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Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations
in frontal and subcortical regions of the mesolimbic reward system. However, most
investigations were performed using tasks involving reward processing or executive
functions. Little is known about brain network abnormalities during task-free resting
state in PG. In the present study, graph-theoretical methods were used to investigate
network properties of resting state functional magnetic resonance imaging data in PG.
We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis
Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal
level, pathological gambler showed a reduced clustering coefficient in the left paracingulate
cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local
efficiency in the left SMA, as well as an increased node betweenness for the left and
right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node
betweenness in the left inferior frontal gyrus was decreased and increased in the caudate.
Additionally, increased functional connectivity between fronto-striatal regions and within
frontal regions has also been found for the gambling patients. These findings suggest
that regions associated with the reward system demonstrate reduced segregation but
enhanced integration while regions associated with executive functions demonstrate
reduced integration. The present study makes evident that PG is also associated with
abnormalities in the topological network structure of the brain during rest. Since alterations
in PG cannot be explained by direct effects of abused substances on the brain, these
findings will be of relevance for understanding functional connectivity in other addictive
disorders.
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INTRODUCTION
Patients suffering from pathological gambling (PG) show persis-
tent gambling behavior despite negative consequences resulting
in a wide-range of psychosocial impairments (Goudriaan et al.,
2004). PG is classified as an impulse control disorder in DSM-
IV (American Psychiatric Association, 2000), but is increasingly
conceptualized as a behavioral addiction with striking similarities
to substance addictions such as withdrawal symptoms and signs
of tolerance (Petry, 2007). Therefore, PG (besides being renamed
as disordered gambling) has been reclassified under the chapter
“Addiction and related disorders” (together with substance addic-
tions) in DSM 5 (American Psychiatric Association, 2013; Petry
et al., 2013).

Most functional neuroimaging studies in PG up to date have
examined brain activity abnormalities using paradigms such as
reward processing, reactivity to gambling related cues, learn-
ing, decision making, and executive functions (for reviews,
see Potenza, 2008, 2013; van Holst et al., 2010). In line

with brain imaging studies on substance addiction, activation
abnormalities in regions of the mesolimbic reward system (mainly
in orbitofrontal, medial and lateral prefrontal regions, and the
ventral striatum) were consistently found in patients with PG
(Cavedini et al., 2002; Potenza et al., 2003; Reuter et al., 2005;
Tanabe et al., 2007; Balodis et al., 2012; Choi et al., 2012; Miedl
et al., 2012; van Holst et al., 2012a; Hudgens-Haney et al., 2013;
Limbrick-Oldfield et al., 2013).

Brain activation differences in fronto-striatal regions in PG
have also been found in executive function tasks and been com-
monly interpreted as reflecting impairments in cognitive control
and inhibitory functions (Potenza et al., 2003) which contribute
to maladaptive decision making in PG, comparable to such
impairments in substance addiction (Tanabe et al., 2007).

Recent interest in functional neuroimaging studies on neu-
ropsychiatric disorders has focused on analyzing resting state
functional connectivity (Fox and Greicius, 2010; van den Heuvel
and Hulshoff Pol, 2010; Menon, 2011; Xia and He, 2011;
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Buckholtz and Meyer-Lindenberg, 2012; Yu et al., 2012). Com-
pared to task based studies, resting state data is easier to obtain and
does not have to deal with group differences in task performance
and compliance. Resting state connectivity studies have revealed
abnormalities in a wide range of neuropsychiatric disorders such
as depression, schizophrenia, attention-deficit hyperactivity dis-
order (ADHD), and Alzheimer’s disease (for review, see Greicius,
2008).

