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Gamma frequency rhythms have been implicated in numerous studies for their role
in healthy and abnormal brain function. The frequency band has been described to
encompass as broad a range as 30–150 Hz. Crucial to understanding the role of gamma in
brain function is an identification of the underlying neural mechanisms, which is particularly
difficult in the absence of invasive recordings in macroscopic human signals such as
those from magnetoencephalography (MEG) and electroencephalography (EEG). Here,
we studied features of current dipole (CD) signals from two distinct mechanisms of
gamma generation, using a computational model of a laminar cortical circuit designed
specifically to simulate CDs in a biophysically principled manner (Jones et al., 2007,
2009). We simulated spiking pyramidal interneuronal gamma (PING) whose period is
regulated by the decay time constant of GABAA-mediated synaptic inhibition and also
subthreshold gamma driven by gamma-periodic exogenous excitatory synaptic drive.
Our model predicts distinguishable CD features created by spiking PING compared
to subthreshold driven gamma that can help to disambiguate mechanisms of gamma
oscillations in human signals. We found that gamma rhythms in neocortical layer 5 can
obscure a simultaneous, independent gamma in layer 2/3. Further, we arrived at a novel
interpretation of the origin of high gamma frequency rhythms (100–150 Hz), showing that
they emerged from a specific temporal feature of CDs associated with single cycles of
PING activity and did not reflect a separate rhythmic process. Last we show that the
emergence of observable subthreshold gamma required highly coherent exogenous drive.
Our results are the first to demonstrate features of gamma oscillations in human current
source signals that distinguish cellular and circuit level mechanisms of these rhythms and
may help to guide understanding of their functional role.
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1. INTRODUCTION
Gamma frequency rhythms, described broadly anywhere from 30
to 150 Hz, are commonly observed in brain signals across many
scales, regions, and species and have a well-established associa-
tion with healthy function. They have been implicated in learning
and memory (Osipova et al., 2006; Headley and Weinberger,
2011, 2013), attention (Fell et al., 2003; Deco and Thiele, 2009;
Todorovic et al., 2011), perception (Varela et al., 1999), and plas-
ticity (Lee et al., 2009; Headley and Weinberger, 2011, 2013) and
also have been shown to be disrupted in many neuropatholo-
gies, including schizophrenia and ADHD (Haig et al., 2000; Wang,
2010). Despite the abundance of correlative evidence that gamma
periodic rhythms are associated with brain function, their pre-
cise role in mediating information processing is debated (Ray
and Maunsell, 2010). Furthermore, gamma periodic rhythms
are most often defined by their frequency band and not by
their underlying mechanism (Siegel and König, 2003), which
is complicated by observations that broadband gamma activity
can be, in some cases, related to secondary phenomenon such

as microsaccades and not functional neuronal processes (Yuval-
Greenberg et al., 2008). Critical to resolving these debates is an
understanding of how specific mechanisms give rise to activity
within these frequency bands (Buzsáki and Wang, 2012).

Some studies have categorized the gamma frequency band into
low (30–100 Hz) and high (100–150 Hz) sub-bands (Herculano-
Houzel et al., 1999; Uhlhaas et al., 2011), and further functional
delineations may exist (Ainsworth et al., 2011; Uhlhaas et al.,
2011). Work on understanding circuit-level origins of gamma
frequency oscillations has focused primarily on the low band,
and it has been well-established through experiments and com-
putational modeling that these rhythms can emerge in local
spiking networks through interactions of principal excitatory
cell (E) and GABAA-ergic inhibitory cell (I) interactions, with
the period of the oscillation set by the time constant of decay
of GABAA-mediated currents (Cardin et al., 2009; Vierling-
Claassen et al., 2010; Buzsáki and Wang, 2012), a mechanism
that has been referred to as pyramidal-interneuronal gamma
(PING) (Whittington et al., 2000, 2011). In normal regimes, the
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decay time constant of GABAA-mediated synapses bounds oscil-
lations to be in the low gamma frequency band (Chow et al.,
1998; Uhlhaas et al., 2011). The intrinsic biophysics of these
currents suggest that they are not a candidate mechanism to
underlie gamma frequency oscillations in a much higher band
(Chow et al., 1998). It has been shown that increases in the
high gamma band can arise from uncorrelated changes in rate
of spiking (Ray et al., 2008), but whether alternative mecha-
nisms can explain the mechanistic origin of this band is less
well-understood (Ray et al., 2008; Buzsáki and Wang, 2012).
One alternative hypothesis suggests that gamma frequency activ-
ity can be synaptically entrained in local cortical networks by
gamma periodic inputs from an upstream region such as tha-
lamus (Canu et al., 1994; Steriade et al., 1996b; Castelo-Branco
et al., 1998).

