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While brain computer interface (BCI) can be employed with patients and healthy subjects
there are problems that must be resolved before BCI can be useful to the public. In the mos
popular motor imagery (MI) BCI system, a significant number of target users (called “BCI
Illiterates”) cannot modulate their neuronal signals sufficiently to use the BCI system. Thi
causes performance variability among subjects and even among sessions within a subject
The mechanism of such BCI-Illiteracy and possible solutions still remain to be determined
Gamma oscillation is known to be involved in various fundamental brain functions, and ma
play a role in MI. In this study, we investigated the association of gamma activity with M
performance among subjects. Ten simultaneous MEG/EEG experiments were conducted
MI performance for each was estimated by EEG data, and the gamma activity associate
with BCI performance was investigated with MEG data. Our results showed that gamm
activity had a high positive correlation with MI performance in the prefrontal area. Thi
trend was also found across sessions within one subject. In conclusion, gamma rhythm
generated in the prefrontal area appear to play a critical role in BCI performance.
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INTRODUCTION
Over the past several decades, considerable attention has been
paid to the subject of brain computer interface (BCI) technology
(Wolpaw et al., 2002), as it is an attractive notion that BCI can
translate a user’s intention or mental state through brain waves.
From the early days of this research until now, and especially in
recent decades, BCI has been improved and its accuracy has been
much enhanced with the help of machine learning algorithms.
For control use, motor imagery (MI)-based BCI has been one of
the most popular designs, such as P300 and steady state visual
evoked potential (SSVEP) BCIs (Bashashati et al., 2007; Guger
et al., 2011). Pfurtscheller and Lopes da Silva (1999) observed
that mu-rhythms over sensorimotor areas involved with motor
function are attenuated notably when a person imagines body
part movement. Brain signal patterns associated with this phe-
nomenon are extracted commonly for the purpose of controlling
the system.

The investigations and development of this technology have
been conducted in non-invasive (Wolpaw et al., 2002; Blankertz
et al., 2006, 2008a; Jerbi et al., 2011; Ortner et al., 2012) as well as
invasive systems (Leuthardt et al., 2004; Jerbi et al., 2009). Recent
studies have reported success in decoding the direction of move-
ment (Mehring et al., 2004; Rickert et al., 2005; Waldert et al., 2008,
2009; Ball et al., 2009), target (Hammon et al., 2008; Ubeda et al.,
2013), velocity (Bradberry et al., 2009; Lv et al., 2010; Ofner and
Müller-Putz, 2012; Robinson et al., 2013), trajectory (Schalk et al.,
2007), grasp type (Pistohl et al., 2012) and real-time detection of
visuo-spatial working memory (Hamamé et al., 2012).

It is expected that these successes may soon be applied to BCI
and allow public marketing. However, obstacles that need to be
resolved still exist, even in accurate BCI systems; a crucial hur-
dle is that BCI performance varies significantly across and even
within users. Reportedly, approximately 20–30% of target users
do not generate controllable brain signals (extractable and classi-
fiable by existing techniques) in MI (Guger et al., 2003; Blankertz
et al., 2008b; Ahn et al., 2013). Such problems exist commonly
in other current BCI systems and must be overcome before BCI
technology can advance further. Even though one shows good
decoding accuracy during the calibration phase, it may yield poor
performance in the online phase; alternatively, although one may
be able to control a BCI system at one time, a loss of control may
occur at another time. This indicates that performance variation is
observed not only across people, but also at different times within
subjects. Therefore, understanding why this problem occurs and
investigation of its causes/correlates are important in making BCI
a usable interface.

In recent studies, efforts to find correlates with BCI perfor-
mance have yielded interesting outcomes. Blankertz et al. (2010)
reported the importance of idling alpha activity in the motor cor-
tex, which is associated implicitly with a potential decrease of
power below baseline. They observed that subjects with high alpha
levels during the resting state are likely to have great potential to
yield larger power decreases, which can be used as a main feature
for MI BCI. Further, Ahn et al. (2013) found that high alpha and
low theta is a typical pattern among those who perform MI BCI
well. These findings are highly beneficial in establishing applicable
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BCI systems in both healthy and ill users. It is possible to pre-screen
users of the BCI system, and those who demonstrate poor BCI per-
formance may be trained through biofeedback before actual BCI
use (Hwang et al., 2009). Even users themselves may decide with-
out difficulty to choose other interfaces or BCI control paradigms
that are better suited for them (Volosyak et al., 2010).