Resting state functional magnetic resonance imaging (fMRI)
data can also be used to analyze topological network properties
of the brain using graph-theoretical approaches (He and Evans,
2010; Bullmore and Sporns, 2012). These approaches provide
important information on the architecture of brain networks.
Small-world networks are characterized by dense local intercon-
nectivity and short path length linking individual network nodes
in a short and efficient way (e.g., brain regions based on a
parcellation atlas; Bullmore and Sporns, 2009). Short pathways
between one node and any other node as well as a high den-
sity of connections between nearest neighbors are necessary for
efficient segregation and functional integration (Salvador et al.,
2005; Achard et al., 2006; Bassett and Bullmore, 2009). Net-
work graphs are based on structural or functional data and
quantify the structural and functional organization of the brain
(Stam and Reijneveld, 2007).

Studies have shown that the small-world architecture and topo-
logical network properties of the brain exhibit abnormalities
in neuropsychiatric disorders (e.g., He et al., 2009; Lynall et al.,
2010; Zhang et al., 2011a; Cocchi et al., 2012; Cisler et al., 2013;
for a review, see Xia and He, 2011). For example, patient with
schizophrenia show lower cortical integration (lower amount of
connections, longer path lengths, and lower clustering coefficients)
in the frontal, parietal, and temporal pole (Liu et al., 2009). Zhang
et al. (2011a) found global integration differences between HCs
and patients with major depressive disorder and differences in
nodal centrality for frontal areas, and regions of the default-mode
network as well as for subcortical regions like the caudate. Further-
more, patients with obsessive-compulsive disorder (OCD) show
altered functional connectivity and small worldness-properties
(Zhang et al., 2011b). OCD patients demonstrate higher local
clustering in the brain’s cognitive control network (posterior tem-
poral regions and the cingulate cortex). Differences in brain
topology are also reported for young adults with ADHD (Coc-
chi et al., 2012). Functional segregation of the orbitofrontal cortex
in the intrinsic brain network is enhanced in ADHD which can
be linked to attentional and perceptual control deficits. Both
approaches demonstrate how network analyses of the brain iden-
tify alternations directly related to symptoms of the specific mental
disorder.

To date, comparatively less is known about resting state
functional connectivity in addictive disorders (for review, see
Sutherland et al., 2012). For example, a resting state fMRI study
in chronic heroin addicts found increased functional connectiv-
ity of mesolimbic pathways and decreased functional connectivity
between frontal areas (Ma et al., 2010). Two studies using graph-
theoretical approaches reported differences in global small-world
properties and an increased degree in a number of medial frontal,
frontal, and subcortical regions in chronic abstinent heroin addicts

(Liu et al., 2009; Yuan et al., 2010). These studies suggest that
topological network properties may provide important insights
in functional brain abnormalities in addiction. However, both of
these studies on small-world properties in addiction had a rel-
atively small sample size (11 patients in Liu et al., 2009 and 12
patients in Yuan et al., 2010). Furthermore, in studies investigat-
ing substance addiction, results may also partly reflect the effects
of the abused substance on brain structure and function (Clark
and Limbrick-Oldfield, 2013).

To our knowledge, not one single study on resting brain connec-
tivity and especially on topological network properties has been
conducted in PG. Two recent reports of white matter microstruc-
tural abnormalities in PG suggest that brain connectivity and
network organization may be affected in PG (Joutsa et al., 2011; Yip
et al., 2013). Two studies in internet addiction report functional
connectivity abnormalities (Ding et al., 2013; Hong et al., 2013).
Ding et al. (2013) report differences between controls and internet
addicts in functional connectivity between a part of the default
mode network, that is, the posterior cingulate cortex (PCC), and
regions in the cerebellum, the inferior parietal lobule, and the
middle temporal gyrus. Hong et al. (2013) report decreased con-
nectivity in internet addiction between a number of cortical and
subcortical regions but no significant group differences in topo-
logical network properties. The authors point out that the low
number of participants (11 addicted adolescents and 11 matched
HCs) could be a reason for the absence of statistically significant
differences in network properties.

