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THE FREQUENCY ARCHITECTURE OF
THE CONSCIOUS HUMAN BRAIN
The EEG is traditionally categorized into
a handful of different frequency bands
(δ, θ, α, β, γ; c.f. Schomer and Lopes
da Silva, 2011). This implies that EEG
frequencies do not represent an unstruc-
tured continuum. But what could be the
reasons for that? One obvious reason is
that frequency bands such as e.g., θ and
α exhibit a clear task and event related
behavior (Klimesch, 1999, 2012; Buzsaki,
2006). But here the emphasis is on a for-
mal aspect, which is to avoid unwanted
“spurious” phase synchronization. If the
numerical ratio between two frequencies
(f1, f2; f1 < f2) is harmonic (f2 = I ∗ f1;
I = integer), the excitatory phases of the
two frequencies can meet and synchronize
according to a strict and regular pattern.
This is of great advantage when phase
coupling between frequencies is an impor-
tant aspect of neuronal communication.
If the ratio differs from a harmonic, spu-
rious (unwanted) phase synchronization
will appear in an uncontrolled way. Pletzer
et al. (2010) have shown mathematically
that the golden mean (g = 1.618 . . ..) is
the best possible ratio to avoid spurious
phase synchronization (see also Roopun
et al., 2008). These aspects of phase syn-
chronization can be summarized by two
assumptions. (a) The center frequency of
each EEG band is harmonically related to
those of neighboring bands. A good esti-
mate for δ, θ, α, β and γ is 2.5, 5, 10,
20, and 40 Hz. (b) The width of a band is
defined on the basis of the “golden mean
role” (Klimesch, 2012; for an illustra-
tion, see Figure 1A left panel) to guaran-
tee minimal interference between bands.
EEG center frequencies which have these

properties are termed frequency domains
in the following.

When considering the numerical rela-
tion between δ, θ, α, γ as described by
assumption (a) it can easily be recognized
that each center frequency is twice as high
than its (lower) neighbor. An exponential
function with base 2 defines that property.

I(i) = 2i i = 0, 1, 2, 3, . . . . (1)

I = 1, 2, 4, 8, . . . .

Variable I(i) describes the numerical rela-
tion between δ, θ, α, γ as a series of
harmonic frequencies that increase (or
decrease) with i. As an example, we can
multiply the frequency of δ by I(i) to calcu-
late the entire series of harmonic frequen-
cies: 2.5 ∗ I(i = 0) = 2.5 Hz; 2.5 ∗ I(i = 1) =
5 Hz; 2.5 ∗ I(i = 2) = 10 Hz; 2.5 ∗ I(i = 3) =
20 Hz; 2.5 ∗ I(i = 4) = 40 Hz. This expo-
nential function represents a scale free law
of doubling and halving any frequency to
obtain neighboring harmonics. It gener-
ates a “chain” of harmonics with a “dual”
structure.

It is well known that individual EEG
frequencies depend on basic biological
factors such as age, gender and possibly
brain size (Nunez et al., 1978; Köpruner
et al., 1984; Valdés-Hernández et al., 2010;
Nunez, 2011). Thus, let us introduce a
scaling factors that “scales” the numerical
values of all frequency domains fd(i):

fd(i) = s ∗ 2i (2)

An estimate for s can be determined by
substituting the respective values in for-
mula (2). When considering δ the first
frequency in the harmonic series, we have
i = 1 and fd(i) = 2.5 Hz. When solving

for s we obtain 1.25. It is now possible
to suggest a simple definition of a “basic
frequency,” as that frequency with a value
of i = 0: fd(i = 0) = 1.25 ∗ 20 = 1.25 Hz.
The interesting point here is that f(0) is the
scaling factor:

fd(i) = f(0) ∗ 2i = 1.25 ∗ 2i (2a)

Is there a specific biological meaning of
f(0)? The frequency of 1.25 Hz equals 75
beats per minute (bpm) which is very close
to the average heart rate (HR) of young
adults. This suggests that HR—which is
known to vary with body size, age and
sex—is the basic frequency and the scaling
factor for all other frequency domains.

