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Background: Dysfunctional integration of distributed brain networks is believed to be the
cause of schizophrenia, and resting-state functional connectivity analyses of schizophrenia
have attracted considerable attention in recent years. Unfortunately, existing functional
connectivity analyses of schizophrenia have been mostly limited to linear associations.

Objective: The objective of the present study is to evaluate the discriminative power of
non-linear functional connectivity and identify its changes in schizophrenia.

Method: A novel measure utilizing the extended maximal information coefficient was
introduced to construct non-linear functional connectivity. In conjunction with multivariate
pattern analysis, the new functional connectivity successfully discriminated schizophrenic
patients from healthy controls with relative higher accuracy rate than the linear measure.

Result: We found that the strength of the identified non-linear functional connections
involved in the classification increased in patients with schizophrenia, which was opposed
to its linear counterpart. Further functional network analysis revealed that the changes of
the non-linear and linear connectivity have similar but not completely the same spatial
distribution in human brain.

Conclusion: The classification results suggest that the non-linear functional connectivity
provided useful discriminative power in diagnosis of schizophrenia, and the inverse but
similar spatial distributed changes between the non-linear and linear measure may indicate
the underlying compensatory mechanism and the complex neuronal synchronization
underlying the symptom of schizophrenia.

Keywords: schizophrenia, resting-state functional connectivity, non-linear, extended maximal information

coefficient, compensatory

INTRODUCTION
Schizophrenia, which is characterized by delusions, auditory hal-
lucinations, and impairments in memory, attention, and execu-
tive function, is one of the most devastating, cryptic, and costly
psychiatric disorders (van Os et al., 2010; Sui et al., 2012).
It brings not only great suffering to patients but also signifi-
cant costs to society. Traditionally, the diagnosis of schizophre-
nia depends on the observation of psychiatric symptoms and
longitudinal courses, while modern diagnoses of such psychi-
atric disorders require objective neurological measures (Kendler,
2009; Insel et al., 2010; Shen et al., 2010). The underlying eti-
ology and mechanisms of schizophrenia are still unclear, but
it is believed that the dysfunctional integration of distributed
brain networks leads to this mental disease (Friston and Frith,
1995; Andreasen et al., 1998). Thus, based on fMRI data, func-
tional connectivity research on schizophrenia has attracted con-
siderable attention in recent years (Camchong et al., 2011;
Pettersson-Yeo et al., 2011; Bassett et al., 2012; Fornito et al.,
2012; Liu et al., 2012; Tu et al., 2012; Vertes et al., 2012;
Zalesky et al., 2012). Furthermore, the introduction of multivari-
ate pattern classification to behavioral and cognitive neuroscience

increases the potential of functional connectivity in clinical diag-
noses of this mental disease (Shen et al., 2010; Fan et al.,
2011).

Functional connectivity, defined as statistical associations
between remote neurophysiological events, aims to character-
ize the communication between different brain regions (Friston
et al., 1993). Most functional connectivity analyses use temporal
correlations or covariance to examine the simultaneous coupling
between two time series. Fluctuations in the blood oxygen level
dependence (BOLD) signal have attracted attention since the
1990’s (Biswal et al., 1995, 1996). In contrast to functional con-
nectivity, which need previous acknowledge about the disease and
did not estimate the potential functional connectivity of other
ROIs (Lowe et al., 1998, 2000; Xiong et al., 1999; Cordes et al.,
2000; Hampson et al., 2002), whole brain functional connectivity
analyses of schizophrenia which require less field specific knowl-
edge have attracted considerable attention in recent years (Liang
et al., 2006; Liu et al., 2006; Lynall et al., 2010; Alexander-Bloch
et al., 2013).

Previous whole brain functional connectivity analyses of
schizophrenia which primarily used temporal correlation or
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covariance as the measure limited to consideration of only the
linear associations (Liang et al., 2006; Liu et al., 2006; Lynall
et al., 2010; Alexander-Bloch et al., 2013). Because correlation
calculations in the full-lag space are computationally expensive
(Cecchi et al., 2007), correlation related studies have prevalently
used the zeroth lag correlation. The hemodynamic response can
significantly reduce the computational expense for its limited
duration (Li et al., 2009), but presents another problem, namely,
the hemodynamic response function (HRF) varies across sub-
jects and brain regions (Buckner et al., 1998; Miezin et al., 2000;
Lee et al., 2001; Saad et al., 2001), and the zeroth lag correla-
tion is sensitive to changes in regional HRFs. Specifically, the
simple correlation (zeroth lag) is sensitive to the lag between
time series that cannot sufficiently depict the functional inter-
actions of the human brain (Smith et al., 2011). Thus, we
believe that the underlying neural activity cannot be accu-
rately reflected by the zeroth lag correlation- or covariance-based
methods.