A major confound in the interpretation of the mech-
anisms of gamma frequency rhythms is the scale over
which they are recorded (i.e. spikes, local field poten-
tials (LFP), electrocorticography (ECoG), electroencephalogra-
phy (EEG)/magnetoencephalography (MEG)). While gamma
rhythms are often thought to involve local spiking interactions
that are not synchronized across large volumes of the brain (von
Stein and Sarnthein, 2000; Buzsáki and Wang, 2012), macro-
scopic human imaging signals are separately thought to rep-
resent subthreshold synchronous activity of large populations
of pyramidal neurons (Hämäläinen et al., 1993; Zhu et al.,
2009). Yet gamma periodic activity is commonly reported in
these studies, which raises the question of whether the under-
lying mechanisms are the same. This discrepancy might be
partially—but not fully—rectified by the fact that the spectral
power of recorded gamma is typically smaller than that of lower
frequency rhythms, suggesting gamma rhythms are generated
by a smaller synchronous network. Yet how these large scale
observations in human imaging can be reconciled with the spa-
tially restricted operation of some modes of gamma oscillations
remains unclear.

In prior work, numerous computational neural models have
been created to study the mechanisms of only local gamma
frequency rhythms in spiking networks, focusing on E-I (or
I-I) interactions that generate low gamma via GABAA-mediated
mechanisms (Traub et al., 1996, 1997; Chow et al., 1998; Börgers
et al., 2005), and to our knowledge, these studies have not consid-
ered gamma generating mechanisms or alternatives explicitly in
the context of current dipole (CD) signals commonly estimated
with MEG/EEG. If designed at the appropriate scale to accurately
simulate the physics of the recorded signals, computational mod-
els can elucidate features of the rhythms that help to disambiguate
the interpretation of the underlying mechanisms.

In this paper, we simulated different mechanisms of gamma
frequency rhythms in CD using a previously developed, biophys-
ically principled computational model of a laminar neocortical
circuit designed specifically to simulate macroscopic CD signals
estimated from MEG or EEG recordings (Jones et al., 2007, 2009;
Ziegler et al., 2010). Our model results predict features in CD
waveforms that would arise from gamma frequency rhythms cre-
ated by GABAA-mediated spiking networks and by subthreshold
driven networks. We show that there are quantifiable features in

the raw waveforms that can help to differentiate the underly-
ing mechanisms. High gamma frequency activity emerged from
a characteristic CD waveform produced by spiking network
rhythms that was non-harmonically coupled to low gamma fre-
quency rhythms and was not representative of a separate process
or uncorrelated spiking activity. Gamma frequency rhythms in
CD were dominated by the long apical dendrites of pyramidal
cells in infragranular layer 5 (L5) that can mask the presence of
independent gamma rhythms in supragranular layers 2/3 (L2/3).
Spiking-mediated gamma and subthreshold driven gamma were
coordinated by networks of different scales, with smaller spiking
networks creating higher amplitude signals. Our findings provide
the first principled interpretation of the cellular-level mechanisms
of gamma in human macroscopic imaging signals that may help
reveal the computational role of gamma in health and disease.

2. METHODS
We utilized a prior biophysically-based computational model a
laminar cortical circuit designed to simulate current dipoles (CD)
(Jones et al., 2007, 2009; Ziegler et al., 2010). Here, we briefly
describe key features of the model and differences in the present
work, which were necessary to study gamma rhythms specifically.

2.1. MODEL NETWORK CONSTRUCTION
The model represented the laminar structure of a neocortical col-
umn simulated with two major cell classes in supragranular layer
2/3 (L2/3) and infragranular layer 5 (L5). Each layer was com-
prised of 100 multi-compartment pyramidal cells and 35 fast
spiking single compartment inhibitory cells (Figure 1) that were
arranged in a grid.

FIGURE 1 | Schematic of cells in model laminar cortical network.