The aim of the present study is to provide first evidence for
alterations in topological network properties using resting state
fMRI and gain further insights on the neural correlates of this
disorder and addictive disorders in general.

MATERIALS AND METHODS
SUBJECTS
This study has been approved by the local ethics committee. Nine-
teen patients with PG and 19 age-matched HCs with no history
of neurological or psychiatric disorders participated in this study.
Written informed consent was provided by all participants. All
patients were seeking treatment and have been recruited at the
Pathological Gambling out-patient clinic at the Department of
Psychiatry and Psychotherapy II. Control subjects were recruited
via advertisements and mailings.

BEHAVIORAL ASSESSMENT
The German version of the short questionnaire on gambling
behavior (Kurzfragebogen zum Glücksspielverhalten – KFG; Petry,
1996) and The South Oaks Gambling Screen (SOGS) by Lesieur
and Blume (1987) were used to quantify gambling behavior. Fur-
thermore, all participants completed the Alcohol Use Disorders
Identification Test (AUDIT; Babor et al., 2006), the Fagerstrom Test
for Nicotine Dependence (FTND; Fagerstrom, 1978), the Behav-
ioral Inhibition Scale (BIS; Carver and White, 1994), and the Beck
Depression Inventory (BDI; Beck et al., 1996).

fMRI DATA ACQUISITION PREPROCESSING
Resting state fMRI was performed with a 3 Tesla Siemens Tim
Trio MRI using a 32-channel head coil. All participants were asked
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to quietly rest in the scanner with their eyes closed and not to
think of anything specific. Two-hundred and fifty T2*-weighted
images were acquired (including six dummy scans which were
discarded) with a gradient echo-planar imaging sequences with
the following parameters: TR: 2.25 s; TE: 30 ms; flip angle: 78◦;
field of view (FOV): 192 mm × 192 mm; matrix size: 64 × 64;
36 slices; slice thickness: 3 mm; slice gap 0.3 mm; voxel size:
3 mm × 3 mm × 3 mm. Additionally, a high-resolution struc-
tural scan (sagittal T1-weighted MPRAGE sequence; TR: 2300 ms;
TE: 2.91 ms; voxel size: 1 mm × 1 mm × 1.2 mm; slice thickness:
1.20 mm; FOV: 356 mm × 356 mm; 160 slices; flip angle: 9◦) and
fieldmaps were obtained from each participant.

Functional magnetic resonance imaging data were prepro-
cessed using Statistical Parametrical Mapping (SPM 8, Wellcome
Department of Imaging Neuroscience, London, UK1). The follow-
ing procedures were included: realignment and unwarping to com-
pensate for movement-related artifacts; slice timing correction;
co-registration of the EPI scans to the skull-stripped T1-weighted
structural scan; normalization to standard stereotaxic anatomi-
cal Montreal Neurological Institute (MNI) space; smoothing with
6 mm full-width at half-maximum (FWHM) Gaussian kernel;
voxel size was resampled to isotropic 3 mm × 3 mm × 3 mm.

To address the problem of confounds due to small head motion
which may influence resting state connectivity, we ensured that all
data sets did not exhibit movements larger than 3 mm for trans-
lations or 3◦ for rotations. Movement parameters were compared
between patients and HCs using two-tailed t-tests. There are no
significant differences in any of the six movement parameters (all
ts < 1, all ps > 0.3).

For further analyses, noise correction and filtering with a band-
pass filter between 0.01 and 0.1 Hz was performed with the conn
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). For noise
correction all six movement parameters and the first derivative
of the time-series were removed from the data by regression.
For further noise reduction, noise signals were estimated from
white matter and CSF signal and removed from the data with
the CompCor method (Behzadi et al., 2007) as implemented in
the conn toolbox. These noise removal steps have been shown to
substantially reduce noise from non-neural sources and increase
the sensitivity and reliability of functional connectivity analysis
(Whitfield-Gabrieli and Nieto-Castanon, 2012). No global signal
regression was performed as it may result in lower reproducibility
of network metrics (see Telesford et al., 2013).