Investigating functional connectivity in schizophrenia from
the frequency domain is an alternative of the temporal corre-
lation (Fallani et al., 2010; Salvador et al., 2010). Although the
spectral analogs of functional connectivity such as coherence
fixed some of the problems (i.e., lag between time series) faced
by the simple correlation methods, coherence explores only lin-
ear relationships between time series (Sun et al., 2004; Smith
et al., 2011). However, the non-linearity of the HRF has been
reported by several studies (Buxton et al., 1998; Friston et al.,
2003; de Zwart et al., 2009; Daunizeau et al., 2012). As an out-
put of HRF, the BOLD signal also has non-linear properties
(Vazquez and Noll, 1998; Xie et al., 2008a,b; Zhang et al., 2008).
Notably, non-linear relationships between time series extracted
from resting state BOLD signals have also been confirmed
(Lahaye et al., 2003).

The first goal of this study is to evaluate the dis-
criminative power of non-linear functional connectivity in
schizophrenia which may have potential application in diag-
nosis of neuropsychiatric disorders. The second goal is to
investigate the changes of the non-linear functional connec-
tivity in schizophrenia which may contribute to the patho-
physiology of schizophrenia. Aiming at exploring non-linear
associations in schizophrenia, we present a novel method
that introduces the extended maximal information coefficient
(eMIC) to construct functional connectivity of the whole
brain.

The eMIC represents the difference between the MIC which
is a statistical method for detecting various associations between
pairs of variables in large data sets (Reshef et al., 2011) and
the square of the Pearson correlation coefficient (PCC). In a
previous study, the square of PCC was proved to be equal
to the Hilbert-Schmidt Independence Criterion (HSIC) and
gave excellent performance in feature selection (Song et al.,
2007). By applying the MIC, PCC and eMIC with fMRI
data, we investigated the discriminative power of non-linear
and linear functional connectivity. Based on the classifica-
tion result, we further evaluated the changes and spatial dis-
tribution of linear and non-linear functional connectivity in
schizophrenia.

MATERIALS AND METHODS
MATERIALS
Participants
The fMRI data used in this study were acquired from 64
participants who were all right-handed native Chinese speakers.
Participants consisted of 32 patients suffering from schizophre-
nia and 32 healthy controls. All the patients were recruited from
outpatient departments and inpatient units at the Department of
Psychiatry, Second Xiangya Hospital of Central South University
in Changsha, China, between March 2006 and October 2007,
and satisfied the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV; American Psychiatric
Association, 1994) criteria. Five patients were medication-free,
while the others accepted antipsychotic drugs at the time of
image acquisition. The healthy subjects were recruited by adver-
tisements, and matched to the patients on age and gender.
None of them had major head trauma, history of alcohol or
drug dependence, or history of neurological disorder. Written
informed consents were obtained from all the subjects who took
part in this study. This study was approved by the Medical
Research Ethics Committee of the Second Xiangya Hospital,
Central South University. Details about the participants were
displayed in Table 1.

Imaging protocol
In the experiments, subjects were instructed simply to keep their
eyes closed, to relax, remain awake and perform no specific cog-
nitive exercise. After each session, subjects were asked whether
they were awake in the previous session and all the subjects con-
firmed. MRI scans were performed with a 1.5T GE Signa System
(GE Signa, Milwaukee, Wisconsin, USA). To reduce the head
movements, subjects’ heads were fixed by using foam pads with
a standard birdcage head coil. The functional MRI images were
collected by using a gradient-echo echo planar imaging sequence.
The imaging parameters were as follows: repetition time/echo
time = 2000/40 ms, thickness/gap = 5/1 mm, field of view =
240 × 240 cm, flip angle = 90◦, matrix = 64 × 64, and slices =
20. Each functional resting state session lasted ∼6 min, and 180
volumes were obtained.

Data preprocessing
Data preprocessing was performed by using statistical paramet-
ric mapping software package (SPM2, Wellcome Department
of Cognitive Neurology, Institute of Neurology, London, UK,
http://www.fil.ion.ucl.ac.uk/spm/). In each subject, the first 5

Table 1 | Characteristics of participants in this study.

Variables Mean + SD P -value

Patient Control

Sample size 32 32

Gender(M/F) 25/7 23/9 0.85

Age(years) 24 ± 5.66 25.01 ± 4.50 0.92

PANSS 80.06 ± 16.55

PANSS: Positive and Negative Syndrome Scale
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volumes of the scanned data were discarded for magnetic sat-
uration effects. The remaining 175 volumes were corrected by
registering and reslicing for head motion. Next, the volumes
were normalized to the standard echo planar imaging template in
the Montreal Neurological Institute (MNI) space. The resulting
images were spatially smoothed with a Gaussian filter of 8 mm
full-width half-maximum kernel, detrended to abandon linear
trend and then temporally filtered with a Chebyshev band-pass
filter (0.01–0.08 Hz). The registered fMRI volumes with the MNI
template were further divided into 116 regions according to the
automatic anatomical labeling atlas (Schmahmann et al., 1999;
Tzourio-Mazoyer et al., 2002).The atlas divides the cerebrum into
90 regions (45 in each hemisphere) and divides the cerebellum
into 26 regions (nine in each cerebellar hemisphere and eight in
the vermis). All region of interest masks were generated using
the free software WFU_PickAtlas (version 3.0, http://www.ansir.
wfubmc.edu) (Maldjian et al., 2003).