Multi-compartment excitatory pyramidal cells (E, green) and single
compartment inhibitory basket cells (I, red) shown for cells with somata in
supragranular L2/3 and infragranular L5 (E and I labeled for L2/3 cell but
represented similarly for L5). Rectangles denote compartments. Cylindrical
scale bar marks 3 μm diameter and 400 μm length. Figure adapted from
(Jones et al., 2007, 2009). (A) Lines between cell types denote
GABAA-ergic synaptic connections from I cells (red) and AMPA-ergic
synaptic connections from E cells (green) that terminated on somatic
compartments. (B) In some simulations, all L5 pyramidal cells received
identical subthreshold proximal input, modeled as AMPA-ergic excitatory
postsynaptic currents (EPSCs) that were delivered simultaneously to three
compartments in each cell, as shown. (C) In some simulations, all L5
pyramidal cells received identical subthreshold distal input, also
AMPA-ergic, and delivered to distal compartment of apical dendrites. Red
arrows illustrate examples of longitudinal intracellular current dipole
induced by each drive.
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2.2. MODEL CELL MORPHOLOGY AND PHYSIOLOGY
Pyramidal cell morphology is particularly relevant to the present
work. As previously described, the compartmentalization of the
pyramidal cells was modeled to mimic a reduced morphology
in neocortical pyramidal neurons (Bush and Sejnowski, 1993;
Jones et al., 2009). The compartment lengths and diameters
are as reported in Jones et al. (2007). In general, all pyrami-
dal cells in both layers contained a somatic compartment, apical
dendritic compartments that were oriented orthogonally to the
laminae, an oblique dendritic compartment parallel with the lam-
inae, and 3 basilar dendritic components, as depicted in Figure 1.
The oblique dendritic compartment did not contribute to the
CD calculation in the model, but all others did. L5 pyramidal
cells included one additional apical dendritic compartment and
were in total 2.21 times longer than the L2/3 compartments for
equivalent CD. The L5 and L2/3 pyramidal compartments had
differences in compartmental diameter and capacitance, which
were identical to prior work and can be found there.

For some compartments with lengths greater than 100 μm (L2
pyramidal—oblique, middle apical dendritic section, apical den-
dritic tuft; L5 pyramidal—apical dendritic trunk, apical tuft), the
spatial discretization used for integration within a compartment
was increased by 1 additional point. For these models, this minor
modification had negligible numerical effects and did not affect
the results of the simulations.

All cells in the model contained Hodgkin-Huxley type sodium
(INa), potassium (IK), and leak (IL) currents. Additional active
currents in pyramidal cells in L2/3 included a delayed recti-
fier potassium current (IKdr), and a potassium M current (IKm).
Pyramidal cells in L5 also contained these currents, in addition to
a calcium current (ICa), mixed cation h current (Ih), a low thresh-
old T-type calcium current (ICaT), and a potassium-activated
calcium current (IKCa). All parameters for these currents, includ-
ing maximal conductances and reversal potentials, were identical
to Jones et al. (2009).

2.3. SYNAPTIC CONNECTIVITY
The types of connections from the original model (Jones
et al., 2009) were preserved and included AMPA-ergic and
GABAA-ergic synapses, but the intralaminar synaptic connectiv-
ity strengths between cell types were modified for the present
work. We briefly describe the details of the intralaminar GABAA-
ergic synapses due to their importance in mediating spiking
gamma frequency rhythms. GABAA-ergic synapses terminated on
the somatic compartments of pyramidal cells, which were mod-
eled with an exponential rise time constant of 0.5 ms and an
exponential decay time constant of 5 ms, as in Jones et al. (2009).
Synaptic connections between cell types were effectively all-to-
all, but the strengths were scaled by a weight space constant that
considered the distance between cells in the grid.

A common view of low frequency gamma oscillations is that
they emerge from synchronous postsynaptic currents in popu-
lations of pyramidal neurons, including both GABAA-ergic and
glutamatergic synapses. Our model is consistent with this view
while explicitly considering effects of these synaptic interac-
tions on intracellular longitudinal currents in pyramidal neurons
that contribute to current source signals. However, we have not

included E-E connections in our study. This simplification was
chosen based on prior studies showing the minimal synaptic
connectivity to achieve PING rhythms includes reciprocal inter-
actions between E and I cell populations (Whittington et al., 2000;
Börgers et al., 2005). Though E-E connections play an impor-
tant roles in network dynamics, here we were interested in the
effect of GABAA-ergic mediated PING rhythms (via I-E) on the
current dipole signal. Prior studies have shown that the addi-
tion of E-E connections can maintain PING rhythms provided
the I-E connections are sufficiently strong (Börgers and Kopell,
2003; Tiesinga and Sejnowski, 2009), and we expect a consis-
tent parameter regime could be achieved in our model, though
future studies would be needed to explicitly address this question.
Interlaminar connections between cell types in different laminae
were also removed for these simulations, in contrast to prior mod-
els, because our focus here was on independent oscillatory activity
in L2/3 and L5 (see Discussion).

