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Alterations in interregional neural connectivity have been suggested as a signature of
the pathobiology of autism. There have been many reports of functional and anatomical
connectivity being altered while individuals with autism are engaged in complex cognitive
and social tasks. Although disrupted instantaneous correlation between cortical regions
observed from functional MRI is considered to be an explanatory model for autism,
the causal influence of a brain area on another (effective connectivity) is a vital link
missing in these studies. The current study focuses on addressing this in an fMRI study
of Theory-of-Mind (ToM) in 15 high-functioning adolescents and adults with autism and
15 typically developing control participants. Participants viewed a series of comic strip
vignettes in the MRI scanner and were asked to choose the most logical end to the story
from three alternatives, separately for trials involving physical and intentional causality.
The mean time series, extracted from 18 activated regions of interest, were processed
using a multivariate autoregressive model (MVAR) to obtain the causality matrices for
each of the 30 participants. These causal connectivity weights, along with assessment
scores, functional connectivity values, and fractional anisotropy obtained from DTI data for
each participant, were submitted to a recursive cluster elimination based support vector
machine classifier to determine the accuracy with which the classifier can predict a novel
participant’s group membership (autism or control). We found a maximum classification
accuracy of 95.9% with 19 features which had the highest discriminative ability between
the groups. All of the 19 features were effective connectivity paths, indicating that causal
information may be critical in discriminating between autism and control groups. These
effective connectivity paths were also found to be significantly greater in controls as
compared to ASD participants and consisted predominantly of outputs from the fusiform
face area and middle temporal gyrus indicating impaired connectivity in ASD participants,
particularly in the social brain areas. These findings collectively point toward the fact that
alterations in causal connectivity in the brain in ASD could serve as a potential non-invasive
neuroimaging signature for autism.
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INTRODUCTION
A biological origin for autism spectrum disorders (ASD) had
been proposed even in the earliest published accounts of the
disorder (Kanner, 1943; Asperger, 1944). Despite several decades
of research since then, a focal neurobiological marker for autism
has been rather elusive. Brain imaging techniques in the last
decade, particularly functional and structural MRI, have pointed
to disrupted cortical connectivity as a defining neural feature
of ASD (Kana et al., 2011; Just et al., 2012). Neuroimaging
studies have reported functional under connectivity (weaker
synchronization of activated brain areas) between frontal and
posterior brain areas (Just et al., 2004, 2007; Villalobos et al.,
2005; Kana et al., 2006, 2007, 2009; Koshino et al., 2008; Mason
et al., 2008; Solomon et al., 2009; Damarla et al., 2010; Jones
et al., 2010; Mizuno et al., 2011; Schipul et al., 2011), and intact
or increased functional connectivity within relatively posterior

brain areas (Villalobos et al., 2005; Kana et al., 2006; Damarla
et al., 2010; Kana et al., under review). Similar findings have
also been reported during task-free resting state in autism
(Cherkassky et al., 2006; Assaf et al., 2010; Murdaugh et al.,
2012). Furthermore, diffusion tensor imaging (DTI) studies
have reported disruptions in anatomical connectivity in ASD
(Barnea-Goraly et al., 2004, 2010; Alexander et al., 2007; Keller
et al., 2007; Jou et al., 2011; see Travers et al., 2012 for a review).
Although there is converging evidence for connection abnormal-
ities, the neural connectivity model of ASD is based primarily
on functional connectivity, with some contributing evidence
from white matter integrity. While the insights gained from
these models are valuable, functional connectivity is a method
for assessing zero-lag correlations, and does not provide insight
into the time-lagged relationships and direction of such causal
influence.

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 670 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2013.00670/abstract
http://www.frontiersin.org/people/u/75947
http://www.frontiersin.org/people/u/100561
http://community.frontiersin.org/people/KarthikSreenivasan/115798
http://community.frontiersin.org/people/HrishikeshDeshpande/115768
http://www.frontiersin.org/people/u/63878
mailto:rkana@uab.edu
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Deshpande et al. Neural connectivity signatures of autism

Effective connectivity, on the other hand, refers to the influ-
ence one neural system exerts over another with respect to a given
experimental context (Buchel and Friston, 2000), thus helping
uncover more information about how brain areas communicate.
Effective connectivity can provide information about the trans-
fer of information from one node to another, and differentiate
between top-down vs. bottom-up effects. Thus, effective con-
nectivity findings have enriched models of cognitive function by
emphasizing the dynamic and interactive nature of neural instan-
tiations (McIntosh et al., 2010). Studying such interactions is
important not only for understanding typical brain functioning,
but also is critical in learning more about diseases. Considering
relatively consistent reports of disruptions in functional connec-
tivity in ASD, it is perhaps a logical and valuable next step to study
how information transfer is accomplished in ASD brains. Of par-
ticular interest is to explore the information transfer among brain
areas that are part of a team to perform higher-order cognitive
and social functions, which people with ASD particularly struggle
with.

Understanding the information transfer, or the lack of it,
between specific nodes in the brain may help uncover the neu-
ral bases of behavioral and social problems in ASD. It should
be noted that only four previous studies have examined effec-
tive connectivity between brain regions in ASD (Bird et al., 2006;
Wicker et al., 2008; Shih et al., 2010; Shen et al., 2012). These
studies only permit limited inferences as they used a small num-
ber of regions and made prior assumptions about the underlying
connectional architecture. This is because they used confirmatory
methods such as dynamic causal modeling (Friston et al., 2003)
and structural equation modeling (McIntosh and Gozales-Lima,
1994) in their studies. In contrast, the present study applies mul-
tivariate autoregressive (MVAR) modeling for obtaining Granger
causality between a large number of brain regions. This is an
exploratory technique which does not make any prior assump-
tions about the underlying connectional architecture. In addition,
it is capable of obtaining condition-specific causal influences
between a large number of brain regions using relatively shorter
time series. According to the principle of Granger causality, the
directional causal influence from time series X to time series Y
can be inferred if past values of time series X help predict the
present and future values of the time series Y (Granger, 1969).
MVAR models have been used to characterize the predictive rela-
tionship between the time series from different brain regions
in many previous studies (Roebroeck et al., 2005; Abler et al.,
2006; Deshpande et al., 2008, 2009b; Sathian et al., 2011). But
according to many recent studies, the spatial variability of the
hemodynamic response is considered to be of vascular origin,
and hence confounding the Granger causal estimates obtained
from raw fMRI time series (David et al., 2008; Deshpande et al.,
2010b). Removing the smoothing effect of the hemodynamic
response function (HRF) will increase the effective temporal
resolution of the signal in addition to accounting for the inter-
subject and inter-regional variability of the HRF (Handwerker
et al., 2004). This can be accomplished using blind hemodynamic
deconvolution methods where in the underlying hidden neuronal
variable for the fMRI time series can be estimated. We employed
this approach in this study by deconvolving the hemodynamic

response from fMRI time series using a Cubature Kalman fil-
ter (CKF) (Havlicek et al., 2011). Subsequently, these hidden
neuronal variables were input into the MVAR model to obtain
directional connectivity measures.

