head models is becoming increasingly fea-
sible with improvements in the automatization of the process,
reducing the time and expertise necessary and rendering such
modeling accessible to more users of tDCS (Huang et al., 2012;
Windhoff et al., 2013). Although direct physiological validation of
such models is limited (Datta et al., 2013; Edwards et al., 2013), at
the very least this approach highlights several important issues for

the delivery of transcranial current. Furthermore, the key conclu-
sions we discuss below will not change – they are dictated by the
laws of physics – though specific details of these models are likely
to yield subtly different results.

Firstly, the amount and distribution of current reaching dif-
ferent brain regions varies wildly as a function of individual
physiology and anatomy (Datta et al., 2012) contributing sub-
stantial variance to our datasets. A recent study (Edwards et al.,
2013), for example, showed that models of current flow based
upon individual magnetic resonance imaging (MRI) scans accu-
rately predicted the amount of current necessary to evoke a muscle
twitch with strong transcranial electrical stimulation, and success-
fully explained the twofold variation in evoked response when
using fixed stimulus parameters. Factors such as skull thickness,
distribution of cerebrospinal fluid, and subcutaneous fat (Truong
et al., 2013) have a radical effect upon current flow, and add to the
uncertainty about the destination and strength of transcranially
delivered DC current.

Secondly, experimenters looking to increase excitability will
typically place the anode over the region of interest, analogous
to the positioning of the anode over M1 in the classic MEP-
modulating montage. One might suppose that this equates to
delivering uniform inward positive current to the cortex beneath
the electrode. However, this is emphatically not the case. The
topography of the cortical surface places a large role in deter-
mining current flow, with dramatic reversals in polarity between
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adjacent gyri and sulci (Rahman et al., 2013). It is thus simplistic to
describe the entire area under the electrode as being “depolarized,”
or “excited” by the application of anodal currents. Furthermore,
slice studies have recently demonstrated that the cellular effect of a
depolarizing current applied to the cortical surface depends upon
the depth of the observed compartment (Chan et al., 1988; Bikson
et al., 2004). Simply by considering the cell membrane as a resistor
in a classic cable model (Figure 1C), it follows that when super-
ficial compartments are hyperpolarized then deep compartments
in the same cell will be depolarized – and vice versa. Each neuron
will inevitably have both depolarized and hyperpolarized compart-
ments during tDCS. In a pyramidal cortical neuron aligned with
an inward (relative to the cortical surface) directed electric field,
this equates to hyperpolarization of the dendritic tree and depo-
larization of the soma (Figure 1D; Rahman et al., 2013). Expected
variations in both electric field direction and relative cell mor-
phologies will produce variations in polarization profiles (Radman
et al., 2009). Apart from revealing that any simplistic distinction
between “anodal” and “cathodal” stimulation provides incomplete
mechanistic grounding of behavioral and clinical DC applications,
this raises another question; how does direction of current flow
affect cellular responses?

Current flow is vectorial, in the sense that we can estimate both
the current intensity and its direction at a given point. It is widely
acknowledged that increasing total applied current density at the
electrodes results in an increase in the intensity of the electrical
field generated in the brain and that this affects the physiological
response to tDCS (Nitsche et al., 2007). Conversely, far less dis-
cussion has focused upon the importance of current orientation
(Dmochowski et al., 2012), which in each brain region is typically
defined as radial (into the cortex) or tangential (parallel to the
cortex). The induction of an electric field in the longitudinal axis
is not electrophysiologically equivalent to one that traverses the
cell (Radman et al., 2009; Rahman et al., 2013). Whilst a radially
aligned inward current will cause somatic depolarization, trans-
verse currents have pathway specific effects upon cellular activity
potentially linked to polarization of afferent axons (Rahman et al.,
2013). Surprisingly, given the prevalent view that we are injecting
current “into” the cortex, tDCS currents are primarily tangential;
they flow parallel to the cortex (Rahman et al., 2013). It is interest-
ing to note that the cellular populations that are aligned parallel
to the cortical surface, such as intracortical and interhemispheric
connections, will therefore be more optimally excited with stan-
dard tDCS montages than the radially aligned cortical columns
within the stimulated area.

Additionally complicating is the fact that the direction of cur-
rent flow will be dramatically influenced by the pattern of sulci
and gyri in the stimulated area; an electrode configuration that
induces primarily radial currents in a gyrus might induce exclu-
sively tangential ones in an adjacent sulcus (Figure 1E; Miranda
et al., 2013; Rahman et al., 2013). Idiosyncratic different in cor-
tex anatomy across subjects may thus produce distinct patterns of
current flow and hence neuromodulation.