Regional mean time series were obtained for each individual by
averaging the functional MRI time series over all voxels in each of
the 116 regions. Each regional mean time series was further cor-
rected for the effects of head movement by regression on the time
series of translations and rotations of the head estimated in the
course of initial movement correction by image realignment. The
residuals of these regressions constituted the set of regional mean
time series used for functional connectivity analysis (Achard et al.,
2006).

We evaluated functional connectivity between each pair of
regions using the MIC, PCC, and eMIC. Thus, for each subject,
we obtained three resting state functional networks captured by
three 116 × 116 symmetric matrixes respectively. Removing 116
diagonal elements, we extracted the upper triangle elements of
the functional connectivity matrix as classification features, i.e.,
the feature space for classification was spanned by the (116 ×
115)/2 = 6670 dimensional feature vectors.

METHODS
MIC and emic
In this section, we provide a brief description of the MIC and
eMIC for detecting the association between two time series. Two
time series can be viewed as a set of ordered data pairs. The MIC
between a set of ordered pairs will not change if the rank of pairs
is disturbed but the relative ranks of the x- and y-values do not
change. If two variables are related to each other, then a grid can
be drawn on the scatterplot of the two variables that encapsulates
that relationship. Based on this concept, this method investigated
all the grids up to the maximal grid resolution, which depends on
the sample size (Reshef et al., 2011). The MI is defined as follows:

MI(X; Y) = H(X) − H(X|Y) (1)

= H(Y) − H(Y |X)

= H(X) + H(Y) − H(X, Y)

where H(X) and H(Y) are the marginal entropies, H(Y |X ) and
H(Y |X ) are the conditional entropies, and H(X, Y) is the joint
entropy of X and Y .

Formally, let Gx × y be all the possible partitions with rows x
and y columns (width of rows are different; width of the columns
are different, too) of the scatterplot for the ordered pairs of two
vectors. As the partitions were not equal, there are many possible
partitions with x rows and columns of the scatterplot, let Ig denote
the MI for one possible partition with x × y grids that are applied
to the ordered samples of the two vectors. For fair comparison
between grids of different resolution, the MI values of different
partitions with x × y grids of scatterplot for the ordered pairs of
two vectors are normalized to the interval [0, 1]. The mx × y is
defined as

mx × y = max
g ε Gx × y

{Ig}/ log min{x, y} (2)

MIC is the maximal value of mx × y over the ordered pairs (x, y),
x ≤ n, y ≤ n, n is the length of the vectors (i.e. number of fac-
tors in the vector). In practice, to accelerate computation, it is
not necessary to compute mx × y over all (x, y), x = n, y = n.
Alternatively, we can compute the mx × y over all (x, y) xy < B.
Empirically, B is defined as B = n0.6. We can then define

MIC = max
xy < B

{mx × y} (3)

Additionally, the eMIC can be defined as

eMIC = MIC − HSIC = MIC − PCC2 (4)

Refer to (Song et al., 2007; Reshef et al., 2011) for more details of
the MIC and HSIC.

Identification of Features with High Discriminative Power
Due to the noise, registration error, and inter-individual anatomi-
cal differences, only a small number of the 6670 features are highly
discriminative. To achieve good discriminative performance as
well as resistance to noise and individual disparity, the first step
of constructing the classification model was selecting those fea-
tures with high discriminative power to construct the feature
space for classification. The discriminative power of a feature
can be quantitatively measured by its relevance to classification
(Guyon and Elisseeff, 2003). Here, we used the Kendall tau rank
correlation coefficient (Kendall and Jean, 1990) which provides
a distribution free test of independence between two variables.
Let

(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)
be a set of samples of the

joint random variables X and Y respectively. Any pair of samples(
xi, yi

)
and

(
xj, yj

)
are said to be concordant if the ranks for both

elements agree. The Kendall tau coefficient is defined as:

τ =

(
number of concordant sample pairs

) −(
number of discordant sample pairs

)

number of total sample pairs
(5)

For any sample
(
xi, yi

)
, i = 1, 2, . . . , N of the variables need only

consider the pairs between itself and the rest N − 1 samples.
When i was changed from 1 to N, each pairs was counted twice.
Then, number of total simple pairs = 0.5 × N × (N − 1).