2.4. CURRENT DIPOLE CALCULATION
The longitudinal CD was the principal output of the simulations.
The aggregate CD was calculated as the linear sum of the longitu-
dinal intracellular dendritic currents from L2/3 and L5 pyramidal
cells in a direction parallel to the apical dendrites. This signal is
schematically depicted with red arrows in Figures 1B,C. In most
cases, CD was analyzed separately for L2/3 and L5.

The CD for a given layer (Qtotal) was the sum over all pyra-
midal cells in a layer (npyr) of the axial CD contribution for
each compartmentalized segment i, which was the ohmic current
between adjacent segments multiplied by the length component
of the segment parallel to the longitudinal axis of the apical den-
drite (zi). Thus, Qtotal at each time point for a given layer was
calculated as:

Qtotal =
∑
npyr

∑
i,j

(
vi − vj

ri

)
· zi

for which ri was the axial resistance and vi was the voltage of the
ith segment, and vj was the voltage of the preceding segment j.
The z axis was always defined parallel to the apical dendrites, and
the positive direction was defined in the direction corresponding
to a net current flow traveling away from the soma toward the
local cortical surface.

2.5. PARAMETERS FOR SIMULATIONS OF PING AND WEAK PING
In this paper, we simulated an established class of spiking mech-
anisms of gamma rhythms that rely on the interactions between
pyramidal cells and interneuronal cells, so-called PING rhythms
(Whittington et al., 2000). In general, PING rhythms are initiated
by excitation to the E cells, which in turn synaptically activates
a spiking population of I cells. In turn, these I cells inhibit the
E cells, shunting further E cell activity until the excitatory drive
to the E cells can overcome the effects of the inhibition. The fre-
quency of the rhythm is paced by this time constant of inhibition
(Whittington et al., 2000; Cardin et al., 2009; Whittington et al.,
2011; Buzsáki and Wang, 2012), which is mediated by GABAA-
ergic currents and is typically studied in two forms: strong and
weak. Principal E cells participate on each cycle of the strong
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PING rhythm, while only a sparse, random set participate on
each cycle in weak PING. Computationally, strong and weak
PING rhythms differ in the type and strength of excitation and
the maximal synaptic strengths of connections between excita-
tory principal cells and inhibitory interneurons. We considered
strong PING rhythms briefly in this paper but focused on weak
PING in CD.

Strong PING rhythms were created by tonic applied current
(Iapp) to the E cells, which was manifested as the addition of a
scalar current term in the dynamic current balance equations for
the compartmental voltage. The maximal conductance of AMPA-
ergic synapses from E to I cells (gei) was tuned such that a coherent
barrage of E cells was required from the whole population to elicit
coherent spiking in a group of I cells. The maximal conductance
of GABAA-ergic synapses from I to E cells (gie) was tuned such
that the coherent population of I cell spiking would shunt further
E cell activity. No I to I connections were used for strong PING
simulations.

Weak PING rhythms were modeled as noisy, Poisson-
distributed AMPA-ergic excitatory postsynaptic potentials
(EPSPs) with rate parameter (λpois) and maximal synaptic
conductance (gpois) to each individual E cell, as in Börgers et al.
(2005). The network was tuned such that a random population
of E cells elicited spiking in a population of coordinated I cells
by increasing gei. For inhibition, gie was tuned to shunt further
random E cell spiking. In weak PING, I to I synapses were used
to increase coherence in the I cell spiking, tuned by a maximal
conductance (gii). The parameters used in simulations of both
strong and weak PING are shown below in Table 1 for different
layers, unless otherwise noted in the text. Units for conductances
are in mS/cm2, and units for currents are μA.