Investigating the directional interactions among brain areas
in ASD could supplement functional connectivity findings, and
potentially may serve as a neural signature for the disorder.
Thus, connection abnormalities at anatomical, functional, and
causal levels may be considered for potential diagnosis of ASD
and/or to supplement the behavior-based diagnosis. However,
such attempts will need to test and validate the diagnostic util-
ity of connection abnormalities in ASD. Questions pertaining to
diagnostic utility may be best answered through pattern classifi-
cation analyses using sophisticated machine learning algorithms
(Deshpande et al., 2010a; Weygandt et al., 2011; Shinkareva et al.,
2013). In this regard, earlier studies have used pattern recogni-
tion and machine learning algorithms reliably in classification.
Craddock et al. (2009) showed that by using resting state func-
tional connectivity metrics as features in SVM based machine
learning classifier, Major Depressive Disorder (MDD) patients
were successfully distinguished from healthy controls. In another
study, the treatment type provided to patients with MDD was
accurately identified using SVM classifier based on the effective
connectivity measures (Deshpande et al., 2009a). A pattern recog-
nition approach using structural networks as biomarkers was
proposed (Marquand et al., 2013) for classification of Parkinson’s
Disorder. This method of analysis accurately predicted the diag-
nosis in patients with Parkinson disorders. A study by Mirowski
and colleagues (2009) showed that machine learning classifiers
can be successfully used in prediction of seizures in patients with
epilepsy. Given the success of pattern recognition and classifi-
cation methods based on machine learning techniques in other
fields and contexts, they could potentially prove to be useful
to correctly identify participants with ASD after replication and
fine tuning. In these lines, diagnostic information (although
preliminary) has been obtained from even short fMRI BOLD
sequences, such as characterization of subject age (Dosenbach
et al., 2010), classification of dementia (Chen et al., 2011), and
autism (Anderson et al., 2011; Murdaugh et al., 2012; Wang et al.,
2012). For a neurodevelopmental disorder such as ASD, which
is currently diagnosed solely by behavioral observation and in-
person interviews by clinicians, classification by brain imaging
signatures could be applied to gain more accurate (and per-
haps earlier) diagnosis of the disorder. Classification studies have
utilized a wide range of data sources to differentiate partici-
pants into ASD and TD groups, including functional connectivity
(Anderson et al., 2011; Murdaugh et al., 2012; Wang et al., 2012),
voxel based morphometry (Uddin et al., 2011; Calderoni et al.,
2012), fMRI activation patterns (Coutanche et al., 2011), EEG
(Duffy and Als, 2012), and DTI (Ingalhalikar et al., 2011). Yet,
none of these methods are currently employed to diagnose the
disorder. Issues remain regarding generalizability, such as whether
the classification techniques can still be accurately applied to
younger children. When other disorders also show functional
connectivity and resting state abnormalities, such as schizophre-
nia (Lawrie et al., 2002; Meyer-Lindenberg et al., 2005; Garrity
et al., 2007) and ADHD (Tian et al., 2006; Cubillo et al., 2010),
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it begs the question about the specificity of these metrics to ASD.
However, notably, effective connectivity markers have not been
used in classification of ASD individuals. In this regard, effec-
tive connectivity could be an additional data source utilized to
add to classification of ASD participants, potentially providing
sufficient information to serve as a biomarker for the disorder.
In other words, effective connectivity could contribute signifi-
cantly to the global connectivity-based neural characterization of
ASD. Also, whereas traditional statistical analyses can uncover sig-
nificant group differences in brain activation and connectivity,
classification analyses can serve to identify brain imaging signa-
tures which are not only able to separate or distinguish the groups,
but also predict the group membership of a new subject.

In the current study we explored the causal influences between
brain regions that may underlie the processing of theory-of-mind
(ToM) in young adults with ASD and typically developing (TD)
control participants. The original fMRI study on ToM was pub-
lished earlier (Kana et al., 2012), reporting findings of brain
activity, functional connectivity and white matter integrity. In the
current study, we obtained causal connectivity between 18 brain
regions activated in the ToM task in our previous publication
(Kana et al., 2012). We used these causal connectivity weights
along with the following metrics from our previous study—
assessment scores, functional connectivity values and fractional
anisotropy (FA) obtained from DTI data—as features for clas-
sification. We employed recursive cluster elimination to select
important features and a support vector machine (SVM) classi-
fier to classify participants into ASD and TD based on the entire
feature set. This paper is novel in that it takes into consideration
different aspects of brain connectivity, instead of a single index,
to characterize the nature of brain functioning in individuals with
ASD for classification purposes.

METHOD
PARTICIPANTS
Fifteen adolescents and young adults with high-functioning ASD
(mean age: 21.14 years) and 15 age-and-IQ-matched individuals
with typical development (TD) (mean age: 22.18 years) par-
ticipated in this fMRI study. Functional connectivity, structural
connectivity, behavioral data, and brain activation measures from
the same participants were reported elsewhere (Kana et al., 2012).
All participants were required to have an IQ of 80 or above mea-
sured by the Wechsler Abbreviated Scale of Intelligence (WASI).