Taken together, this suggests that the effect of a polarizing cur-
rent will differ substantially between sulci and gyri, at different
depths of cortex, and between differently aligned cellular popu-
lations. It is not yet clear what the significance of this variability

is in terms of the design of tDCS montages; we are not aware of
any systematic exploration of this issue in humans. It might be
instructive, for instance, to examine the effect of current direction
upon MEP modulation, a possibility afforded by inverse-modeling
that allows us to optimize montages based upon current delivery
in a particular direction (Bikson et al., 2012).

EXPLAINING THE EFFECTS OF tDCS UPON BEHAVIOR
The preceding section highlights the difficulties in delivering tran-
scranial currents in a precise and principled manner, and the
dangers of assuming homogeneity in induced currents and the
simplistic predictions such assumptions spawn. However, this
raises an even more fundamental question: even if we were able
to deliver currents exactly as desired, it is not clear a priori
how these would lead to the diverse and impressive behavioral
effects reported in the literature. Similarly, given the com-
plexity of current flow and limitations of achievable patterns,
what is a “best” achievable current flow pattern for any given
objective?

Consider the analogy of the brain as a computer, one that
falls short in terms of describing the complexity and plasticity
of neural networks. If one strapped a 9V battery to the pro-
cessor of a laptop and improved the computer’s processing, the
result would be somewhat surprising. There is no reason to
believe that computers, or brains, lack electricity, which should
make it very startling when injecting current improves function.
It is worth, therefore, reassessing the basic hypotheses about
neural processing that underlie current explanations of tDCS’s
action.

Much of the current wisdom on the action of tDCS can be
traced back to generalizations from the effects of DC on motor
cortex. Given that we know that microstimulation of the primate
motor cortex can produce MEPs (Fritsch and Hitzig, 1870), that
magnetic stimulation of neurons in this area can also evoke MEPs
(Hess et al., 1987), and that subthreshold stimulation of neurons
in motor cortices can modulate the threshold for eliciting MEPs
(Kujirai et al., 1993) it is reasonable to interpret the effects of tDCS
in this area as alterations of membrane potential. Lasting effects of
stimulation are consistent with the induction of long-term poten-
tiation (LTP) between stimulated neurons, an effect that has been
documented in animal models of tDCS (Márquez-Ruiz et al., 2012;
Ranieri et al., 2012). It is thus parsimonious to suppose that an
anodal current over M1 leads to increases in excitability and sub-
sequently enhanced plasticity, whereas cathodal current over M1
decreases excitability and subsequent synaptic depression. This
effect is plausibly attributable to depolarization of somatic mem-
brane potential by anodal currents and hyperpolarization of soma
by cathodal currents, as observed in slice studies (Chan et al., 1988;
Bikson et al., 2004). A simple relationship between cellular activ-
ity and the magnitude of the evoked response renders such an
explanation coherent.

It should be stressed, however, that this is an inference, based
upon what is already known about the process of MEP produc-
tion [and noting that there remains uncertainty about the neural
sources controlling even this modest behavior (Di Lazzaro et al.,
2008)]. Whether this can readily be generalized to other processes
and other cortical areas remains unknown.
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The critical point is that there is no theoretical or mechanis-
tic explanation for why depolarizing cells would improve complex
behaviors such as perceptual decision-making, mathematical abil-
ity, or motor learning. The injection of current into these processes
constitutes the addition of random electrical activity that indis-
criminately targets large swathes of neurons and has nothing to do
with the ongoing activity pattern underlying the performance of
the task at hand.

Furthermore, since subthreshold depolarization of a cell is
likely to provoke plasticity of active synapses onto that cell, DC
is likely to facilitate non-Hebbian plasticity (Hebb, 1949). If we
accept that LTP constitutes a means for memory storage (Lisman
et al., 2003), then if DC stimulation indeed produces depolar-
ization, it will lead to the formation of irrelevant, interfering,
memories. We believe that there are extensive and finely tuned
mechanisms for controlling the induction and consolidation of
cellular plasticity (Redondo and Morris, 2011). At risk of laboring
the point, there is no a priori reason known to us to believe that
merely depolarizing cells should make these processes more effi-
cient, suggesting that we should challenge the simple assumption
that this is what anodal tDCS does.

COMPUTATIONAL NEUROSTIMULATION
Where does this leave us? Our understanding of tDCS at the cellu-
lar level is growing, but there remains an explanatory gap between
the abstract effects of stimulation upon cells in animals/slices
and the large and impressive behavioral effects documented in
humans. We believe that for meaningful progress to be made we
must attempt description at the appropriate level, that of neural
circuits.

We provide a few selected examples that highlight the poten-
tial for mechanistically cogent accounts of tDCS function: first,
the formulation of physiological hypotheses concerning plausi-
ble mechanisms whereby tDCS might influence cortical function
to enhance processing, and, second, the use of computational
modeling to describe the network consequences of stimulation
(“computational neurostimulation”).