For all oscillations simulated in the network, specific frequen-
cies were chosen to fall within the canonical gamma frequency
band, supported by experimental evidence of gamma during
working memory (Howard, 2003), evoked by sensory stimuli
(Tavabi et al., 2011; Swettenham et al., 2013), and induced by
attention (Koelewijn et al., 2013). In our simulations, weak PING
rhythms were frequency-matched to the subthreshold oscillations
described below. For all parameter regimes, oscillatory behavior
was modulated by the strength of the excitation, and chang-
ing the balance of parameters could affect the observed network
frequency, as in previous studies (Ainsworth et al., 2011).

2.6. SUBTHRESHOLD DRIVEN OSCILLATIONS
We simulated subthreshold oscillations driven from sources out-
side of the cortical network, representative of thalamocortical or
corticocortical synaptic drives to cortex, as in our prior work
(Jones et al., 2009). Inputs were simulated as predefined spike

Table 1 | Parameters for PING.

gei gie gii Iapp λPois gpois

(Hz)

L5: strong PING 6×10−5 3×10−1 0 6 – –

L5: weak PING 9.1×10−4 8×10−2 7.5×10−3 – 40 1×10−2

L2: weak PING 1.2×10−3 7×10−3 1×10−2 – 140 0.8×10−3

trains that drove excitatory AMPA-ergic currents in the model,
in distinct laminar locations shown in Figures 1B,C and referred
to as “proximal” and “distal.” Proximal inputs reflected lemnis-
cal thalamocortical excitation (but see Discussion) that contacted
granular and infragranular layers and ramified with synaptic
locations in three compartments on the L5 pyramidal cells: the
apical oblique dendrite and both of the basal dendrites attached
to the basal trunk. Distal inputs were modeled to reflect cor-
ticocortical activity or thalamic sources and ramified at the
most superficial distal dendritic compartment on the pyramidal
cells.

Each type of input was modeled to be the same for all cells
in a given simulation. Inputs were parameterized by mean inter-
event intervals that were chosen to be within gamma frequency
ranges for these simulations. The event times served as the mean
time for 10 Gaussian distributed excitatory postsynaptic currents
(EPSCs) with a temporal standard deviation (σp for proximal
inputs and σd for distal inputs) that was varied. A delay in the
mean time between proximal and distal inputs for each cycle
was set to 5 ms for all simulations presented here. In previous
modeling, a synaptic delay was introduced between proximal and
distal inputs to reflect a delay in thalamocortical transmission,
but here both delays were set equal to 1 ms for all subthreshold
simulations for simplicity. The conductances of all subthreshold
inputs were set to 40 pS, as used for certain simulations in prior
work.

2.7. ANALYSIS
Spike times were recorded for all cell types, as well as somatic cur-
rent contributions from GABAA-mediated synapses onto pyrami-
dal cell somata using NEURON’s built-in routines. Spectrograms
were calculated using a Morlet wavelet method as previously
described in Jones et al. (2009); Vierling-Claassen et al. (2010)
over a frequency range of 1–150 Hz. Units of Morlet power (PM)
are (nAm)2. We also used a stationary Welch periodogram from
the SciPy signal module (Oliphant, 2007) to characterize the
spectral content for the entire time window of a simulation of
CD (Hann tapered). Units of Welch power spectrum (PW) are
(nAm)2.

Spike histograms were shown for model network cell spikes for
some simulations were calculated using 1 ms bins (see Figure 2).
Peristimulus time histograms (PSTH) were shown in some sim-
ulations for discrete events (such as input times) with 5 ms bins
(�tbin) unless otherwise noted.

Local maxima and minima of the CD were calculated for both
spiking PING and subthreshold oscillations as in Jones et al.
(2009) and used here to quantify slope ratio (�), as shown
schematically for Figure 3. For the ith cycle of the oscillation, a
ratio describing the rising rate and falling rate of the oscillations

(φi) was defined as φi = |mrise
i |/|mfall

i | in which mrise
i and m

fall
i

were linear slope calculations between the trough and the peak
on subsequent cycles of the oscillation. � served as a measure of
symmetry about a peak of the CD, with values of 1 suggesting
that the rate of rise was equivalent to the rate of fall. Value of �

less than 1 suggested that the rate of rise was slower than the rate
of fall; conversely, values greater than 1 suggested that the rate of
rise was greater than the rate of fall.
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FIGURE 2 | Strong PING and weak PING rhythms have