It is interesting to see that formula
(2a) does not only give a faithful descrip-
tion of the numerical values of traditional
EEG frequencies and their bandwidths but
also of those of body oscillations (for
i < 1). As illustrated in the middle panel
of Figure 1A, these frequencies are close
to the brainstem oscillations that trig-
ger inhaling and exhaling (resulting in
two excitatory events for one breathing
cycle), breathing frequency, and heart rate
variability (HRV).

PREDICTIONS AND IMPLICATIONS
WHITE MATTER CONNECTIVITY
There is a traditional belief that fast fre-
quencies are associated with smaller net-
works and slow frequencies with larger
networks (cf. Von Stein and Sarnthein,
2000). Here it will be shown that for-
mula (2) can be used to predict the
architecture of white matter connectivity
which has meanwhile been well-described
by DTI and DSI tractographical meth-
ods (e.g., Hagmann et al., 2008). We
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FIGURE 1 | Illustration of the doubling-halving algorithm as described by

formula (2a). (A) The distribution of the frequency domains, together with
their bandwidths is shown in the left panel for brain oscillations and in the
middle panel for body oscillations. The frequency boundaries are calculated
according to the “golden mean role”: The upper frequency boundary of
domain i is that frequency which is maximally separated from domain i + 1
and the lower boundary is that frequency which is maximally separated from
domain i − 1 (see the inset in the left panel for an example). The predicted
frequency architecture for a mouse with a heart rate of 600 bpm (=10 Hz) is

shown in the right panel. Note that the values for the center frequencies are
the same as for humans but the relation to the index of a domain is changed.
(B) Formula (2) can be used to predict the distribution of long-range white
matter connectivity. The areas of the yellow rectangles in the left and middle
panel represent the percentage of bundles for a frequency domain. Note that
the area of each rectangle is constant and that the two sides of the
rectangles change according to the doubling-halving algorithm of formula (2).
The empirical distribution is shown in the right panel (data are from Hagmann
et al. (2008), provided by Olaf Sporns).

proceed from the following considera-
tions. Let us assume that EEG frequencies
reflect activity of “long-range” cortico-
cortical networks (Varela et al., 2001) that
are connected by myelinated axons. Let
us further assume that the frequency of
a domain is related to the size of a net-
work which is characterized by a pre-
ferred length of reciprocal connections.
When we assume that loop time—the
conduction time for traversing a recip-
rocal connection—is equal to the period
of a frequency domain (see the theory

of resonant, self-organizing phase locked
loops by Miller, 1991), we can predict the
frequency histogram of loop times for each
domain. The “doubling-halving” nature of
our algorithm predicts that loop time of
a given domain i is twice as long than
that of i − 1 but half of that of i + 1.
The scale free nature of the algorithm sug-
gests that there is no “typical” domain.
Thus, we assume that the network of each
domain consists—approximately—of an
equal number of connections. This means
that the percentage of fibers belonging to

a certain domain is a comparatively con-
stant number. If we would assume that
δ, θ, α, β, γ are associated with long
range white matter connections, each fre-
quency domain would be associated with
about 20% of all white matter fibers, as is
illustrated in the left panel of Figure 1B.
An obvious problem with this distribu-
tion is that we see “gaps” in loop length.
We can overcome this problem by assum-
ing that loop time can stay constant
when longer fibers are stronger myelinated
than shorter fibers (conduction velocity
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is positively associated with myelin shield
thickness; e.g., Rushton, 1951; Goldman
and Albus, 1968; Sabah, 2000). Thus, a dif-
ferential and selective myelination allows
us to predict that loop times do not over-
lap between different frequency domains,
although they have (different) fibers with
the same length. This idea is illustrated in
the middle panel of Figure 1B, where each
bar is replaced by an asymmetric inverted
u shape distribution, with the right part
representing strongly and the left part
weakly myelinated fibers. The resulting
distribution is represented by the red dot-
ted line. Several findings are consistent
with this prediction. First, there is some
evidence that myelin thickness is posi-
tively correlated with fiber length (Chen
et al., 1992; Hursh, 1939) too keep conduc-
tion latency constant irrespective of fiber
length (Salami et al., 2003). Second, and
most importantly, the predicted distribu-
tion is strikingly similar to the empiri-
cally observed distribution of fiber lengths
as shown in the right panel of Figure 1B
(data are from Hagmann et al., 2008, pro-
vided by Olaf Sporns). It should also be
noted that the predicted shape of the dis-
tribution does not agree with the concept
of “random connectivity.” When the cor-
tex is modeled as the surface of a sphere,
the resulting distribution of connections
between all points of the surface exhibits
an inverted u-shape distribution around
the radius as mean.