NETWORK CONSTRUCTION
The Harvard–Oxford Atlas was used to extract the preprocessed
fMRI data from 48 left and 48 right hemisphere cortical regions, as
well as from seven left and seven right subcortical regions. Time-
series of the low-frequency BOLD signal were extracted for each
of the 110 regions and averaged over all voxels in each node. For
each subject, the time-series of all 110 regions were correlated
with each other to create an undirected and weighted correlation
matrix using Pearson correlation. These steps were performed with
the conn toolbox. In contrast to partial correlation, the Pearson
correlation coefficient is gaining higher values of reproducibility

1http://www.fil.ion.ucl.ac.uk

(see Telesford et al., 2013). In this network, each region represents
a node with the correlation coefficients of the time-series between
the different regions defining the edges resulting in a 110 × 110
connectivity matrix.

GRAPH ANALYSES
Analyses of network properties were performed with the GAT2

(Hosseini et al., 2012), which uses routines of the Brain Connectiv-
ity Toolbox for network metrics calculation (Rubinov and Sporns,
2010).

Threshold selection
To make groups comparable, we ensured that all graphs had the
same number of edges by applying an individual threshold to each
correlation matrix. This was done by calculating the ratio of the
number of actual connections divided by the maximum number of
all possible connections described as the so-called cost of the net-
work (connection density). Since there is still no consensus of the
best threshold to be chosen, a wide range of threshold values were
applied in this study (0.11 ≤ T ≤ 0.55 with an increment of 0.02).
To verify that the selection of the threshold range is not too wide
which may produce disconnected nodes and networks without
small worldness features on either ends of the range, we ensured
that all subjects (a) had an averaged degree value of 2*log(N) with
N = number of nodes and (b) showed network properties of small
worldness with σ > 1.1 in all threshold values (Zhang et al., 2011a).

Network metrics
For each threshold, the following global metrics were calcu-
lated: characteristic path length (L); the average of the clustering
coefficient (C); global efficiency (Eglob); small worldness (σ);
additionally, the following local metrics were calculated for each
threshold: degree (k); local efficiency (Eloc); node betweenness
(Nbc); clustering coefficient (C).

The degree describes the number of edges linking one node
to the rest of the network and gives information on how func-
tionally connected a network is. The clustering coefficient is a
measure of degree to which nodes in a graph are forming a clus-
ter. The characteristic path length describes the number of edges
between one node and any other node in a network giving an
overview of the effectiveness of information transfer. The global
efficiency is inversely related to the characteristic path length. The
local efficiency is computed on node neighborhoods and is related
to the clustering coefficient reflecting the efficiency of parallel
information transfer, robustness, and fault tolerance of a network.
Compared to the clustering coefficient and the characteristic path
length, measures of efficiency have the advantage of including dis-
connected nodes with a value of 0 while the former remove them
from the analysis, and therefore, may falsify the results when dis-
connected nodes are present (Achard and Bullmore, 2007). The
node betweenness is a measure of centrality and specifies the frac-
tion of all shortest pathways in a network that contain a given
node. The so-called small worldness is the ratio of the averaged
and normalized clustering coefficient (γ) to the normalized char-
acteristic path length (λ) and assesses the small-world properties
of a network characterized by high clustering coefficient and a

2http://nnl.stanford.edu/tools.html
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low characteristic path length. Small-worldness properties of a
network are usually given when sigma (σ) is greater than 1.

All metrics were compared with the corresponding values
obtained and averaged from 20 random networks with the same
number of nodes, total edges, and degree distribution resulting in,
for example, γ = C/Crand and λ = L/Lrand (Maslov and Sneppen,
2002).