characteristically different current dipole waveforms. Simulations
from L5 network consisted of 100 E cells and 35 I cells,
synaptically connected as described in Methods. From top panel to
bottom: spike raster of E cells (black) and I cells (red); spike
histogram of E cells (black, right scale) and I cells (red, left scale),
1 ms bins; aggregate GABAA-ergic current contribution to E cell
somata (μA); network current dipole (nAm); Morlet spectrogram of
current dipole; stationary Welch periodogram for current dipole.
Simulations shown from 50 to 550 ms. (A) Strong PING oscillations
with all pyramidal cells spiking on each cycle of the oscillation

exhibit large, coordinated current dipoles. PING oscillation frequency
(f ) is 36 Hz. Individual pyramidal cells spiking at f . Sharp edge
effects seen in broadband high frequency noise on each cycle in
Morlet spectrogram. Max. amplitude of current dipole of 0.26 nAm.
Max. Welch spectral power (PW) of 3.86×10−4 (nAm)2 at 35.4 Hz.
(B) Weak PING oscillations have fewer E cells spiking on each
cycle, despite coordinated I cell spiking activity. Fewer and less
coordinated E cell spiking resulted in smaller amplitude current
dipole. gpois = 0.75×10−2 mS/cm2. Max. amplitude of current dipole
of 0.019 nAm. Max. Morlet frequency at 52 Hz. Max. PW of
1.66×10−5 (nAm)2 at 51.3 Hz.

2.8. NUMERICS
Simulation data was output at a fixed time step of 0.025 ms,
using the variable time step built-in NEURON solver “cvode.”
All simulations shown here were run for 550 ms of simulation
time, and all figures are presented for analyses run from the last

500 ms. The first 50 ms of all simulation data was ignored due to
a non-linearity in the steady state initial conditions. Additionally,
a baseline renormalization was performed on the CD time series
for visualization purposes. For each pyramidal cell in L2, an off-
set of 4.43×10−8 nAm was applied. For each pyramidal cell
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FIGURE 3 | Fast inhibition creates sharp falling phase of current dipole

in weak PING. Example weak PING current dipole (nAm) simulation, with
peaks (red) and troughs (green) marked. Slope ratio (�) defined as mean of
ratios of rising slope to falling slope (depicted by dotted lines) for each cycle
of rhythm. � for weak PING was 0.6 ± 0.1 (s.e.), reflecting sharp inhibition
responsible for rapid fall. gpois = 0.75×10−2 mS/cm2.

in L5, over the temporal interval used in the analysis, the line
1.01×10−10t− 4.841×10−5 nAm was subtracted for times t. This
linear shift did not affect the simulation results or the subsequent
analyses.

The original NEURON hoc code (ModelDB accession number
136803) from Jones et al. (2009) was refactored using NEURON
7.3 as a module for Python 2.7.5. Simulations and analyses were
performed in Python, using NumPy 1.7.1, SciPy 0.12.0, mpi4py
1.3, and OpenMPI 1.6.1 on commercially available x86_64 hard-
ware. The code for these simulations is available on ModelDB
(Hines et al., 2004) with accession number 151685.

3. RESULTS
3.1. PING IN CURRENT DIPOLE SIGNALS REFLECTS DENDRITIC

BACKPROPAGATION OF ACTION POTENTIALS AND STRONG
SOMATIC INHIBITION

Gamma rhythms created by well-established PING mechanisms
have been observed in many models and in vitro and in vivo exper-
iments, but how these mechanisms are expressed in macroscopic
current dipole (CD) signals commonly estimated with MEG/EEG
has not been investigated. To address this, we simulated PING
rhythms in a laminar model of neocortex designed specifically
to investigate CD signals in a biophysically based model (Jones
et al., 2007). We show below that strong and weak PING rhythms
created distinguishable characteristics in their CD waveforms that
can help to guide the interpretation of the underlying cellular and
network level generators and differentiate them from alternate
mechanisms, such as driven subthreshold oscillations as described
below.

First we simulated strong PING rhythms in a L5-only net-
work. As in classical models of PING, the network model con-
sisted of 100 excitatory pyramidal neurons (E cells) and 35 fast
spiking inhibitory basket cells (I cells) coupled via AMPA and

GABAA-mediated synaptic connections in their somatic com-
partments (see Figure 2A and Methods for details of parameters).
Tonic, depolarizing current was simulated in the somatic com-
partments of the E cells to generate spiking. The typical spiking
pattern in the E and I cells representative of a strong PING rhythm
is shown in Figure 2A (top panel). Following prior work, we use
the term “strong PING” to reflect the fact that the entire popula-
tion of E cells spiked coherently on each cycle of the oscillation.
This highly coherent activity is visible in both the spike rasters and
histograms in Figure 2A (second panel). While such tight coher-
ence is likely unrealistic, an investigation of the impact of strong
PING rhythms was instructive in understanding the mechanisms
of this rhythm in CD sources.