GLOBAL HARMONIC SYNCHRONIZATION AND
CONSCIOUS COGNITION
The chain of harmonic frequency domains
as described by formula (2) may be con-
sidered a coordinate system for global syn-
chronization, which most likely is typical
for conscious cognition. This is well in
line with the idea that consciousness
is associated with coherent global and
long-range brain processes (Bressler and
Menon, 2010; Dehaene and Changeux,
2011). Three groups of empirical data are
also in support of this view, the task depen-
dent emergence of between frequency
phase coupling (e.g., Palva et al., 2005), the
observation that ERP’s can be described by
a superposition of transiently phase cou-
pled frequencies (Klimesch et al., 2007)
and—most importantly—that a change
in the state of consciousness from active
cognition to drowsiness and slow wave

sleep (SWS) is accompanied by a dra-
matic change in the frequency architec-
ture. It is characterized by a decoupling
between those frequency domains that
are described by formula (2a) and the
emergence of frequencies (slow waves and
spindles) that do not play a role during
conscious cognition. SWS may be charac-
terized by a loss of phase coupling and the
emergence of phase to amplitude envelope
coupling between slow waves and spindles
(e.g., Steriade, 2006).

HEART RATE AS SCALING FACTOR
An important and surprising implication
of formula (2a) is that HR and brain oscil-
lations on the one hand and HR and
body oscillations on the other hand can
be harmonically coupled. One obvious
question that arises is, whether changes
in HR may lead to a direct, concomi-
tant change in the frequency of brain
(and body) oscillations. Brain oscillations
may change slightly (e.g., α may exhibit a
fatigue related decrease of about 1or 2 Hz)
but never to an extent as HR is capa-
ble. Thus, in most cases a direct coupling
with brain and body oscillations will not
be possible. Two aspects are important
here. One refers to a state of decoupling
between brain oscillations and HR if the
change in HR is very pronounced, such
as during heavy exercise. The other aspect
refers to an adaptive change in HR that
may indeed allow a direct but short last-
ing, transient, coupling with brain oscilla-
tions even in cases where HR is tonically
increased or decreased. As an example, if
HR is increased to 90 bpm (1.5 Hz; period
of 667 ms) a transient decrease to 75 bpm
(i.e., an increase in the period of 800 ms for
a few heart beats) or increase to 150 bpm
(a decrease in the period to 400 ms for
a few heart beats) would still allow for a
transient task-related harmonic coupling
with brain oscillations. Such an adaptive
mechanism could be responsible for the
generation of HRV. It is interesting to
note that HR may also operate to “reset”
brain activity as the existence of heartbeat
evoked potentials suggest (Dirlich et al.,
1998).

CONCLUSIONS: BRAIN AND BODY AS
COUPLED OSCILLATORS.
Our algorithm can be considered a coordi-
nate system for the coupling of brain and

body oscillations. Brain body interactions
may, thus, be described as complex system
that couples and decouples (Buchman,
2002) on the basis of a specific har-
monic frequency structure. As a scale
free law it probably underlies all ani-
mal species. The fact that HR exhibits
a tremendous between species variation
(about 600 bpm for rats and 20 bpm for
elephants) means—according to formula
(2a)—that the physiological function of
the domains change although the abso-
lute frequency values may change little or
remain even identical [if the animal fd(0)

obeys the doubling-halving algorithm rel-
ative to human HR] as is illustrated in the
right panel of Figure 1.

In a mathematic sense formula (2) rep-
resents a binary system. Since the emer-
gence of information theory it became
clear that any kind of information can
be encoded on the basis of binary units
(e.g., Strogatz, 2012, p. 40). One may
speculate that this algorithm represents a
basic physical law of information encoding
that requires the least amount of energy.
This view is based on the fact that the
scaling factor s has far reaching conse-
quences from HR to body and brain size
to metabolic processes. Another aspect is
its fractal property because the doubling-
halving relationship repeats over all differ-
ent scales. For future research, the estab-
lishment of a large normative data base
for brain and body oscillations would be
helpful to clarify the questions raised here.
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