Another noteworthy factor is psychological state. It has been
reported that motivation (Leeb et al., 2007; Hammer et al., 2012)
and mindfulness (Mahmoudi and Erfanian, 2006; Lakey et al.,
2011) influence BCI performance. In an intensive study with 83
subjects, the ability for visuo-motor coordination and concentra-
tion on a task was revealed to have a significant positive correlation
with classification accuracy of MI (Hammer et al., 2012). Nijboer
et al. (2010) concluded that motivational factors may be related to
performance in patients with amyotrophic lateral sclerosis (ALS).
Fear of the BCI system has also been suggested as a factor that
degrades performance (Burde and Blankertz, 2006; Nijboer et al.,
2010; Kleih et al., 2013; Witte et al., 2013). Burde and Blankertz
(2006) reported that highly confident subjects are likely to show
better control in MI BCI.

Performance variability is observed not only between, but also
within users. Usually, BCI performance is estimated by means
of hit-trials in online cases and average accuracy through cross-
validation in offline analysis. However, subjects may yield different
performance over runs, even within the same experiment. Per-
formance may fluctuate considerably when a user is tested over
a period of days, as environment and mental states vary over
time. Moreover, this variability may occur even within seconds
across trials. Grosse-Wentrup et al. (2011) tried to explain the
trial-wise variability in relation to the gamma (55–85 Hz) rhythm.
They reported that the causal effect of gamma on sensory motor
rhythm (SMR) was induced through the framework of causal
influence (Pearl, 2000; Spirtes et al., 2001). The empirical results
of Grosse-Wentrup et al. (2011) revealed that gamma activity in
the fronto-parietal network played a critical role in the MI process.
Frontal gamma may affect MI ability because high frequency oscil-
lations reflect attention and cognitive processes (Uhlhaas et al.,
2009). Therefore, it has been inferred that the level of a user’s
concentration has some effect on the process of imagining body
movement. Conversely, increases in gamma power in correspond-
ing areas during MI have also been reported (Pfurtscheller and
Lopes da Silva, 1999). In an invasive study, further support for this
gamma increase was obtained in the electrocorticogram (ECoG)
work of Aoki et al. (1999). They found a power decrease in the
11–20 Hz range and an increase in the 31–60 Hz range in the
forearm sensorimotor cortex during performance of visuo-motor
tasks. As the hypothesis that gamma reflects functions in a specific
brain area with highly precise synchronization in local networks
(Fries et al., 2007; Womelsdorf et al., 2007), Halder et al. (2011)
found in an fMRI study that the number of activated voxels in
the supplementary motor area (SMA) was larger for users with
relatively higher MI ability. Therefore, it is evident that gamma
increases on SMA reflect a larger ensemble of neurons for certain
types of processing (Jensen et al., 2007). In a trial-wise manner,
Grosse-Wentrup et al. (2011) also reported a weak negative cor-
relation between centro-parietal gamma oscillation and trial-wise
SMR quality scores, which are the magnitude of output from a

classifier, such as a support vector machine (SVM). This indicates
that the brain state in which there are relatively low levels of gamma
in the MI-related brain area during the resting state may facilitate
the MI process because a high resting alpha rhythm is essential for
good performance of MI BCI.

Summarizing these studies, two types of gamma originating
from different brain areas seem to be important in MI:

• Frontal gamma, which influences MI indirectly
• Directly linked gamma, which increases in the centro-parietal