The rhythm was initiated by the population of E cells spik-
ing synchronously, triggering synchronous spiking in the I cells
via the AMPA-ergic E-I synapse. The spiking of the I cells led to
GABAA-mediated synaptic activity that suppressed further E cell
activity until the inhibition wore off, enabling the tonic depo-
larization to initiate the next cycle of E cell spikes. The time
constant of the GABAA-mediated synapse regulated the period
of the rhythm. Aggregate GABAA-ergic synaptic currents onto
the E cell somata shown in Figure 2A verified the influence of
inhibition-mediated rhythmicity.

While the underlying mechanisms of PING rely on spiking
activity in E-I populations, primary CD signals arise from the
intracellular longitudinal currents within the long, parallel apical
dendrites of neocortical pyramidal neurons (Hämäläinen et al.,
1993; Ikeda et al., 2005; Jones et al., 2007). Figure 2A (middle
panels) shows the corresponding net current dipole moment in
the E cell population during strong PING (see Methods for details
of CD calculation).

The CD waveform was qualitatively different than that of the
somatic GABAA-mediated synaptic currents in the E cells and the
spiking activity, though they all shared similar frequency charac-
teristics in this extreme case of strong PING. The CD consisted
of rapid, large amplitude positive deflections, followed by rapid,
downward negative deflections (see Methods for CD sign con-
vention). Positive deflections reflected backpropagation of action
potentials through apical dendrites of the synchronously spiking
population of E cells, and negative deflections were a result of
rapid current flow down the dendrites, created by the GABAA-
ergic currents at the soma. The spectral content of this oscillation
in CD included the 36 Hz gamma frequency oscillation reflec-
tive of PING mechanisms, which was corroborated by counting
cycles of the oscillation in the spiking raster, somatic current,
and the CD (18 cycles over 500 ms). Harmonic activity (72 Hz,
108 Hz) emerged due to the absence of cycle-to-cycle variance in
this idealized strong PING rhythm. Furthermore, high frequency,
broadband spectral energy dominated the spectrum on each cycle
of the oscillation, corresponding to spectral edge effects caused by
the sharpness reflected in the CD time series (Kramer et al., 2008;
Scheffer-Teixeira et al., 2013).

Due to the fact that there is a one-to-one correspondence in
units of measure for equivalent current dipole signals estimated
from MEG/EEG data and our simulations, namely nanoampere-
meters (nAm), we can estimate the size of the synchronous
spiking network of pyramidal neurons that would create an
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observable CD arising from a strong PING rhythm. Estimates
of minimal measurable cortical generators of CD signals in
humans are on the order of 10 nAm (Hämäläinen et al., 1993;
Murakami and Okada, 2006; Jones et al., 2007; Nevalainen et al.,
2008; Jones et al., 2009, 2010). Here 100 E cells spiking syn-
chronously created a CD with a maximal value of 0.26 nAm, sug-
gesting ∼104 pyramidal neurons would need to be synchronously
firing to create an observable strong PING rhythm (with an
amplitude of 26 nAm) with the characteristic features described
above.

3.2. WEAK PING RHYTHMS MAINTAIN CHARACTERISTICS OF STRONG
SOMATIC INHIBITION AND COUPLE TO BOUTS OF HIGH GAMMA
FREQUENCY ACTIVITY

While instructive for understanding how PING mechanisms are
reflected in pyramidal cell dendritic CD signals, we considered
the strong PING signals in Figure 2A to be unrealistic com-
pared to experimentally observed CD recordings. In this section,
we considered so-called “weak PING” rhythms where fewer E
cells participated on each cycle of the rhythm with less coher-
ence, which created signals that were less regular and likely more
realistic. We show that weak PING rhythms produced a smaller
amplitude, noisier signal but retained characteristic CD features
reflective of backpropagating action potentials and strong somatic
inhibition.