Suppose there are m samples in the control group and n
samples in the patient group. Let xij denote the functional con-
nectivity feature i of the jth samples and yj denote the class label
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of this sample (+1 for controls and −1 for patients). The Kendall
tau correlation coefficient of the functional connectivity feature i
can be defined as

τi = nc − nd

m × n
(6)

Because the samples in the same groups are neither con-
cordant pairs nor discordant pairs, the relationship between
two samples that belong to the same group is not consid-
ered, number of total simple pairs = (N − m) × (N − n), N =
m + n. The nc and nd are the numbers of concordant and dis-
cordant pairs between the two groups, respectively. For a pair of
two-observation data sets {xij, yj} and {xik, yk}, it is neither con-
cordant pair nor discordant pair if yi = yk; it is a concordant pair
when

sgn(xij − xik) = sgn(yi − yk) (7)

where sgn( ) is a signum function. Correspondingly, it is a discor-
dant pair when

sgn(xij − xik) = −sgn(yi − yk) (8)

Thus, a positive correlation coefficient τi represents that the ith
functional connectivity exhibits significant decrease in the patient
group compared to the control group, while a negative τi repre-
sents that the ith functional connectivity increases in the patient
group. The discriminative power was defined as the absolute value
of the Kendall tau correlation coefficient. Then we ranked all
the features according to their discriminative power and selected
those with correlation coefficient over a threshold as the final
feature set for classification.

Since a leave-one-out cross-validation strategy was introduced
to estimate the generalization ability of the classifiers (see below)
and the training data set for feature ranking is slightly different
in each iteration of the cross-validation, the first selected fea-
tures differed slightly from iteration to iteration. Therefore, the
contribution of different regions to classification was not evenly
distributed, and some regions formed many highly discrimi-
nating functional connections with other regions, while some
did not. Consensus functional connectivity was introduced here,
which was defined as the functional connectivity feature appear-
ing in each cross-validation iteration. Region weight, representing
the relative contribution to the identification of schizophrenic
patients, was denoted by its occurrence number in the consensus
functional connections in this study. The consensus functional
connectivity discriminative power was denoted by the mean of its
discriminative powers across all iterations of the cross-validation.

Support vector classification and performance evaluation
When the data set of features with high discriminative power
was obtained, support vector machines (SVM) with linear ker-
nel function were employed to solve the classification problem
(Vapnik, 1995; Bishop, 2006). Due to the classification results
were influenced by the number of involved features, classification
accuracies with fixed parameter setting of SVM (LIBSVM3.11:
Linear kernel, C = 1) using a wide range of feature number were
reported. Due to our limited number of samples, we used a leave-
one-out cross-validation strategy to estimate the generalization

ability of our classifier. The performance of a classifier can be
quantified using the generalization rate (GR, i.e., the rate of
all the subjects correctly classified), sensitivity (SS, i.e., the rate
of the patients correctly classified) and specificity (SC, i.e., the
rate of the controls correctly classified) based on the results of
cross-validation.

RESULTS
We constructed whole brain functional connectivity using
the PCC, MIC, and eMIC based on fMRI data collected
from schizophrenic patients and matched healthy controls.
Multivariate pattern classification was then introduced to deter-
mine the discriminative abilities of the three kinds of functional
connectivity. Finally, we analyzed the abnormalities of non-linear
and linear functional connections in schizophrenia and deter-
mined the spatial distribution of the brain regions related to
symptoms of schizophrenia.

CLASSIFICATION
We examined the whole brain resting-sate functional connectivity
of the schizophrenic patients and the healthy controls using PCC,
MIC, and eMIC, respectively. The 6670 mean functional connec-
tions of the controls (Figure 1, the first row) and the patients
(Figure 1, the mid row) according to the PCC, MIC, and eMIC.
In the third row of Figure 1, the first two panels were presented
the relationship between the MIC and PCC, and between the
eMIC and PCC, where each red star represented one of the 6670
mean functional connections over the patients, each blue cross
represented one of the 6670 mean functional connections over
the controls. The last panel in the third row of Figure 1 showed
the mean and deviation of the 6670 mean function connections
of the patients (red bar) and the controls (blue bar) which were
depicted in the first two panels of the third row. Linear SVM was
employed to differentiate the patients with schizophrenia from
healthy controls using the whole brain functional connectivity
extracted by the PCC, MIC, and eMIC.

To evaluate the discriminative power of the PCC, MIC, and
eMIC, we conducted multivariate classification. When the num-
bers of connections used for classification changed, the classifica-
tion accuracies changed accordingly. The subjects were classified
by using the first connections, and 6670 accuracy rates were
obtained. With this approach, the eMIC exhibited excellent per-
formance and the highest classification accuracy rate among the
three methods. When the number of features for classification
is fixed, the obtained accuracy cannot fully reflect the discrim-
inative power of the whole feature space. Here, we present the
classification results using a wide range (50, 100, 150, . . ., 1000)
of the first selected connections (Figure 2). Clearly, the classifica-
tion accuracies (GR) of the eMIC were consistently higher than
the accuracies of the other two methods across the full feature
space.