The participants with ASD were recruited from the University
of Alabama ASD Clinic and surrounding service providers. The
study was approved by the Institutional Review Board of the
University of Alabama at Birmingham, and all participants pro-
vided informed consent for their participation in the study.
Participants with ASD had received a previous diagnosis of an
ASD based on Autism Diagnostic Interview (ADI-R) symptoms,
and Autism Diagnostic Observation Schedule (ADOS). Eight of
the 15 ASD participants in this study had received a diagno-
sis of Asperger’s Disorder. The TD participants were recruited
through newspaper advertisements and through the University of
Alabama at Birmingham’s Psychology 101 course subject pool.
They were screened through a parent-report (for participants
younger than 18 years) or self-report history questionnaire to rule
out neurological disorders, such as ASD, ADHD, or Tourette’s
Disorder, that could potentially confound the results. All partici-
pants completed the Autism Spectrum Quotient (AQ) question-
naire (Baron-Cohen et al., 2001b), and the Reading the Mind in
the Eyes (RME) test (Baron-Cohen et al., 2001a). Demographic
information about the participants is shown in Table 1.

EXPERIMENTAL PARADIGM AND IMAGING PARAMETERS
The stimuli consisted of a series of black and white comic strip
vignettes (adapted from Brunet et al., 2000) depicting scenarios
that demand either a physical causal attribution or an inten-
tional causal attribution to arrive at a logical ending. The first
part of the vignette was presented for 5 s and the participants’
task was to choose a logical ending to the story from the three
choices in the second panel presented for 6 s. The entire vignette
remained on the screen for a total of 11 s. The experiment was
designed in an event-related format. All data were collected using
a Siemens 3.0 Tesla Allegra head-only scanner (Siemens Medical
Inc., Erlangen, Germany). For functional imaging, a single-shot
gradient-recalled echo-planar pulse sequence was used for rapid
image acquisition (TR = 1000 ms, TE = 30 ms, flip angle = 60
degrees). Seventeen adjacent oblique-axial slices were acquired
in an interleaved sequence with 5 mm slice thickness, 1 mm slice
gap, a 24 × 24 cm2 field of view (FOV), and a 64 × 64 matrix,
resulting in an in-plane resolution of 3.75 × 3.75 × 5 mm3. More
information on the experimental paradigm and imaging param-
eters for the 3D MPRAGE structural MRI data and diffusion
weighted echo-planar imaging data can be found in Appendix A
(for further details, please refer to Kana et al., 2012).

Table 1 | Demographic information of the ASD and TD control participants.

Autism Control

N = 15 N = 15 Group difference

Mean Range SD Median IQR Mean Range SD Median IQR t-value p-value

Age 21.14 16–29 0.99 20.08 5 22.28 16–34 1.08 21.83 3.3 0.77 0.44

VIQ 104.8 74–139 5.02 102 31 113.93 98–127 2.2 116 14 1.66 0.11

PIQ 107.7 73–129 4.33 106 25 107.2 89–124 2.48 108 6 0.11 0.92

FSIQ 106.93 80–140 4.84 105 35 112 96–128 2.24 113 13 0.94 0.35

MIE 19.07 15–24 0.7 20 4 21.6 18–24 0.55 22 4 2.84 0.01

AQ 26.5 9–38 2.04 29 12 14.06 4–22 1.45 14 9 5.47 <0.001
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DATA ANALYSES
Head motion correction and regions of interest (ROI) definition
Within-group brain activation was examined for the whole group
(ASD + TD) of participants (see Kana et al., 2012). Functional
ROIs were defined on the group activation map for the whole
group (ASD + TD) for the contrast (Intentional Causality +
Physical Causality) vs. Fixation, so that it best represented the
study. Because head motion can impact connectivity analyses
(Satterthwaite et al., 2012; Van Dijk et al., 2012), a conservative
threshold of 0.5 mm was set for head motion in any direction.
In addition, the root mean square (RMS) values of head motion
were measured in three translational directions (x, y, and z) and
three rotations (pitch, roll, and yaw) for each individual partici-
pant in the study (see Appendix B Table B1). We examined group
differences in head motion on this data using a Mann-Whitney U
Test, which is a non-parametric test and may be more appropriate
in case assumptions about normality of sample distributions are
not met.

Eighteen ROIs were identified: supplementary motor area
(SMA), left and right inferior frontal gyrus (LIFG, RIFG), left and
right precentral cortex (LPRCN, RPRCN), left and right middle
temporal gyrus (LMTG, RMTG), right superior temporal gyrus
(RSTG), left and right inferior parietal lobule (LIPL, RIPL), left
and right fusiform gyrus (LFFG, RFFG), left and right supe-
rior parietal lobule (LSPL, RSPL), left and right middle occipital
gyrus (LMOG, RMOG), and left and right temporal parietal junc-
tion (LTPJ, RTPJ). A sphere was defined for each cluster (with a
radius ranging from 8 to 12 mm) that best captured the cluster
of activation in the contrast map for each group. The radius was
selected to specifically encompass as much of the activation clus-
ter as possible, without including surrounding (not significantly
activated) areas. Selecting ROIs of the same radius or utilizing
anatomically defined ROIs may entail those ROIs not encom-
passing the entire cluster of activation, or may include tissue
that is not significantly active for the task. As a result, extract-
ing time courses from ROIs defined in these ways may result in
time series variability that does not reflect the cognitive task being
processed.

The effective connectivity model
Let l fMRI time series be represented as X(t) =
[x1(t)x2(t) . . . xl(t)]. Below, we present a model linking
observed fMRI time series to underlying latent neuronal
variables. A dynamic state-space model can be described as
follows.
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Where h is the hidden neuronal state variable, u is the exoge-
nous input and θ represents the HRF parameter variables. f is the
function which links the current neuronal state to the previous
neuronal states, exogenous inputs and parameters. The subscript
T indicates continuous time and the superscript l indicates the
number of time series in the model. P, Q, and R are the zero mean

Gaussian state noise vectors. The observation equation links the
state to observation variables as given below.