area during MI

However, it remains unclear whether these gamma activities
influence MI performance across or within subjects, or perhaps
both. The influence of high frequencies (>30 Hz) above beta on
MI performance has rarely been studied, although high frequency
information is being investigated actively (Worrell et al., 2012).
In particular, individual differences in gamma across subjects have
never been investigated, and only one EEG study (Grosse-Wentrup
et al., 2011) on trial-wise variability has been reported, although
there have been some studies (Muthukumaraswamy et al., 2009,
2010) of visual gamma powers. In high frequency analyses, EEG
has yielded reasonable results in some studies (Darvas et al., 2010;
Grosse-Wentrup and Schölkopf, 2012); however, it is understood
that EEG has low spatial resolution and volume conduction prob-
lems, especially in source reconstruction. For in-depth analysis
of gamma activity, magnetoencephalography (MEG) is another
choice; it has comparatively good temporal and relatively higher
spatial resolution than EEG. For this reason, MEG facilitates the
investigation of gamma, and thus has been introduced for MEG-
based BCI (Lal et al., 2005; Mellinger et al., 2007; Buch et al., 2008;
Battapady et al., 2009; Bianchi et al., 2010; Sudre et al., 2011; Zhang
et al., 2011) and related work (Battapady et al., 2009; Bradberry
et al., 2009; Ko and Jun, 2010; Wang et al., 2010; Hong and Jun,
2012; Chowdhury et al., 2013; Hong et al., 2013).

The purpose of this study was to identify individual differ-
ences in gamma activity and the extent of their influence on MI
performance across subjects. For this purpose, a total of ten simul-
taneous MEG and EEG datasets were recorded from ten subjects.
First, the MI classification accuracy of each subject was evaluated
by EEG and the resting state of MEG was used for correlation
analysis between gamma activity and BCI performance. Simul-
taneous MEG/EEG acquisition and methods are explained in
Section “Materials and Methods.” Results are presented in Section
“Results.” Finally, further interpretations and possible applications
are discussed in Section “Discussion.”

MATERIALS AND METHODS
SUBJECTS
Ten subjects (ages: 25.3 ± 2.0 years old; 8 males, 2 females)
participated in this study. The experiment was approved by the
Institutional Review Board of Gwangju Institute of Science and
Technology. All subjects were informed of the experimental pro-
cess and purpose, and written consent letters were collected from
them before the experiment.

SIMULTANEOUS MEG/EEG DATA ACQUISITION
All experiments were conducted with MEG in a magnetically and
electrically shielded room developed by Korea Research Institute
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of Standards and Science in South Korea (152 channels axial gra-
diometer, sampling rate: 1 kHz or 512 Hz, notch filtering at 60 Hz
and bandpass filtering with 0.1–100 Hz), Biosemi EEG (19 chan-
nels electrodes, sampling rate: 512 Hz) and Brain Products EEG
(19 channels, sampling rate: 500 Hz, notch filtering at 60 Hz)
systems. EEG electrodes were attached to the entire scalp (Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz,
Cz, Pz) according to the 10–20 international system. For three
subjects (H, I and J), MEG/EEG was digitized at 1 kHz and down-
sampled to 500 Hz using the Brain Products EEG system. Signals
were recorded in two different states, the resting state, which is
recorded at the beginning of the experiment, and the mental state
while performing MI. Here, MEG and EEG were also recorded
simultaneously, but EEG was used only to estimate the perfor-
mance of MI BCI. In general, EEG has been used most often for
BCI due to its portability and low cost; thus, BCI performance
estimated by EEG alone is more realistic than that estimated by
MEG alone or both MEG/EEG.

RESTING STATE
Subjects were seated in a comfortable armchair and instructions
were projected onto a screen approximately 80 cm away. The rest-
ing state signal was acquired before the MI task. This resting state
acquisition lasted 60 s, while the subjects did nothing but let their
minds wander with eyes open.

MI TASK
A conventional left and right hand imagery movement task was
introduced to estimate each subject’s MI ability. Each subject con-
ducted three runs during this task. One run consisted of twenty
trials for each class (left or right hand movement imagination), for
a total of forty trials. A trial began with a gray fixation cross on a
black background. Subjects were asked to move their eyes as little as
possible during each trial. Either a left or right arrow appeared on
the gray fixation cross after 2 s of preparation. The MI phase began
with the appearance of a randomly selected directional arrow, and
subjects were instructed to imagine their hand movement, such as
making a fist with the left or right hand according to the arrow
until it disappeared. The MI phase lasted 3 s for each trial. After-
ward, the screen went blank and subjects were allowed to relax for
2 s. A randomized interval of 0–2 s was allocated between con-
secutive (randomly chosen right or left) trials to avoid subjects’
adaptation. Figure 1 illustrates one trial of this MI experiment. A
total of 120 trials were collected during the experiments.