Statistical analyses
Group comparisons of the metrics were conducted with permuta-
tion tests implemented in the GAT toolbox using the area under the
curve (AUC) calculated over the threshold for each metric (Bruno
et al., 2012; Hosseini et al., 2012; Singh et al., 2013). All results were
corrected for multiple comparisons using a false positive correc-
tion, p < 1/N (Alexander-Bloch et al., 2010). All p-values corrected
for multiple comparisons have been transformed and are reported
as pcor.

Since this study is an exploratory study and the first in PG using
graph theoretical approaches to assess network properties in rest-
ing state data, we also report significant results with uncorrected
p-values.

To examine possible alterations of functional connectivity
strength between regions, the correlation values of all regions were
compared between both groups to find significant differences in
connectivity. Analyses of functional connectivity were performed
with the conn toolbox and corrected for multiple comparisons
using an FDR-threshold, p < 0.05.

RESULTS
SAMPLE CHARACTERISTICS
Sample characteristics are shown in Table 1. No statistically signif-
icant group differences were found for sex ratio, years of education,
or age. Furthermore, PG patients were comparable to HCs with
respect to tobacco and alcohol consumption as assessed by the
FTND and the AUDIT.

Large group differences were found in gambling behavior
(KFG; SOGS). PG patients also demonstrated a larger number

Table 1 | Sample characteristics and group differences for healthy

controls (HCs) and pathological gamblers (PG) in all questionnaires.

HC PG

N /female 19/2 19/2

N smoker 4 6

Mean SD Mean SD

Age 42.4 14.85 41.4 10.35

AUDIT 3.63 2.53 5.07 6.06

BDI 3.53 5.20 13.72 12.9***

KFG 2.22 5.52 36.94 9.49***

SOGS 0.54 1.45 10.79 2.69***

BIS 48.93 12.91 67.48 9.59***

***p < 0.001.

of depressive symptoms as measured by the BDI and higher
impulsivity as measured by the BIS.

GLOBAL METRICS
Both groups showed small worldness properties with σ > 1 and
there were no significant differences between groups (p = 0.845).
Compared to random networks, both groups showed a higher
averaged clustering coefficient (γ > 1) and similar values for
the characteristic path length (λ ∼ 1). None of the global met-
rics differed between patients and controls (Eglob: p = 0.646; λ:
p = 0.797; γ: p = 0.817). Results for all global metrics are displayed
in Figure 1.

NODAL METRICS
At the corrected significance threshold, differences in nodal met-
rics were found in medial frontal regions. As can be seen in
Figure 2, patients with PG demonstrated a decreased cluster-
ing coefficient for the left juxtapositional lobe (supplementary
motor area, SMA; pcor = 0.038) and the left paracingulate gyrus
(pcor = 0.044). Additionally, local efficiency for the left juxtaposi-
tional lobe (SMA) was decreased for PG patients (pcor = 0.022).
Node betweenness was increased in the right paracingulate gyrus
(pcor = 0.05) as well as in the left paracingulate gyrus (pcor = 0.011)
in PG patients. Further differences in regional metrics at an uncor-
rected significance level are shown for exploratory purposes in
Table 2.

FUNCTIONAL CONNECTIVITY ANALYSES
Functional connectivity was increased in patients between frontal
regions and between frontal and temporal regions (see Table 3).
Furthermore, we found increased connectivity in patients between
the left caudate and the right anterior cingulum as well as the left
anterior cingulum. Additionally, the left amygdala with the left
subcallosal cortex demonstrated weaker connectivity in patients
than in controls.

DISCUSSION
In this exploratory study, we investigated the functional network
properties of patients with PG during the resting state using a
graph-theoretical approach. While several studies could demon-
strate functional abnormalities in PG during tasks associated with
gambling, executive functions, and reward processing (Reuter
et al., 2005; Tanabe et al., 2007; Balodis et al., 2012; Choi et al.,
2012; Miedl et al., 2012; van Holst et al., 2012a; Hudgens-Haney
et al., 2013; Limbrick-Oldfield et al., 2013; for a review, see Potenza,
2013), we are the first to show that patients with a behavioral
addiction such as PG exhibit alterations in the topology of resting
state networks in regions associated with reward processing and
self-regulation.