xl(t) = m(h̃l
t) + εt−1 (2)

where ε is the measurement noise, t is discrete time and m
is the measurement function which links the state variables to
measurement variables. The exogenous inputs u, which is the
experimental boxcar function, and xl(t) are the inputs to the
model. As demonstrated before, using the CKF (Havlicek et al.,
2011), the hidden neuronal variables can be estimated success-
fully. The CKF performs very efficient joint estimation of the
hidden neuronal state variables and parameters. In addition, since
Eq. 1 represents a continuous time model, the neuronal variables
can be estimated with a highly improved temporal resolution
up to 10 times smaller than the TR. When the hidden neuronal
state variables hl(t) are input into the MVAR model, we get the
following equation.
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where p is the model order estimated by the Akaike/Bayesian
information criterion (Deshpande et al., 2009b), a represent the
model coefficients and e represents the error of the MVAR model.
From the above equation it can be observed that a(0) repre-
sents the instantaneous influences between the time series, and
the Granger causal influences between them is indicated by a(j),
j = 1 . . . . p. Both terms are used in the model because including
both instantaneous and causal terms in the model minimizes the
“leakage” of instantaneous correlation into causality (Deshpande
et al., 2010c). The multivariate model we have used is less sensitive
to the effects of missing variables than the traditionally used pair-
wise bivariate models (Kuś et al., 2004). Also, since we included all
18 regions which were activated in the effect of interest, it guar-
anteed to a certain level that all regions involved in the task were
indeed included in the model.

Effective connectivity analysis
Mean time series from 18 activated regions were obtained for
each of the 15 participants with ASD and the 15 typical con-
trol participants. Using the boxcar function corresponding to
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“intentional causality” as the exogenous input, hidden neuronal
variables corresponding to normalized mean fMRI time series
were obtained and input into the MVAR model. The Granger
causal relationships between the 18 regions for each participant
(ASD and TD) were obtained. The number of coefficients in the
MVAR model is equal to k2p (k is the number of time series and
p is the model order) (Kuś et al., 2004). This must be smaller
than the number of time points in each time series. We had 18
ROI time series, each of length 460. Since we used a first order
model, k2p = 324 which is less than 460. Therefore, we were able
to estimate the model.

Classification using support vector machine
The statistical separation of neural signatures (e.g., t-test) does
not guarantee generalizability or predictive power of those sig-
natures for diagnosis. Therefore, in this study, we also used
machine learning approaches for identification of metrics which
can accurately classify individuals with ASD from individuals
with typical development. A Recursive Cluster Elimination based
Support Vector Machine (RCE-SVM) (Deshpande et al., 2010a)
was used in this study to classify the participants based on granger
causal path weights between the 18 ROIs, functional connectivity
z-scores for all pairs of the 18 ROIs, assessment scores (AQ and
RME scores) and FA values for the white matter tract extending
into the temporal lobe as the input features. The functional con-
nectivity, assessment and DTI FA values were obtained from our
prior study (Kana et al., 2012).

Our choice of SVM for classification was motivated by its
wide applicability as a machine learning approach (Vapnik, 1995)
for classification in many different fields (Wang, 2005). Previous
studies have demonstrated that using discriminatory features
enhances SVM classification (Craddock et al., 2009). Therefore,
to enhance the performance of the SVM classifier, filtering and
wrapper methods for feature selection have been used. Filtering
methods are based on extraction of features that are statistically
different between classes. They can be extracted using statistical
tests such as a t-test. The wrapper approach is based on itera-
tively eliminating features to minimize the prediction error. RCE
is one of the wrapper methods that is an iterative process were
the feature selection and classification steps are embedded with
each other. The main steps of the RCE-SVM algorithm, shown in
the flowchart in Figure 1, are the cluster step, the SVM scoring
step and the RCE step. Initially, the features that were input into
the classifier were divided into training and testing data sets. Fifty
such splits were carried out in order to ensure the generalizabil-
ity of the results. In the clustering step, k-means algorithm (Yang
et al., 2003) was used to cluster the training data into n clusters.
The number of clusters was first set to the number of features,
and was progressively decreased by one until there were no empty
clusters. The n obtained by this iteration served as the initial n for
the RCE-SVM loop.

In the SVM scoring step, each cluster was scored based on
its ability to differentiate the two categories by applying linear
SVM. In order to rate the clusters, the training data was ran-
domly partitioned into 10 non-overlapping subsets of equal sizes
(10 folds). Using 9 subsets, the linear SVM was trained and per-
formance was calculated using the remaining subset. Different

FIGURE 1 | A flow-chart depicting the Recursive Cluster Elimination

based Support Vector Machine (RCE-SVM) procedure.

possible partitions were taken into account by repeating the clus-
tering and cross validation procedure 50 times. For each of these
50 repetitions, the classification accuracy of SVM was ascertained
using the test data. The average value of this accuracy, taking into
account the repetitions and all the folds was assigned as the score
of the cluster. The bottom 10% of low score clusters were elimi-
nated in the RCE step. The remaining features were merged and
the value of n was decreased by 10% and the cluster step, the SVM
scoring step and the RCE step were repeated again in an itera-
tive manner. After each iteration, the performance of the classifier
was assessed using the testing data and lesser number of features
compared to the earlier iteration. When the number of clusters
was equal to two, the procedure was stopped. Complete separa-
tion of testing and training data in this algorithm eliminates bias
in performance accuracy (Kriegeskorte et al., 2009). The accuracy
at every RCE-SVM loop was calculated as a mean value of accu-
racy obtained over 50 repetitions of each loop and each train-test
split, using the feature clusters of test data available at the cor-
responding loop and split. The statistical significance of mean
accuracies was calculated by estimating the p-values of a bino-
mial null distribution B(η,ρ), η being the number of participants
and ρ is the probability of accurate classification as in previous
studies (Pereira et al., 2009). Only accuracies whose p-values were
less than 0.05 after correcting for multiple comparisons using
Bonferroni method were considered as statistically significant.

The causal connectivity weights obtained from the MVAR
model, the behavioral assessment scores, the functional con-
nectivity z-scores for each ROI pair, and DTI FA metrics for
each of the 30 subjects (15 ASD and 15 TD) were input into the
RCE-SVM classifier to determine the accuracy with which the
classifier can predict a novel subject’s group membership (autism
or control).
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FIGURE 2 | Graph showing classification accuracy, sensitivity

and specificity obtained by simultaneously using the

following features: behavioral scores, functional connectivity,

effective connectivity and fractional anisotropy obtained

from DTI. The X-axis shows number of clusters/number of
features and the Y-axis, the performance (classification accuracy,
sensitivity and specificity). ∗ indicates significance (p < 0.05
corrected).