CLASSIFICATION ACCURACY FROM EEG
The MI trials acquired were used to quantify the subjects’ MI per-
formance. As in previous studies (Ahn et al., 2012), each signal was
bandpass-filtered with 8–30 Hz to include alpha and beta rhythms,
as these bands are well known to contain very informative fea-
tures that classify two different MI conditions (Pfurtscheller and
Lopes da Silva, 1999; Ahn et al., 2012). Next, a temporally mov-
ing window with a window size of 2 s and sliding step of 100 ms
were applied in order to calculate time variable classification accu-
racy from onset. The classification accuracy in each window was
obtained through cross validation using 120 iterations, as follows:
trials were separated into 10 groups containing an equal number

of trials; for each iteration, 10 groups were divided randomly into
7 (training data) and 3 groups (testing data), respectively. The
number of cases required to choose 7 out of 10 groups is 120; for
each case, a classifier was constructed from the training data, and
testing data were evaluated to yield a hit-rate (%). The common
spatial pattern (CSP; Ramoser et al., 2000) was applied to these
training data and 10 CSP spatial filters that best discriminated the
two conditions were selected. These spatial filters projected each
training trial into a new domain; finally, the variances of projected
signals were used as features. A classifier was generated by Fisher
linear discriminant analysis (FLDA), which constructed classifica-
tion lines in the feature domain between two MI conditions. This
classifier was applied to testing data and yielded classification accu-
racy. Using the same procedure, 120 iterations were performed,
thereby yielding 120 estimates of accuracy. The mean of these
estimates was used as performance in the given window. As the
window was sliding, the best performance time interval for each
subject was determined and the best classification accuracy was
used as the subject’s MI accuracy. The time interval yielding the
best results for each experiment is presented in Table 1.

RESTING STATE MEG ANALYSIS
Before or during MEG recording, bad channels showing abnor-
mal behavior were checked carefully; 10 among 152 channels were
declared as bad channels and excluded from the analysis. MEG
was bandpass-filtered with frequencies between 1 and 100 Hz. Fre-
quency powers were calculated through EEGLAB library (Delorme
and Makeig, 2004). We adopted four spectral band ranges: theta
(4–8 Hz); alpha (8–13 Hz); beta (13–30 Hz), and gamma (30–
70 Hz). The powers of these frequency intervals were summed
and normalized by a total frequency power of 4–70 Hz and were
divided by the total power over channels. This facilitated our inves-
tigation across different channels and subjects without specific
channel or band biases. We defined this value as a relative power
level (RPL) that was used primarily throughout this work.

RESULTS
MI PERFORMANCE
Figure 2 presents classification accuracy estimated by the conven-
tional cross-validation method described in Section“Classification
Accuracy From EEG.” Looking at the performance behaviors, five
subjects (A, D, E, H, and J) showed reasonably moderate perfor-
mance (accuracy > 70%) while the other five subjects (B, C, F,

FIGURE 1 | One trial of MI task.
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Table 1 | Experimental information.

Contents A B C D E F G H I J

MEG

Number of channels 152 152 152 152 152 152 152 152 152 152

Sampling rate (Hz) 500 512 512 512 512 512 512 500 500 500

EEG

Number of channels 19 19 19 19 19 19 19 19 19 19

Sampling rate (Hz) 512 512 512 512 512 512 512 500 500 500

Start time of 2 s time window for best accuracy (s) 0.4 0.1 0.8 1 0.2 0.5 0.9 0.6 0.6 0.1

FIGURE 2 | Classification accuracy in EEG. Accuracy of each subject is
presented with its standard deviation.

G, and I) yielded around chance level (50%) or slightly higher
accuracy.

SPATIAL DISTRIBUTION OF GAMMA ACTIVITY
Topographical distributions for gamma RPL over all experiments
are illustrated in Figure 3 under the fixed color bar scale. It is
notable that most experiments yielding relatively better classifi-
cation accuracy had higher levels of gamma in the frontal area.
Subject F also seemed to show a high gamma power level in the
frontal area; however, high RPL distribution was spread out in the
temporal area, and thus was not focused on the frontal mid-line.