Stochastic resonance describes a phenomenon whereby the
introduction of small amounts of noise into a non-linear sys-
tem produces increases in performance when dealing with small
amounts of signal (McDonnell and Ward, 2011). Schwarzkopf
et al. (2011) demonstrated that the administration of low-
intensity TMS toV5/MT improved discrimination in a dot-motion
paradigm, an effect that was reversed at high intensities of TMS.
This was interpreted as evidence that stochastic resonance plays a
role in the facilitatory effects of TMS. Stochastic resonance would
provide an equally compelling explanation of tDCS action; the
injection of weak currents essentially constitutes the addition of
neural noise. A priori, stochastic resonance seems a more prob-
able outcome of tDCS than of TMS; the concerted, modulatory
nature of transcranial currents make them more likely to mod-
ify existing processes than the large, abrupt disruption of normal
function produced by TMS. Interestingly, a stochastic resonance
account would also suggest that overstimulation might lead to
a decrement in performance. Central to this suggestion is that
there is a wealth of data about the underpinnings of stochas-
tic resonance at a cellular and population level (McDonnell and

Ward, 2011). Combined with individual variability in the efficacy
of stimulation (Edwards et al., 2013), this might explain some
of the inconsistency observed in responses to stimulation; the
addition of too little or too much noise as a result of variable cur-
rent delivery could produce negligible or detrimental effects upon
behavior. We believe that such theoretically plausible accounts,
grounded in knowledge of information processing in neural sys-
tems, may offer a productive way to enhance our understanding of
tDCS action and how it should be applied in different behavioral
settings.

Such efforts might be complemented by attempting to formal-
ize the impact of stimulation upon brain networks via modeling of
neural activity. Since it is a priori not clear why the concerted hypo-
or hyperpolarization of thousands of neurons should improve the
processing capacity of such populations, these models allow for
exploring this issue in detail. We briefly mention two of many
approaches. An elegant example for pulsed (TMS) stimulation
is provided by Esser et al. (2005), who use a detailed model of
thousands of neurons within a cortico-thalamic network including
motor cortex, to investigate the precise impact of TMS on cortical
circuits. By introducing perturbations analogous to those evoked
by TMS, they were able to reproduce key features of MEPs gener-
ated by TMS administration. This approach relies on information
about the effect of stimulation upon the cellular population mod-
eled, which can then be simulated and outputs compared with
empirical data.

The opposite approach, inferring the cellular perturbation from
the network response, is made possible by biophysically informed
network models such as dynamic causal modeling (DCM;
Friston et al., 2003). A striking example of how DCMs can be
used to infer the underlying changes in cellular physiology comes
from Moran et al. (2011). These authors administered L-DOPA
to subjects performing a working memory task, and recorded
magnetoencephalography (MEG) responses. DCMs of the MEG
response to drug administration recapitulated the changes in
NMDA and AMPA receptor conductances known to underlie
the action of dopamine in the frontal cortex (Goldman-Rakic,
1996). There is no reason why a similar approach should not be
taken with tDCS, offering a rich toolkit with which to exam-
ine the neurophysiological changes underlying the immediate
and delayed effects of tDCS upon behavior. Building upon
combined neurostimulation and neuroimaging approaches that
allow for identifying interactions between stimulation-induced
behavioral change and neural activity (Siebner et al., 2009;
Bestmann and Feredoes, 2013), this would involve the applica-
tion of tDCS during recording of brain activity with magneto-
and electroencephalography (M/EEG) or functional MRI (fMRI),
and modeling of the resultant perturbation to infer the neurophys-
iological changes underlying the observed changes in gross brain
activity and behavior.

SUMMARY
We believe that it is imperative that our understanding of the
delivery and functional impact of transcranial current continues
to grow. Improving current delivery by taking into account indi-
vidual anatomical variation and the complex dynamics of polarity
and orientation is likely to help optimizing established therapeutic
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protocols. Similarly, improving and demonstrating the focal-
ity of tDCS through the use of high definition electrode arrays
(HD-tDCS) (Kuo et al., 2013) might potentially make tDCS a far
more valuable tool for systems neuroscientists looking to eluci-
date the function of specific structures. At present, experimenters
should be circumspect in making claims that changes in behav-
ior during or after tDCS are caused by an excitability change in

the cortical area underlying one of the electrodes. The credibil-
ity of conclusions drawn with tDCS is contingent upon realistic
explanations of how tDCS works. To this end, we promote the
use of computational neurostimulation to refresh the theoretical
frameworks in which to explain the impact of tDCS, in the hope
of providing tDCS with a scientific credence which will also assist
its use as an exploratory and therapeutic tool.
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