RESULTS
The main results of this study are summarized as follows: (1) The
effective connectivity path weights were able to successfully clas-
sify participants by diagnosis with 95.9% accuracy. These path
weights were the most discriminative features among all the dif-
ferent metrics used in classification; (2) Effective connectivity
paths most important for classification were significantly reduced
(p < 0.05) in ASD participants compared to typical control par-
ticipants; and (3) The paths that were among the top ranked
features in the classification analysis were found to be negatively
correlated with the AQ and positively correlated with the RME
test scores.

The first set of results pertains to a pattern classification
analysis involving several indices of connectivity (functional con-
nectivity, effective connectivity, white matter integrity) and per-
formance accuracy in this ToM task. In this analysis, utilizing 2
feature clusters comprised of 19 metrics, the classification accu-
racy reached a maximum accuracy of 95.9% (specificity 94.8%,
and sensitivity 96.9%). It should be noted that all of the 19 fea-
tures were effective connectivity paths. Figure 2 demonstrates the
increase in performance of classification with decreasing number
of features (and removal of uninformative features). The p-values
for all the accuracy values shown in Figure 2 can be seen in
Table 2.

Second, the causal connectivity weights of the 19 paths which
led to maximum accuracy of 95.9% showed clear separation
between participants with autism (blue) and typical control par-
ticipants (green) as shown in Figure 3, with these paths showing
significantly (p < 0.05 corrected using Bonferroni method for 18
paths; for one of the paths p < 0.05 uncorrected) weaker connec-
tivity in participants with ASD compared to TD controls. Many of
these connections are between regions that are part of the social
brain network (LTPJ, RTPJ, LFFG, RFFG, LMTG, RMTG, RIFG)
which may prove critical in accomplishing the ToM task used in
this study. It is noteworthy that there may be other paths which

Table 2 | Classification accuracy values and the corresponding

p-values obtained at each step of the RCE algorithm.

Accuracy p-Value

0.625 0.100244
0.672 0.049369
0.724 0.008062
0.754 0.002611
0.778 0.002611
0.792 0.000715
0.805 0.000715
0.815 0.000715
0.82 0.000162
0.835 0.000162
0.855 2.97 × 10−05

0.854 2.97 × 10−05

0.862 2.97 × 10−05

0.876 2.97 × 10−05

0.892 4.22 × 10−06

0.906 4.22 × 10−06

0.906 4.22 × 10−06

0.925 4.34 × 10−07

0.932 4.34 × 10−07

0.939 4.34 × 10−07

0.945 4.34 × 10−07

0.953 2.89 × 10−08

0.959 2.89 × 10−08

are significantly different between the groups. Here, we restrict
ourselves to finding the statistical separation of features which
have the highest ability for predicting the diagnosis of a given sub-
ject. We do so primarily because we are interested in features with
predictive ability rather than those which just “differ” between
the groups. Please refer to Appendix B Figures B1, B2 in order
to gain a qualitative understanding of the functional and effective
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FIGURE 3 | Mean of nineteen paths which was most important for

giving maximum classification accuracy for autism and control groups.

All paths had significantly decreased connectivity (p < 0.05 corrected using

Bonferroni method for 18 paths; for one of the paths p < 0.05 uncorrected) in
the Autism group as compared to controls. The bars represent standard
errors.

FIGURE 4 | The nineteen paths whose effective connectivity

values were top-ranked features for classification of the two

groups (Autism and Controls) with the maximum accuracy

(Left panel: participants with autism; and right panel: control

participants). The width of the arrows represents the path
strength and the color of the path indicates its rank obtained
during classification with 1 being the most significant and 19
being the least significant.

connectivity paths, respectively, between all 18 ROIs in both ASD
and TD groups.

The 19 effective connectivity paths which were most important
in classification are shown in Figure 4. The left panel shows these
paths in ASD participants and the right panel in control partici-
pants. The width of the arrows illustrates the path weight in the
corresponding group and the color represents the rank of the path
obtained during classification.

Third, a correlation analysis was also performed between the
features that were ranked highest in classification and gave rise
to maximum accuracy, and assessment scores (AQ and RME).
Given that the top-ranked features are not guaranteed to have
normal distribution, we used Spearman’s non-parametric corre-
lation method to determine whether the top-ranked features were
correlated with behavior. This analysis (including all participants
in the study) revealed a significant negative correlation between

several effective connectivity paths and the AQ scores as well as
a significant positive correlation between effective connectivity
paths and RME scores (see Table 3 for specific paths, correlation
and p-values). These results suggest that as autism symptom
severity increased, the effective connectivity of the top-ranked
paths decreased; and as the theory-of-mind ability increased,
effective connectivity of the top-ranked paths also increased. This
provides a second-level test of the behavioral relevance of the top-
ranked paths, which is to be expected given the fact that diagnosis
was based on behavioral symptoms. As a cautionary note, these
results should not be construed as a general discovery regard-
ing brain connectivity features in autism which correlate with
behavioral symptoms.

Neuroimaging data, especially brain connectivity analyses are
prone to be influenced by head motion and signal quality. We
conducted several different measures to make sure that our data
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Table 3 | Paths correlated with Autism Quotient (AQ) scores and Reading Mind in Eye (RME) scores.