CHANGES OF FUNCTIONAL CONNECTIVITY
From Figure 2, we can see that when no more than 150
features were involved in the classification, the PCC, MIC,
and eMIC gave the best performance. Then, if more fea-
tures were involved, the classification accuracy of the three
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FIGURE 1 | Comparison of mean functional connectivity of the PCC,

MIC, and eMIC. The top row showed the mean functional connectivity
maps of the healthy controls, the mid row showed the mean
functional connectivity maps of the schizophrenic patients, the bottom

row (the first two) showed the 6670 mean functional connections of

the patients (red star) and that of the healthy controls (blue cross)
according to MIC, and eMIC against that of the PCC, and (the last
one) the comparison of the mean and the deviation of all the 6670
connections according to PCC, MIC, and eMIC between the patients
(red bar) and the controls (blue bar).

FIGURE 2 | Classification accuracy rates relative to the number of selected

connections extracted by the PCC, MIC, and eMIC. The x-axis represents the
number of connections involved in classification; the y -axis represents the

classification accuracy. GR (the rate of all the subjects correctly classified), SS
(the rate of the patients correctly classified), and SC (the rate of the controls
correctly classified) are all plotted. Colors represent the types of connection.

methods decreased and the classification accuracy tend to be
stable when the number over 200. Therefore, consensus func-
tional connections of the first 200 features involved in the
classification corresponding to the PCC, MIC, and eMIC were
evaluated. Additionally, the number of features was identified
in accordance with previous study (Dosenbach et al., 2010).
Then, 113 consensus functional connections were obtained

from each iteration of the leave-one-out cross-validation for
the MIC and PCC, and 122 consensus functional connec-
tions were identified for the eMIC. The consensus functional
connections from the PCC, MIC, and eMIC were projected
to a surface rendering of a human brain that was visual-
ized with BrainNetViewer (http://www.nitrc.org/projects/bnv/)
(see Figure 3). Further, we added a probabilistic atlas of the
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FIGURE 3 | Region weights and strength of the connections constructed

with PCC, MIC, and eMIC. The connections are displayed in a surface
rendering of a human brain. The thicknesses of the consensus connections
during leave-one-out cross-validation are scaled by their strength (normalized
mean of the rank orders in all iterations during the leave-one-out
cross-validation). Connections whose strength were increased in the patients
relative to the controls are shown in orange, and connections whose strength

were decreased in patients are shown in light green. The ROIs related to the
selected consensus connections are also scaled by their weights (sum of the
weights of all connections to and from that ROI) and displayed. The ROIs are
color-coded according to the functional networks (CON, white; DMN, green;
cerebellum, red; visual network, yellow; sensorimotor network, cyan;
frontal-parietal network, rose; and other, black). The number in this figure for
ROIs is shown in Table A1.

cerebellum to the ICBM152 cerebrum template that was released
with the software.

Primary consideration was given to changes in the strength of
the connections. The consensus functional connections according
to PCC and MIC were all decreased in patients with schizophre-
nia compared to healthy controls. It is generally accepted that
the strength of functional connectivity is decreased in patients
with schizophrenia compared with healthy controls. The PCC-
and MIC-based functional connections found in our study are
consistent with this common view. In contrast, the strength of
the eMIC connections were elevated in patients with schizophre-
nia. In the Discussion section, we provide a detailed explanation.
Additionally, in terms of anatomical location, both the con-
sensus MIC connections and the consensus eMIC connections
were largely consistent with the consensus PCC connections. The
MIC and the PCC shared 56 common connections, the eMIC
and the PCC shared 53 common connections, and the common
connections make up approximately half of the total consensus

connections. Significant difference of eMIC to PCC is related to
the functional connections between the cerebellum and the tem-
poral cortex located in the default model network (DMN) that
were found by eMIC but were not detected by PCC. Although
there were no PCC functional connections between the cerebel-
lum and the temporal cortex, the cerebellum and the temporal
cortex were both connected with the parietal cortex (Figure 4).

DISTRIBUTION OF FUNCTIONAL CONNECTIVITY
In addition, we investigated the distribution of brain regions that
are related to the consensus connections produced by the PCC,
MIC, and eMIC. Overall, the distributions of ROIs identified by
the PCC, MIC, and eMIC were similar, although the consen-
sus connections were not completely identical across the three
methods (Figures 3, 4).