Network properties at the global level showed no differences
between patients and HCs. Global efficiency of information
transfer and fault tolerance, for example, were similarly high in
both groups. This is in line with a previous graph-theoretical
study investigating the global topology of subjects suffering from
internet addiction (Hong et al., 2013).

In contrast to global network properties, we found signifi-
cant differences between healthy subjects and patients in network
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FIGURE 1 | Global metrics for pathological gamblers (PG) and healthy controls (HC) in all density thresholds: (A) small worldness (σ); (B) global

efficiency; (C) characteristic path length (λ); (D) averaged clustering coefficient (γ).

FIGURE 2 | Mean area under the curve (AUC) values for nodal metrics

in regions with statistically significant group differences (pcor < 0.05)

between controls and patients with pathological gambling (PG): (A)

local efficiency; (B) clustering coefficient; (C) node betweenness. Error
bars reflect standard deviations; SMA: supplementary motor area.

properties at the nodal level. Corrected for multiple comparisons,
only medial frontal regions were affected in patients with PG.
The SMA and the paracingulate cortex both showed a reduced
clustering coefficient and impaired local efficiency of information
transfer and fault tolerance. Furthermore, the contribution to the
number of shortest paths was increased in both regions suggesting
that these regions seem to adopt a more central position in the
network than in healthy subjects. Note that the results for local
efficiency in the paracingulate cortex and for betweenness central-
ity in the SMA are only tendencies, since they are not significant
at a corrected level. These findings indicate that in medial frontal
regions the balance between integration and segregation seem to
be altered.

Medial frontal regions like the paracingulate cortex are asso-
ciated with reward processing (Knutson et al., 2001; van den Bos
et al., 2007; Fujiwara et al., 2009). Dysfunctions in reward process-
ing are typical findings of previous investigations in PG (Reuter
et al., 2005; Clark and Limbrick-Oldfield, 2013). The cingulate
cortex is also important for gambling situations especially for spe-
cific processes of gambling (Campbell-Meiklejohn et al., 2008) like
loss-chasing and quitting gambling.

Another frontal region which was found to be affected in
PG is the SMA. The SMA demonstrated the same pattern of
impairments as the paracingulate cortex with decreased cluster-
ing and efficiency of local information transfer but an increase in
betweenness centrality.

The SMA is associated with motor execution and vigi-
lance performance (Hinds et al., 2013) but is also involved in
error detection and reward expectancy (McClure et al., 2004).
Thus, the findings of this study demonstrating alterations
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Table 2 | Significant differences in all metrics using area under the curve (AUC) for pathological gamblers (PG) and healthy controls (HCs).