Paths correlated with Autism Quotient (AQ) scores Paths correlated with Reading Mind in Eye (RME) scores

Source region → Sink region p-Value Correlation coefficient Source region → Sink region p-Value Correlation coefficient

LMTG → LTPJ 0.0003 −0.6137 LMTG → LTPJ 0.0311 0.3941
LMTG → RIFG 0.0007 −0.5837 LMTG → RIFG 0.0183 0.4279
LMTG → RMTG 0.0001 −0.6466 LMTG → RMTG 0.0455 0.3679
LMTG → RMOG 0.0006 −0.5901 LMTG → RMOG 0.0325 0.3912
LFFG → RIFG 0.0061 −0.4889 LFFG → RIFG 0.0428 0.3723
LMTG → LSMA 0.0006 −0.5930 LMTG → LSMA 0.0421 0.3734
RFFG → RTPJ 0.0028 −0.5274 RFFG → RTPJ 0.0373 0.3819
LFFG → RMTG 0.0119 −0.4531 LFFG → RMTG 0.0151 0.4395
RFFG → RMOG 0.0098 −0.4642 RFFG → RMOG 0.0035 0.5169
RFFG → LSPL 0.0187 −0.4266 RFFG → LSPL 0.0417 0.3741
LMTG → RSTG 0.0391 −0.3785 LIPL → RSPL 0.0082 0.4735
LMTG → RTPJ 0.0319 −0.3926 LFFG → LMOG 0.0213 0.4186

RFFG → RSPL 0.0425 0.3727

The paths in red were correlated with both AQ and RME.

and the reported results were not influenced by quality related
issues. First, the root mean square (RMS) values for each subject
and each head motion parameter were obtained (see Appendix
B Table B1). The RMS values were then submitted to a non-
parametric Mann-Whitney U test, which also revealed no sig-
nificant difference in motion in x [U(28) = 66, Z = −1.929, p =
0.06], y [U(28) = 93, Z = −0.809, p = 0.42], and z [U(28) = 96,
Z = −0.684, p = 0.49] translational directions. Nor was there a
significant group difference in rotation in pitch [U(28) = 68, Z =
−1.846, p = 0.06], roll [U(28) = 107, Z = −0.228, p = 0.82],
and yaw [U(28) = 93, Z = −0.809, p = 0.42]. These results indi-
cate that there were no statistical differences in head motion
between the two groups, assuming a p-value threshold of 0.05.
However, there was a non-significant trend (p = 0.06) for trans-
lation in x direction and the degree of rotation in pitch to differ
between the groups.

Further, we obtained the mean value of frame wise displace-
ment (FD) for each subject as a quality control (QC) metric
and investigated whether they correlated with any of the 19
top-ranked paths obtained from classification across the entire
sample. The instantaneous motion of the head was expressed
as a scalar quantity using the formula, FDi = |�dix| + |�diy| +
|�diz| + |�αi| + |�βi| + |�γi|, where �dik = d(j − 1)k − dik and
k is any of the 3 translational parameters (x, y, z) or rotational
parameters (α, β, γ). We converted the rotational displacements
from degrees to millimeters by calculating displacement on the
surface of a sphere of radius 50 mm, assuming that the approxi-
mate mean distance from the center of the head to the cerebral
cortex is 50 mm. The above procedure of calculating FD and
correlating its mean with connectivity metrics obtained from
individual subjects has been recommended recently for either
confirming or ruling out the influence of head motion on con-
nectivity measures (Power et al., 2012; Satterthwaite et al., 2012;
Van Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al.,
2013). The QC-connectivity Spearman’s correlations and cor-
responding p-values indicating their statistical significance are
shown in Table 4. It is evident that none of the QC-connectivity
correlations were statistically significant (p > 0.05). Given these

Table 4 | The Spearman’s correlation between mean frame wise

displacement (our quality control metric) and the Granger causality

weights for the top ranked 19 paths.

Source region → Sink region p-Value Correlation coefficient

LMTG → LTPJ 0.869 −0.031
LMTG → RIFG 0.958 0.010
LIPL → RSPL 0.984 −0.003
LMTG → RMTG 0.701 −0.073
LIPL → RMTG 0.547 0.115
LMTG → RMOG 0.856 −0.035
LFFG → RIFG 0.309 0.192
LMTG → LSMA 0.741 −0.063
LMOG → LPRCN 0.827 0.042
LMTG → RSTG 0.725 −0.067
RFFG → RTPJ 0.599 0.099
LMTG → RTPJ 0.827 −0.042
LMTG → LPRCN 0.665 −0.083
LFFG → LMOG 0.702 −0.073
RFFG → RSPL 0.322 −0.187
LFFG → RMTG 0.623 0.094
RFFG → RMOG 0.404 −0.158
RFFG → LTPJ 0.703 −0.073
RFFG → LSPL 0.866 0.032

The paths shown in the table are ordered according to the rank obtained during

classification with 1 being the most significant and 19 being the least significant

(first path is Rank −1 and the last path is Rank −19).

evidence, any significant group differences for imaging metrics
was probably not due to head motion. We did not use the scrub-
bing method described in Power et al. (2012), where removal
of certain parts of the time series (scrubbing) creates an artifi-
cial discontinuity in the data. This may not be a problem while
using Pearson’s correlation coefficient as zero-lag synchronization
in the data does not depend on the temporal ordering in the
data as long as the correspondence between the variables being
examined is preserved. However, other methods which are sen-
sitive to temporal ordering in the data cannot use scrubbing.
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Granger causality is one such method which is indeed sensitive
to temporal ordering in the data and hence we did not use
scrubbing.

Differences in signal to noise ratio (SNR) can also impact
Granger causality estimates (Nalatore et al., 2007) when the
SNR is low. On the other hand, when SNR = 2, which is typ-
ically the case for task-based fMRI, we have previously showed
using simulations that Granger causality estimates are accurate in
the absence of hemodynamic variability (which is the case here
since we deconvolved the hemodynamic response) (Deshpande
et al., 2010b). We calculated effective SNR of the deconvolved
fMRI time series by estimating the variance of the entire decon-
volved signal, i.e., the hidden neuronal variable, and divided it
by the variance of the deconvolved signal during non-stimulation
phases. We then populated the SNRs of each ROI in autism and
control groups to two different samples and performed a non-
parametric Wilcoxon ranksum to find statistical differences. The
SNR was significantly higher (p < 0.05, z-value = 20.1) in the
ASD group (SNR = 4.13 ± 0.01) as compared to the control
group (SNR = 3.2 ± 0.03). The SNRs for both groups were
high enough so that SNR differences between the groups will
not impact Granger causality. SNR has an impact on Granger
causality only when the SNR is low.