To facilitate analysis, these ROIs can be categorized as fol-
lows: (i) the cingulo-opercular network (CON), including several
regions in the anterior prefrontal cortex, the inferior parietal
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cortex, the basal ganglion, the dorsal anterior cingulate cortex
(dACC), the insular, the thalamus, and the cerebellum (which
will be discussed later separately due to its importance), which
is a newly defined cognitive network with great significance for
schizophrenia (Dosenbach et al., 2007; Tu et al., 2012); (ii) the
DMN, including structures of the hippocampus, the posterior
cingulate cortex, the medial prefrontal cortex (mPFC), and the
bilateral inferior parietal cortex, which is believed to play an
important role in the pathogenesis of schizophrenia (Raichle
et al., 2001; Fransson, 2005; Whitfield-Gabrieli et al., 2009);
(iii) the cerebellum network, which can be seen as part of the
CON; (iv) the visual network comprising the primary visual cor-
tex, the extra-striate visual areas and the lingual gyrus, fusiform
gyrus, and calcarine gyrus, which is involved in visual processing
(Beckmann and Smith, 2005; Damoiseaux et al., 2006; van den
Heuvel et al., 2008; van den Heuvel and Hulshoff Pol, 2010a,b);
(v) the sensorimotor network, including the primary sensory cor-
tex, the primary motor cortex the supplementary motor cortex
(Biswal et al., 1995; van den Heuvel and Hulshoff Pol, 2010a,b);
and (vi) the frontal-parietal network, consisting of the superior
parietal and the superior frontal cortex, which is involved in atten-
tion processing (Dosenbach et al., 2010; Beckmann et al., 2005;
De Luca et al., 2006) (Figure 4).

For the three kinds of functional connectivity, the ROIs with
the heaviest weight were distributed primarily in the DMN, cere-
bellum, visual network, and frontal-parietal network. Specifically,
the cerebellum was the most important network according to

FIGURE 4 | Distribution of selected consensus connections

constructed by the PCC, MIC, and eMIC and region weights of related

ROIs demonstrated in a circle graph. The names of the ROIs are
color-coded as shown in Figure 3. The green lines represent connections
constructed by the PCC, blue lines represent connections constructed by
the MIC, and orange lines represent connections constructed by the eMIC.
This figure was plotted using the MATLAB toolbox called PlotPie which was
developed by our study group and will be released in the near future.

eMIC, while the visual cortex was the most weighted network
according to PCC and MIC.

DISCUSSION
In this study, we introduced a novel measure called eMIC for
estimating the non-linear functional connectivity underlying
schizophrenia and applied this estimation of functional connec-
tivity to distinguish schizophrenic patients from healthy controls.
Then, we found that strength of the non-linear functional con-
nectivity increased in patients with schizophrenia which was
opposed to that observed for the traditional method, which can
be attributed to the compensatory mechanisms in the human
brain. Furthermore, the non-linear and linear functional con-
nectivity presented similar but not completely the same spatial
distribution.

ANALYSIS OF CLASSIFICATION
The results of the classifications produced by the PCC, MIC, and
eMIC were obtained using the same procedure and the same
classifier parameters. The only factor affecting the classification
accuracy is the measure of the functional connectivity. Using sup-
port vector classification, we compared the discriminative powers
of the three kinds of functional connectivity produced by PCC,
MIC, and eMIC. The eMIC produced consistently higher clas-
sification accuracies than the other two methods across the full
connection space (Figure 2). Furthermore, when all 6670 features
were used for classification, we obtained the classification results
displayed in Table 2. The classification accuracy of the eMIC
remained higher than those of the other methods. In short, the
functional connectivity produced by the eMIC had the greatest
discriminative ability among all three methods.

Now, we pay more attention to the reason for the better classi-
fication accuracy of eMIC. The MIC maximizes the association
between two time series, whereas the PCC captures only lin-
ear function. Then, the eMIC may capture the subtle non-linear
neuronal synchronization in human brain, which will improve
the performance of eMIC. From another point of view, the
eMIC combines the discriminative information of both the PCC
and MIC, which reflects a feature-level information fusion that
increased classification accuracy. An MI-based study reported
that the linear functions accounted for most of the associa-
tions between the fMRI time series and that non-linear functions
only mined 5% more information in fMRI time series (Hlinka
et al., 2011); this could be explain why the eMIC gave limited
improvement to PCC (Figure 2). Conservatively, this result con-
firmed that the non-linear associations have discriminative power
which should not be overlooked. We believe that these non-linear
connections add new discriminative information to the linear
connections which may increase the classification accuracy.

Table 2 | Classification results when all 6670 features were involved.