Hemisphere Region Metric p-Value pcor Group comparison

Right Paracingulate NB 0.009 0.050* PG > HC

Insular LE 0.057 0.316 HC > PG

NB 0.027 0.150 PG > HC

Precentral CC 0.026 0.144 HC > PG

Supramarginal (anterior) NB 0.019 0.105 HC > PG

Temporal fusiform (posterior) DG 0.022 0.122 PG > HC

Temporal fusiform (anterior) LE 0.031 0.172 PG > HC

NB 0.040 0.222 HC > PG

Caudate NB 0.041 0.227 PG > HC

Hippocampus NB 0.036 0.200 HC > PG

Left Juxtapositional (SMA) CC 0.007 0.038* HC > PG

LE 0.004 0.022* HC > PG

NB 0.041 0.227 PG > HC

Paracingulate CC 0.008 0.044* HC > PG

LE 0.033 0.183 HC > PG

NB 0.002 0.011* PG > HC

Inferior frontal (pars triangularis) NB 0.026 0.144 HC > PG

Middle temporal (anterior) CC 0.039 0.216 PG > HC

DG 0.013 0.072 HC > PG

Middle temporal (temporoocci) DG 0.024 0.133 PG > HC

NB 0.037 0.205 PG > HC

Inferior temporal (anterior) CC 0.034 0.188 PG > HC

LE 0.035 0.194 PG > HC

Inferior temporal (temporoocci) NB 0.034 0.188 PG > HC

Lateral occipital superior CC 0.025 0.138 HC > PG

LE 0.016 0.088 HC > PG

Temporal fusiform (posterior) CC 0.045 0.250 PG > HC

LE 0.024 0.133 PG > HC

CC, clustering coefficient; DG, degree; LE, local efficiency; NB, node betweenness; pcor: corrected for multiple comparisons; *Statistically significant at p < 0.05,
corrected for multiple comparisons.

in integration and segregation of medial frontal regions
may underlie specific behavioral difficulties patients with PG
exhibit.

Since this was an exploratory study, we also want to discuss
findings which do not exceed the threshold selected to correct for
multiple comparisons.

We found a reduced fraction of path length in the left infe-
rior frontal gyrus which also contributes to the general findings
of impairments in frontal regions in gambling and addiction.
A previous study showed that PG patients exhibit alterations
in inferior frontal activity during gambling cue presentation
(Crockford et al., 2005). The inferior frontal gyrus has been asso-
ciated with executive control and response inhibition (Hampshire
et al., 2010). Interestingly, while medial frontal regions showed an
increase in betweenness centrality, in lateral frontal regions, this
metric was decreased. This pattern may support previous findings
demonstrating deficits in self-regulation and working memory in

PG (Forbush et al., 2008), but enhanced involvement of the reward
system.

Additionally, we further found alterations in subcortical regions
at an uncorrected threshold level. The right caudate plays a more
central role as a main hub for integration of information com-
pared to HCs while the hippocampus is less involved. Again,
this points out the enhanced involvement of the reward sys-
tem in PG. The caudate is part of the striatum which is an
important part of the mesolimbic reward system. The alterations
found in network properties of the hippocampus, are in line with
deficits in heroin addicts identified in a previous study (Liu et al.,
2009).

This pattern of impaired topology in regions which were pre-
viously associated with the executive control network and the
reward system (Potenza et al., 2003; Reuter et al., 2005; Tanabe
et al., 2007; Limbrick-Oldfield et al., 2013) is complemented by
our findings of increased functional connectivity of fronto-striatal
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Table 3 | Significant differences between pathological gamblers (PG) and healthy controls (HC) in functional connectivity.

Region Region Group p-Value*

Right inferior frontal (pas opercularis) Right hippocampus HC < PG <0.001

Right frontal operculum Right inferior temporal gyrus (temporoocci) HC< PG <0.001

Right frontal operculum Right cuneal cortex HC < PG <0.001

Right frontal operculum Right temporal fusiform (anterior) HC < PG 0.003

Right frontal operculum Left inferior temporal (temporoocci part) HC < PG 0.001

Right frontal operculum Left middle frontal HC < PG <0.001

Right frontal operculum Left middle temporal (temporoocci) HC < PG <0.001

Right frontal operculum Left frontal pole HC < PG 0.003

Left caudate Right cingulate (anterior) HC < PG 0.001

Left caudate Left cingulate (anterior) HC < PG 0.004

Right angular Left lateral occipital (superior) HC < PG <0.001

Right temporal fusiform (posterior) Left inferior temporal (temporoocci) HC < PG 0.001

Left middle temporal (anterior) Left parahippocampal (anterior) PG < HC <0.001

Left subcallosal Left amygdala PG < HC 0.004

*Statistically significant at FDR-corrected threshold, p < 0.05.

circuits and between frontal regions. Note that almost all differ-
ences in connectivity in which patients with PG exhibit higher
functional connectivity than controls affect regions associated
with the reward system. This is in line with previous studies find-
ing alterations in functional connectivity between medial frontal
and subcortical regions in addiction (Ma et al., 2010).