DISCUSSION
The goals of this study were: (1) to investigate effective connec-
tivity among brain areas during intentional causal attribution
in ASD and (2) to utilize machine learning techniques to clas-
sify participants based on effective connectivity weights from this
study, and behavior assessment scores, functional connectivity,
and fractional anisotropy obtained from DTI data from our previ-
ous study (Kana et al., 2012). Using SVM based classification, we
found that the causal connectivity path weights had the highest
discriminative power to separate groups by diagnosis with high
accuracy. It was uncovered that the top-ranked causal connec-
tivity paths were also significantly weaker between social brain
regions in young adults with ASD as compared to their TD peers
and correlated with the ASD symptom severity (AQ) scores and
theory-of-mind ability as measured by the RME test.

An application of characterizing brain connectivity patterns is
to test whether such patterns can differentiate individuals with
ASD from typically developing control participants such that the
diagnostic label of a new participant can be determined based
on imaging data. Thus, in this study we conducted a classifica-
tion analysis using the effective connectivity measures, functional
connectivity values, fractional anisotropy obtained from DTI data
and the causal attribution task performance scores to get a fair
assessment of which metric possesses the highest discriminative
power. A maximum classification accuracy of 95.9% was obtained
with 2 clusters and 19 features, all of these being effective connec-
tivity paths. These results suggest that significantly weaker causal
influence between brain regions during ToM processing in ASD is
sufficient to separate adults with ASD from typical control partic-
ipants. The discriminative patterns found in this study using SVM
may have clinical applications in the long-run. Accurate separa-
tion of ASD adults from TD peers may provide potential value
for clinicians, particularly in cases when behavioral observation
and clinical interviews are not sufficient enough to determine a

diagnosis. The key finding of differences in the causal influence of
brain regions for ToM in ASD in this study adds to the relatively
limited literature on effective connectivity in ASD. In addition,
while previous studies explored effective connectivity in ASD dur-
ing language processing, facial and emotional processing, and
imitation, the current study examined effective connectivity in the
context of a ToM task, which has not been studied in ASD to date.
The current study expands what we know about inferring mental
states in ASD, and provides insight into the causal relationships
of brain regions during ToM processing. In addition, this study,
to our knowledge, is the first to use effective connectivity mea-
sures for classification purposes in ASD. While this method will
require some fine tuning, validation in a larger sample, and repli-
cation through multiple studies to be applied within clinical
settings, the causal relationships between brain areas related to
ToM holds promise for separating individuals with ASD from
typical controls or from other disorders. Nevertheless, the cur-
rent study marks the first attempt at using effective connectivity
measures as inputs for a classification analysis of ASD subjects,
therefore marking the first step in the direction of more accurate
classification of the disorder.

Weaker effective connectivity of the 19 top-ranked paths found
in participants with ASD in this study involved paths and regions
that are found to be part of the social brain network. Several
nodes, such as the TPJ, MTG, RIFG, IPL, FFG, and SMA have
been associated with processing theory-of-mind, face processing,
and the mirror neuron system. These findings are in line with
previous studies of effective connectivity in ASD (Wicker et al.,
2008; Shih et al., 2010). Our results also include significant func-
tional alterations in social brain and visuospatial brain regions
(e.g., TPJ, IFG, IPL, FFG, etc.) seen previously in functional con-
nectivity findings (Kana et al., 2006, 2009, 2012; Just et al., 2007;
Koshino et al., 2008; Mason et al., 2008), suggesting some con-
sistency in disrupted connectivity across different modalities of
connectivity and providing further support for disrupted connec-
tivity accounts of ASD (Just et al., 2004; Kana and Just, 2011;
Schipul et al., 2011; Kana et al., 2012). The findings here sup-
plement the functional connectivity results in our previous study
utilizing the same ToM stimuli, where ASD participants displayed
significantly reduced functional connectivity between temporal
and frontal regions, and weaker connectivity between networks
made up of ventral premotor regions and TPJ (Kana et al., 2012).
Our results in the current study further these previous findings by
illustrating the directionality of connectivity. We found that, for
ToM processing in TD participants, significantly stronger (com-
pared to ASD group) causal connections existed among the 19
top-ranked paths which included the nodes that are associated
with social cognition. So, here we find that the critical regions
of the social brain are not as well coordinated with others, that
they should be sharing information with, in participants with
ASD. This lack of synchrony and reduced flow of information may
represent a critical problem of bandwidth (maximal rate of data
transfer supported by a communication channel) in ASD, where
some information is getting by, but at a much lower rate than
what would be needed for complex ToM connections (Just et al.,
2012).

In a correlation analysis using assessment measures and effec-
tive connectivity paths for the entire sample of participants, we
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found the paths that were among the top ranked features in the
classification analysis were correlated with AQ and RME scores.
While the AQ showed significant negative correlation, the RME
showed significant positive correlation with connectivity paths.
Similarly, participants with better ToM skills had stronger effec-
tive connectivity during this causal attribution task. It should
be noted that most of these connection paths involved informa-
tion transfer to different regions mainly from the temporal lobe
(LMTG, and bilateral FFG). While FFG has been associated with
face processing and processing socially salient stimuli (Schultz,
2005), middle and superior temporal areas have been found to
be involved in social cognition, especially in taking intentional
stance, as seen in the current study, on social scenarios (Mosconi
et al., 2005). The correlations found in our study reveal how social
abilities such as ToM skill can influence information transfer in
the brain. In addition, it also points out that severe autism symp-
toms may have a neural basis in reduced causal brain connectivity
from the temporal lobe. As noted earlier, the correlation analy-
sis was performed across the entire sample and we restricted it
to the top-ranked 19 paths because we feel that the covariance
of a brain imaging based metric with a behavioral assessment

score is clinically meaningful only if the imaging metric under
consideration has the power to predict the diagnostic label of a
new subject. Therefore, there may very well be other connectiv-
ity paths in the brain which may be correlated with behavior (but
which lack the discriminative ability) which we have not discussed
here.

In conclusion, this study provides preliminary evidence to
support a hypothesis that metrics based on directional brain con-
nectivity obtained from a task engaging social brain areas may
provide highly discriminative features for predicting whether a
given subject has ASD or not. Studies involving larger sample size,
and replication of these findings across multiple studies would be
required to fully test the extent of this hypothesis and investigate
its clinical implications.
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APPENDIX A
IMAGE ACQUISITION
Structural Imaging: Acquisition of initial high-resolution T1-
weighted scans was done using a 160-slice 3D MPRAGE volume
scan with TR = 200 ms, TE = 3.34 ms, flip angle = 78, field
of view (FOV) = 25.6 cm, matrix size = 256 × 256 and slice
thickness = 1 mm.