Method (%) SC (%) SS (%) GR (%)

MIC 71.9 81.2 76.6

PCC 81.2 81.2 81.2

eMIC 81.2 84.4 82.8
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CHANGES OF FUNCTIONAL CONNECTIVITY IN SCHIZOPHRENIA
Here, we give a detailed analysis of the increased strength of the
selected eMIC functional connections. The decreased strength
of the PCC functional connections in schizophrenia have been
noted in an overwhelming majority of studies (Camchong et al.,
2011; Pettersson-Yeo et al., 2011; Repovs et al., 2011; Fornito
et al., 2012), which was also confirmed by our previous study
(Shen et al., 2010). However, the eMIC-based functional connec-
tions demonstrated increased strength in schizophrenic patients
compared to healthy controls. As MIC captures various associ-
ations but the majority of associations were linear which can
be estimated by PCC (Hlinka et al., 2011), decrease of the PCC
strength leads to decrease of the MIC strength. The human
brain is an organ with great plasticity and adaptability. Thus, the
compensatory mechanism of the human brain, that’s non-linear
correlation will strengthened to reconcile the influence of the cor-
rupt of linear correlation, can result in increases of non-linear
functional connectivity. Although the connection selecting pro-
cedures of the three methods were implemented separately, the
consensus functional connections by the eMIC and the PCC still
had a relatively high identity (approximately 50%), which sup-
port the notion that the compensatory mechanism of the human
brain results in the increase strength of the eMIC in patients with
schizophrenia.

If the strength of MIC did not change between the patients and
the controls, while the PCC decreased, the increase of the strength
of eMIC will be purely caused by the changes of PCC. In fact, the
connection strength of MIC decreased in the patients (Figure 1)
and gave classification accuracy over 80% (Figure 2). Thus, the
increase of eMIC in schizophrenic patients was not simply caused
by the decrease of PCC but by the decrease of both PCC and
MIC. We believe that the eMIC captures subtle changes of func-
tional connectivity and adds new discriminative information to
the classification.

NETWORK ANALYSIS OF NON-LINEAR FUNCTIONAL CONNECTIVITY
As the eMIC provided useful discriminative information to the
linear functional connectivity, aberrant non-linear and linear
functional connections were both categorized into six networks
for explaining the symptom of schizophrenia. Therein, connec-
tions between the DMN and the cerebellum, the DMN and the
visual network, the DMN and the frontal-parietal network, and
the cerebellum and the frontal-parietal network demonstrated the
greatest discriminative power for both the linear and non-linear
functional connectivity.

The DMN, the CON (cerebellum), visual network, and
frontal-parietal network which are related to specific brain func-
tions were all weighted by the linear and non-linear measures. The
DMN was frequently reported in previous studies and weighted in
our study. The three methods all identified the important nodes
in the DMN such as the mPFC, inferior parietal cortex, Para
hippocampal gyrus, and middle temporal cortex. This network
is generally accepted as an important network associated with
schizophrenia (Bluhm et al., 2007; Garrity et al., 2007; Whitfield-
Gabrieli et al., 2009). The CON is believed to support the “task
model” in opposition to the “default model” (Dosenbach et al.,
2006). In our study, the cerebellum_6_R which can be seen as part

of the CON is important for all the three functional connectiv-
ity, particularly for the new non-linear measure. Additionally, the
PCC, MIC, and eMIC all gave the visual network heavy weight.
The frontal-parietal network was also identified by the all the
three measures, which was reported as important brain regions
in previous studies (Honey et al., 2005; Lynall et al., 2010).

The DMN, the CON (including cerebellum), visual network,
and frontal-parietal network obtained slightly different region
weight according to the PCC, MIC, and eMIC, respectively.
Functional connections between the DMN and the cerebellum
were identified by the eMIC but not by the PCC. If the cere-
bellum is viewed as part of the CON, interactions between
the DMN and the CON can be established by the eMIC. The
wide spread changes in the CON and DMN may interact with
each other, and contribute to the functional basis of schizophre-
nia. In the connections produced by the PCC and MIC, the
right inferior occipital cortex in the visual network exhibited
the greatest region weights. However, the cerebellum_6_R exhib-
ited the greatest region weight for the eMIC. This result implies
that the cerebellum may play a role in non-linear interac-
tion between different brain regions. Connections between the
visual network and regions of the frontal cortex are believed
to be involved in visual perception which may contribute to
the aberrance of visual perception in schizophrenia (Harvey
et al., 2011; Calderone et al., 2013). The cerebellum and the
DMN are linked to the frontal-parietal network by eMIC and
MIC but not PCC. Combined with the DMN, this network is
thought to be closely related to attention tasks (Bush and Shin,
2006; Gao and Lin, 2012), which may explain the occurrence
of attention impairment and its relationship to the DMN in
schizophrenia.

In conclusion, from the functional network perspective, the
distribution of ROIs with the greatest weight according to the lin-
ear and non-linear connections was similar but not completely
the same, and the non-linear connections shed new light on
interpretation of the schizophrenic symptoms.