REGION ANALYSIS
To investigate spatial gamma effects on MI accuracy, we sepa-
rated sensor areas into five regions along the midline from the
frontal to occipital areas. Through the linear fitting method and
Pearson correlation analysis, we observed how averaged resting
state gamma levels in each region and MI performance were
correlated (Figure 4). For statistical validation, we used stu-
dent t-tests for each comparison. In the prefrontal area, we
found a highly positive correlation (r = 0.73), indicating that
gamma level was related strongly to MI performance. Such a
positive correlation continued until the frontal area, and then
switched to a negative correlation after the central area, where
it peaked in the occipital region (r = –0.21). Thus, we inferred

FIGURE 3 |Topographic images for MEG gamma. Images are sorted in
descending order of MI performance with EEG.

that frontal gamma may play an important role in MI; mean-
while, the central area was the border at which the relationship
changed from a positive to a negative influence on MI per-
formance. Finally, the negative role of gamma activity was
maximized in the parietal area. However, looking at the signif-
icance level, the negative correlation after the central area was
not as high as that of the prefrontal (p = 0.02) or frontal areas
(p = 0.06).

CORRELATION ANALYSES OF FOUR SPECTRAL BANDS
In the previous section, we found that resting frontal gamma
may play a critical role with respect to the capacity for MI,
while resting-state gamma power in the centro-occipital region
may have a negative association. Such a pattern may affect other
spectral rhythms in order to achieve an overall mental state suit-
able for MI. In this section, frequency band powers other than
gamma were investigated using RPL, and these were compared
with respect to classification accuracy. For each channel, we con-
ducted Pearson correlation analyses to achieve correlation values
and statistical p-values from the student t-test. Next, a statisti-
cal p-value topographical distribution for each subject was FDR
(false discovery rate)-corrected over all channels for multiple
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FIGURE 4 | Regional analysis of MEG gamma. The selected channels in each region are marked as shaded round squares and their mean gamma RPL is
plotted against MI accuracy. The direction of the fitted line and the correlation coefficient changed from the prefrontal to occipital areas.

comparison analysis (Benjamini and Hochberg, 1995; Genovese
et al., 2002).

Figure 5 describes the results of correlation analyses for four
bands at rest; the findings are summarized as follows:

• Gamma showed positive correlations near the front of the
head and those increased in the frontal mid-line area, while
other areas showed negative correlations. We inferred from
this observation that the frontal midline may be an impor-
tant point of origin for imagination processing in motor
function.

• Beta had a pattern similar to that of gamma; however, it was not
focused to the same degree as gamma. Rather, its pattern spread
out to cover broad areas.

• Theta showed the reverse pattern to beta and gamma. Corre-
lations near the prefrontal area were negative; theta became
weakly positive from the frontal to occipital areas.

• Alpha is known to be the most critical factor in the MI
process (Blankertz et al., 2010), especially near the somatic-
motor area. This was also observed in Figure 5 (Alpha).
The correlation analysis revealed that alpha had positive cor-
relations over all areas from the front to the back of the
head.

FIGURE 5 |Topographical plot of correlation distribution between MI

performance with EEG and MEG band power. MEG Gamma p-value is
shown in the right-bottom; other bands were not statistically significant
with FDR-correction threshold (q = 0.1). The significant threshold for
p-values is shown with an arrow in the p-value color bar.
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FIGURE 6 | Classification accuracy in MEG. MEG accuracy of each
subject is presented as a mean with a standard deviation, and for
comparison, EEG accuracy is plotted as a small filled square (r = 0.91,
p < 0.0005).