Diffusion tensor imaging: A diffusion-weighted, single-shot,
spin-echo, echo-planar imaging (EPI) sequence (TR = 4400 ms,
TE = 85 ms, bandwidth = 1860 Hz/voxel, FOV = 240 mm and
128 × 128 matrix size, resulting in an in-plane resolution of
1.87 × 1.87 × 3 mm) was used to collect the images. Thirty-two
3 mm thick slices were imaged (no slice gap) with no diffu-
sion weighting (b = 0 s/mm2) and with diffusion weighting
(b = 1000 s/mm2) gradients applied in 12 orthogonal directions.
Twenty-four images of each slice by gradient direction combina-
tion were acquired and averaged to produce the final diffusion
imaging data set.

DATA ANALYSIS
The brain activation data were analyzed using Statistical
Parametric Mapping (SPM8) software (Wellcome Department
of Cognitive Neurology, London, UK). Images were corrected
for slice acquisition timing, motion-corrected, normalized to the
Montreal Neurological Institute (MNI) template, resampled to
2 × 2 × 2 mm voxels, and smoothed with an 8-mm Gaussian ker-
nel to decrease spatial noise. We performed statistical analysis on
individual and group data by using SPM8’s implementation of the
general linear model (Friston et al., 1995). Within-group activa-
tion was analyzed for the ASD group, TD group, and for the whole
group (ASD + TD) of participants. Activation data was ana-
lyzed for all trials with separate regressors defined for intentional
causality, physical causality, and fixation baseline conditions. The
within-group analyses used a cluster size of 80 mm3 determined
by 10,000 Monte Carlo simulations at an uncorrected p value of
0.001. According to Lieberman and Cunningham (2009), simula-
tions can implicate cluster size thresholds that produce the best
balance between Type I and Type II error. The between-group
analyses used a cluster threshold of 10 contiguous voxels at an
uncorrected p value of 0.005, as the effects did not survive a more
conservative statistical threshold.

ROIs were defined on the group activation map for the whole
group (ASD + TD) for the contrast Intention + Physical vs.
Fixation, so that it best represents the study. Eighteen ROIs were
identified: supplementary motor area (SMA), left and right infe-
rior frontal gyrus (LIFG, RIFG), left and right ventral premotor
cortex (LPMv, RPMv), left and right middle temporal gyrus
(LMTG, RMTG), right superior temporal gyrus (RSTG), left and
right inferior parietal lobule (LIPL, RIPL), left and right fusiform
gyrus (LFFG, RFFG), left and right superior parietal lobule (LSPL,
RSPL), left and right middle occipital gyrus (LMOG, RMOG),
and left and right temporal parietal junction (LTPJ, RTPJ). A
sphere was defined for each cluster (with a radius ranging from 8
to 12 mm) that best captured the cluster of activation in the con-
trast map for each group. The activation time-course extracted
for each participant over the activated voxels within the ROI

originated from the normalized and smoothed images that were
low-pass filtered and had the linear trend removed.

APPENDIX B

Table B1 | Root mean square values of head motion.

Translation Rotation

X Y Z Pitch Roll Yaw

ASD

1 0.1456 0.1073 0.2415 0.0024 0.0013 0.0020

1 0.1234 0.0910 0.1028 0.0010 0.0013 0.0017

1 0.1009 0.1698 0.2096 0.0036 0.0023 0.0012

1 0.1521 0.2020 0.1704 0.0013 0.0015 0.0009

1 0.1216 0.1725 0.2679 0.0031 0.0014 0.0015

1 0.1090 0.1473 0.3443 0.0037 0.0011 0.0018

1 0.0639 0.0863 0.2077 0.0027 0.0013 0.0005

1 0.1082 0.0714 0.2311 0.0024 0.0012 0.0014

1 0.2747 0.2213 0.3942 0.0074 0.0023 0.0030

1 0.0426 0.0893 0.1033 0.0019 0.0006 0.0006

1 0.0788 0.1224 0.4748 0.0026 0.0010 0.0015

1 0.0527 0.1589 0.2260 0.0016 0.0012 0.0007

1 0.0322 0.2459 0.1560 0.0016 0.0004 0.0004

1 0.0452 0.0832 0.2903 0.0033 0.0009 0.0010

1 0.1833 0.5282 0.5859 0.0064 0.0027 0.0023

TD

2 0.1191 0.0812 0.1415 0.0013 0.0022 0.0020

2 0.0657 0.1096 0.2497 0.0017 0.0022 0.0013

2 0.0998 0.0743 0.2858 0.0025 0.0009 0.0013

2 0.0965 0.1360 0.3082 0.0023 0.0016 0.0013

2 0.0231 0.1937 0.2289 0.0025 0.0010 0.0006

2 0.3144 0.3258 0.4231 0.0056 0.0021 0.0044

2 0.0376 0.1298 0.1110 0.0018 0.0003 0.0007

2 0.0359 0.1012 0.2624 0.0012 0.0010 0.0006

2 0.0381 0.1800 0.1977 0.0022 0.0023 0.0011

2 0.0281 0.0762 0.1060 0.0015 0.0008 0.0006

2 0.0433 0.0745 0.1944 0.0018 0.0006 0.0009

2 0.0969 0.1548 0.2143 0.0015 0.0023 0.0011

2 0.0566 0.0831 0.1272 0.0018 0.0006 0.0010

2 0.0564 0.1403 0.2922 0.0018 0.0022 0.0014

2 0.0828 0.2080 0.1962 0.0016 0.0012 0.0011
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FIGURE B1 | Connectivity maps showing Granger causality path weights for all possible connections between 18 ROIs. Top: Autism, Bottom: Controls.
(A) posterior to anterior paths, (B) anterior to posterior paths, (C) left to right paths, (D) right to left paths.
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FIGURE B2 | Connectivity maps showing z-scores of functional connectivity path weights obtained using Pearson’s correlation for all possible

connections between 18 ROIs. Top: Autism, Bottom: Controls. (A) anterior–posterior paths, (B) bilateral paths.
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