One previous study investigating network properties in behav-
ioral addiction was performed in subjects with internet addiction
(Hong et al., 2013). This study did not identify any alterations in
the network topology in addicts. However, the authors emphasize
that the non-significant results may be due to the small sample
size. Additionally, two studies in heroin addiction also focused on
graph-theoretical methods to investigate network properties (Liu
et al., 2009; Yuan et al., 2010). They report dysfunction in several
frontal regions including the cingulate cortex and the SMA, and
subcortical regions including the striatum and the hippocampus.
Our findings endorse the association of addictive behavior with
alterations in functional connectivity and network topology dur-
ing resting state in these specific frontal and striatal regions. This
finding is of high relevance since previous investigations showing
abnormalities in brain topology focused on addiction involving
substance abuse. Thus, conclusions drawn from these studies are
confounded by the neurotoxic effects of the abused substances
(Clark and Limbrick-Oldfield, 2013). With this study, we con-
firm that abnormalities in network properties can also be found
in behavioral addiction and therefore cannot solely be explained
by effects of drugs on brain connectivity.

There are no available standards for a uniform application
of graph theories at present (Bullmore and Sporns, 2009). One
methodological limitation when investigating network topology
with a graph-theoretical approach, for example, is the choice of
thresholds. There are several possibilities to select the threshold
and no golden standard has been defined yet. When compar-
ing groups it should be ensured that each network has the same

number of edges. However, the problem with a global threshold
is that it may lead to disconnected graphs. Comparing network
properties of one graph with the other is problematic if the one is
connected at a given node and the other is disconnected. To address
this problem, we ensured that the averaged degree is above the
selected threshold and all subjects show small-world properties.
Furthermore, we also investigated the global and local efficiency
in addition to the clustering coefficient and the characteristic path
length. These metrics have some methodological advantages when
dealing with disconnectedness (Achard and Bullmore, 2007).

Another limitation is the wide range of thresholds selected.
Depending on the range, results differ between studies and make
comparison of findings and their interpretation difficult. How-
ever, we have implemented strategies which have been successfully
applied in previous studies using graph-theoretical approaches
(e.g., Zhang et al., 2011a; Bruno et al., 2012). Since this is a first
exploratory study in PG using graph-theoretical analyses of resting
state fMRI data, further research must be conducted to confirm
these results.

Moreover, Zalesky et al. (2012) has shown that the type
of randomization (topology randomization, correlation matrix
randomization, or time-series randomization) influences the nor-
malization process of the metrics. For a low density of around 7%
the authors identified a discrepancy of approximately 60% when
applying topology randomization compared to correlation matrix
randomization to estimate the normalized clustering coefficient.
In addition, using correlation matrix randomization to normal-
ize characteristic path length may lead to longer path lengths
due to the randomization of hub nodes since the degree distri-
bution is not preserved. These limitations affect especially low
density thresholds around 7% and are evident when looking at
absolute small-world properties of the networks in each group.
However, they are less essential for the comparison of network
metrics between groups which is the focus of this study.
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This first study in PG using graph-theoretical approaches to
investigate network properties demonstrates that alterations of
regions associated with the reward system and executive func-
tions are not only present in task-related activity but also during
rest. Alterations are reflected in a decrease in segregation and
an increase of information integration in specific regions of the
reward system.

This may contribute to the ongoing discussion whether
PG is characterized by a hyper- or a hypoactive reward sys-
tem (Hommer et al., 2011; van Holst et al., 2012b). Further-
more, our results suggest deficits of integration in regions
associated with executive functions. These alterations may

provide further explanation for several symptoms and previ-
ous findings in PG (for a review see Goudriaan et al., 2004;
van Holst et al., 2010)
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