DISCUSSION
MI PERFORMANCE IN MEG
In this work, MI performance was evaluated by EEG because EEG
is used more commonly than MEG in the BCI system. However,
it is understood that, in general, the MEG signal seems to have
a relatively higher signal-to-noise ratio than EEG; thus, it would
be quite interesting to see if MEG yields better results than EEG
in MI BCI. We investigated MI performance with MEG briefly in
a manner similar to EEG. Classification accuracy was estimated
through cross-validation as described in Section “Classification
Accuracy From EEG.” The same temporal/spectral filtering pro-
cessing as those in EEG and further channel selection were applied.
Next, the best classification accuracy of MEG was chosen. As a
result, MEG yielded 64.8 ± 7.9 in classification accuracy, which
is slightly inferior to and almost comparable to EEG performance
(66.4 ± 9.4). Detailed performances for each subject are depicted
in Figure 6. Both MEG and EEG performance distributions are
correlated strongly (r = 0.91, p < 0.0005). Even though MEG
performance seemed almost comparable to EEG performance in
this work, there are still many factors affecting classification per-
formance, such as preprocessing, filtering, feature extractions, and
classification. Thus, a solid comparison between MEG and EEG
performance is not easy. In addition, we found that the following
issues should be considered in MEG processing. First, as reported
in Dornhege et al. (2007), a large number of MEG channels may
yield over-fitting and it may fail to find reasonable spatial filters.
In our brief investigation, we observed that the whole channels
(N = 152) yielded quite inferior performance (56.7 ± 7.8) to a
far smaller number of selected channels (N = 20) when only CSP
was applied. Second, compared to EEG electrodes attached on the
head, the location of MEG sensors is more likely to move due
to head movements of subjects during long experiments. There
are reports that location mismatch may also influence classifica-
tion accuracy (Mellinger et al., 2007; Park et al., 2013). According
to Park et al.’s (2013) report, the location change of channels
degraded classification accuracy and phase-based features (for
example, phase locking value) are more stable than power-based

features. Mellinger et al. (2007) recommended using Laplacian
spatial filtering rather than more sophisticated methods, such as
independent component analysis (ICA), CSP and beamforming
(Ahn et al., 2012), where accurate correction of channel location is
not guaranteed. In our investigation, we also obtained better accu-
racy in some subjects by using a time-averaging feature without
CSP filtering and rejecting bad trials after examination. In addi-
tion, Dornhege et al. (2007) demonstrated that CSP and ICA in
MEG could work more poorly than the approach without spatial
filtering, while those approaches could improve performance in
EEG. In summary, spatial filtering and channel mismatch may be
critical factors in MEG processing.

EEG GAMMA IN RESTING STATE
EEG gamma activity in the resting state was investigated in the
same manner as MEG, as shown in Figure 3. The topographical
images of EEG gamma activity for all subjects are illustrated in
Figure 7. Due to the small number of EEG channels (N = 19),
spatial resolution of the EEG image is considerably lower than
that of MEG. Unlike MEG gamma in Figure 3, any noticeable
tendency and statistically significant correlation between resting
state gamma and MI performance were not observed in the frontal
or centro-occipital areas (p > 0.1) in EEG. This result shows that
MEG has an advantage over EEG in the investigation of gamma
activity. However, this may be due to the specificity of our analysis
or the equipment we used here (19 EEG channels).

MEG GAMMA AND BCI PERFORMANCE
In this work, we observed empirical evidence that MEG gamma
correlates with MI performance. Prefrontal gamma seems to have
a strong association with the MI process (at least in our study), but
this may be the result of an indirect association. Specifically, we
observed that prefrontal gamma yielded highly significant results
(r = 0.73, p = 0.02). Thus, we may infer that frontal gamma is
the target neurophysiological factor to differentiate between good
and poor MI task performers. However, there are some issues

FIGURE 7 |Topographic images for resting state gamma in EEG.

Images are sorted in descending order of MI performance with EEG.
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FIGURE 8 | Prefrontal MEG gamma and accuracy variation in two

sessions.

that must be considered further. The first is that frontal gamma
may be contaminated by facial electromyogram (EMG) noise. This
EMG artifact may yield a substantial effect in our analysis and
may be associated with notable patterns in gamma rhythm. To
examine such possible EMG effects, we evaluated the correlations
of several channels (Fp1, Fp2, F3, F4, F7, F8, Fz) in the frontal
area against classification accuracy. We observed that there were
no significantly correlated channels; thus, we are convinced that
there was no substantial EMG effect in our MEG analysis. The
second consideration is that some subjects may not be in a good
mental state to conduct imagination. If this is the case, a subject
who demonstrates poor accuracy at one time may perform well
on another occasion. Because there are reports that attention is
related to human performance (Pashler et al., 2001; Liu et al., 2005;
Jensen et al., 2007; Lakey et al., 2011; Hammer et al., 2012), the
second consideration is well worth investigation. To this end, we
compared two different sessions for three subjects who had multi-
session data. In Figure 8, we plotted frontal gamma RPLs for the
first (A, B, C are the same as in Figure 4) and second session
data (A2, B2 and C2) against BCI performance, and a positive
slope over sessions was observed in all three subjects (Figure 6).
We inferred from this result that high prefrontal gamma during
the resting state is likely to yield good classification accuracy. Even
though other area channels (frontal, central, parietal and occipital)
were investigated similarly, notable patterns such as the positive
correlation in the prefrontal area channels were absent. This is an
interesting avenue to pursue in future investigations with more
datasets.