LIMITATIONS
Although the new functional connectivity constructed by using
the eMIC method exhibits better performance in the classification
and has explored new information about schizophrenia, there are
several limitation in this study. First, our sample size was small.
Generalizations of the proposed methods need to be tested with
large data sets. Second, the number of slices in the fMRI image
used in this study was 20, which was relatively fewer and may
not sufficiently to capture the details of the abnormalities in the
patients. Third, network analysis of the human brain is a trend
in the literature which include ROI localization and connectivity
estimation. Our study is confined to connectivity analyses that do
not include definition of ROIs.

CONCLUSIONS
In this study, we introduced a novel non-linear functional con-
nectivity for schizophrenia study. The classification results show
that the non-linear functional connectivity has an equal if not
better discriminative ability than existing linear measures in
schizophrenia identification. This result suggests that non-linear
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functional connectivity should be taken into account in
research on schizophrenia and other psychiatric disorders.
Furthermore, we found that the non-linear functional con-
nectivity which was strengthened in the patients has a
similar distribution with its linear counterpart. This new
finding indicates the presence of compensatory mechanism
between linear and non-linear associations and non-linear
functional network abnormalities underlying the symptom of
schizophrenia.
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APPENDIX
Table A1 | Names of the ROIs used in this study.

1. Amygdala_L
2. Amygdala_R
3. Angular_L
4. Angular_R
5. Calcarine_L
6. Calcarine_R
7. Caudate_L
8. Caudate_R
9. Cerebelum_3_L
10. Cerebelum_3_R
11. Cerebelum_4_5_L
12. Cerebelum_4_5_R
13. Cerebelum_6_L
14. Cerebelum_6_R
15. Cerebelum_7b_L
16. Cerebelum_7b_R
17. Cerebelum_8_L
18. Cerebelum_8_R
19. Cerebelum_9_L
20. Cerebelum_9_R
21. Cerebelum_10_L
22. Cerebelum_10_R
23. Cerebelum_Crus1_L
24. Cerebelum_Crus1_R
25. Cerebelum_Crus2_L
26. Cerebelum_Crus2_R
27. Cingulum_Ant_L
28. Cingulum_Ant_R
29. Cingulum_Mid_L
30. Cingulum_Mid_R
31. Cingulum_Post_L
32. Cingulum_Post_R
33. Cuneus_L
34. Cuneus_R
35. Frontal_Inf_Oper_L
36. Frontal_Inf_Oper_R
37. Frontal_Inf_Orb_L
38. Frontal_Inf_Orb_R
39. Frontal_Inf_Tri_L
40. Frontal_Inf_Tri_R
41. Frontal_Med_Orb_L
42. Frontal_Med_Orb_R
43. Frontal_Mid_L
44. Frontal_Mid_Orb_L
45. Frontal_Mid_Orb_R
46. Frontal_Mid_R
47. Frontal_Sup_L
48. Frontal_Sup_Media_L
49. Frontal_Sup_Media_R
50. Frontal_Sup_Orb_L
51. Frontal_Sup_Orb_R
52. Frontal_Sup_R
53. Fusiform_L
54. Fusiform_R
55. Heschl_L
56. Heschl_R
57. Hippocampus_L

(Continued)

Table A1 | Continued

58. Hippocampus_R
59. Insula_L
60. Insula_R
61. Lingual_L
62. Lingual_R
63. Occipital_Inf_L
64. Occipital_Inf_R
65. Occipital_Mid_L
66. Occipital_Mid_R
67. Occipital_Sup_L
68. Occipital_Sup_R
69. Olfactory_L
70. Olfactory_R
71. Pallidum_L
72. Pallidum_R
73. Paracentral_Lobule_L
74. Paracentral_Lobule_R
75. ParaHippocampal_L
76. ParaHippocampal_R
77. Parietal_Inf_L
78. Parietal_Inf_R
79. Parietal_Sup_L
80. Parietal_Sup_R
81. Postcentral_L
82. Postcentral_R
83. Precentral_L
84. Precentral_R
85. Precuneus_L
86. Precuneus_R
87. Putamen_L
88. Putamen_R
89. Rectus_L
90. Rectus_R
91. Rolandic_Oper_L
92. Rolandic_Oper_R
93. Supp_Motor_Area_L
94. Supp_Motor_Area_R
95. SupraMarginal_L
96. SupraMarginal_R
97. Temporal_Inf_L
98. Temporal_Inf_R
99. Temporal_Mid_L
100. Temporal_Mid_R
101. Temporal_Pole_Mid_L
102. Temporal_Pole_Mid_R
103. Temporal_Pole_Sup_L
104. Temporal_Pole_Sup_R
105. Temporal_Sup_L
106. Temporal_Sup_R
107. Thalamus_L
108. Thalamus_R
109. Vermis_1_2
110. Vermis_3
111. Vermis_4_5
112. Vermis_6
113. Vermis_7
114. Vermis_8
115. Vermis_9
116. Vermis10
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