In addition to our preliminary within-subjects results
(Figure 6), there are other studies that have demonstrated the
importance of prefrontal gamma. Halder et al. (2011) reported
high correlations (r = 0.72) from fMRI comparisons between MI
performance and voxel activations in the prefrontal area. Hammer
et al. (2012) concluded that attention resources support BCI per-
formance; importantly, they showed that the ability to concentrate

on a task accounted for 19% of the variance in BCI performance.
Generally, a high frequency wave like gamma in the prefrontal
cortex is interpreted as reflecting attention and memory processes
(Jensen et al., 2007; Benchenane et al., 2011). Therefore, one can
interpret that the high prefrontal gamma represents considerable
activation and synchronization of neurons, and that this facilitates
the imagination process for motor function.

Interestingly, the gamma correlations in this study were as
high as 0.80 (Figure 5), while other bands showed correlations
of approximately 0.50 to 0.60. This is a very large range and
suggests that frontal gamma may be more important than other
bands, considering similar studies showing correlations of r < 0.40
across subjects (Ahn et al., 2013) and r < 0.10 within subjects
(Grosse-Wentrup et al., 2011). We believe that MEG, rather than
EEG,may better detect high frequency information, thereby result-
ing in higher correlations. Although we did not include the results
of EEGs recorded during the resting state, it was difficult to see a
clear relationship with respect to gamma. Therefore, we may use
the advantages of MEG over EEG, and prescreen subjects’potential
performance with MEG before a user begins to play with EEG-
based BCI. EEG-based BCI will probably remain the most popular
because of its advantages of portability, low cost and simple oper-
ation. MEG is large and expensive, and thus it is unrealistic to
use for the BCI system. Rather, it is more likely that MEG will
contribute to the pre-screening or diagnosis of a user’s traits and
mental state.

As does the indirect association in the frontal area, we should
understand the direct association with MI-related areas. It is
known that larger alpha yields stronger event-related desynchro-
nization, which is used as a most informative feature. This
tendency was reported not only in MI (Blankertz et al., 2010;
Ahn et al., 2013), but also in memory (Vogt et al., 1998; Klimesch
et al., 1999) and visual (Salenius et al., 1995; Doppelmayr et al.,
1998) processing. To process a task, it is considered that neurons
firing in certain cortical areas are synchronized (Jensen et al., 2007)
and that this synchrony produces high frequency oscillations such
as gamma. Thus, we may pose the hypothesis that the existing
alpha power before MI may shift to rather high frequencies there-
after through neuronal communication in MI-related areas. Thus,
low levels of gamma could reflect an idling state in that area, while
it is producing high alpha rhythms. In this context, we expected
that the centro-parietal gamma rhythm at rest might be correlated
negatively with classification accuracy. However, we observed a
weak (non-significant) negative correlation with MI performance
in the centro-occipital regions (Figure 5). Therefore, it was diffi-
cult to support our hypothesis, but it is still worth continuing this
investigation with more and better data that have good quality
high frequency information. We believe that an invasive approach
like ECoG may have significant potential in this type of study.

CONCLUSION
This study employed ten subjects to provide empirical evidence
for the importance of gamma in MI accuracy. With simultane-
ous MEG/EEG data on MI and resting states before and after
MI, we found that performance was correlated positively with
gamma activity in the prefrontal area. This indicates that the way
in which the gamma rhythm is generated in the prefrontal area is of
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great importance in MI processing. In conclusion, high prefrontal
gamma – possibly related to concentration level – represents a
good mental state for reaching acceptable performances in MI BCI.
This finding will facilitate the development of more advanced BCI
designs that reflect users’ mental states in the system itself.
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