To simulate weak PING rhythms, instead of driving E cell
somata with tonic depolarizing currents as in strong PING,
stochastic Poisson-distributed synaptic inputs were used, causing
E cells to spike randomly. The weak PING rhythm was initiated by
a noisy barrage of E cell spiking that recruited coordinated I cell
spiking, as shown in Figure 2B. Fewer E cells spikes were required
to elicit spiking in a population of I cells by increasing the synap-
tic strength of E-I connections in the model (see Methods for
details). As in strong PING, the sharp downward deflections of
the CD waveform were caused by gamma periodic inhibition at
the E cell somata, which suppressed most E cell spiking and posi-
tive CD deflections on each cycle of the oscillation. Only after the
GABAA-ergic inhibition wore off did another sufficiently coher-
ent barrage of excitatory activity emerge to resume the next cycle
of the oscillation. GABAA-ergic synapses between I cells helped to
coordinate I cell activity, which was not necessary for coherent I
cell spiking in the strong PING model.

While coherent rhythmic activity is evident in the I cell spik-
ing rasters of Figure 2B (top panel), the rhythm is now less
obvious in the E cell spiking during weak PING, with the spike
histogram showing a broader distribution of E cell spike tim-
ing on each cycle of the oscillation (Figure 2B, second panel),
as compared with the strong PING case. Despite the weak E cell
coherence, PING rhythms emerged in the current source signal
from the E cells because of strong, coherent I-E somatic inhibi-
tion. The positive amplitude deflections in the weak PING current
dipole still reflected currents generated by backpropagation of
action potentials in the pyramidal cell dendrites, as in strong
PING (Figure 2A), but they were temporally broader from the
E cell spiking variability, which led to more sinusoidal oscilla-
tions. Here, excitatory cells in the weak PING model spiked with
an average rate of 8.2 ± 3.3 Hz, in contrast to the strong PING
simulations, in which excitatory cells spiked on each cycle of

its 36 Hz oscillation. Despite the fact that individual E cells did
not spike with gamma periodicity during weak PING, the net
GABAA-ergic currents onto the E cell somata were prominent
enough to create a rhythm in the somatic currents (Figure 2B,
second panel) and in the corresponding net current dipole signal
(Figure 2B, third panel).

Due to reduced participation and less coherent activity among
the E cells in weak PING, the amplitude of the CD signal (max-
imal amplitude of 0.019 nAm) was 10 times smaller than in
the strong PING case. This leads to the estimate that, in order
to observe gamma frequency rhythms generated by these weak
PING mechanisms in measured current dipole (∼10 nAm), on
the order of ∼105 pyramidal neurons would need to be gated
coherently by somatic GABAA-mediated inhibition, assuming for
simplicity that the fraction of participating cells increases linearly
with the size of the network.

The GABAA-mediated PING rhythms described here created
a specific characteristic feature in the CD signal that may help
distinguish underlying PING mechanisms from alternative mech-
anisms that could also generate gamma frequency oscillations,
such as those driven by thalamic inputs, which we report below.
The characteristic feature in weak PING consisted of a broad
positive deflection followed by a fast negative deflection that
can be quantified by comparing the slope of the rising and
falling phases of the oscillation. The CD waveform for the weak
PING rhythm is shown in Figure 3, with maxima (red) and
minima (green) marked for each cycle of the oscillation. For
each cycle of the oscillation, we calculated a slope ratio (φi),
comparing the slope of the rising trough to peak vs. the slope
of the falling peak to trough (see Methods). Over all cycles of
the oscillation, we calculated the mean and standard error of
the slope ratio (�). For weak PING oscillations, � was sig-
nificantly less than 1 (0.61 ± 0.09, p < 0.05, one-sided t-test),
which meant that the rising slope of the oscillation was slower
than that of the decaying slope. This value reflected the decay
time constant of the inhibition coupled to the fact that, for a
given cycle of the gamma oscillation, the aggregation of E cell
spikes built up over a relatively longer window of time before
the fast, coordinated spiking activity of the inhibitory cell pop-
ulations rapidly pulled current flow down the pyramidal neuron
dendrites. We show below that this result is in contrast to sub-
threshold driven gamma rhythms, in which � was significantly
greater than 1.

3.3. HIGH GAMMA FREQUENCY OSCILLATIONS EMERGED FROM
CHARACTERISTIC WAVEFORMS WITHIN WEAK PING

Notably absent during the weak PING simulations was the persis-
tent, broadband high frequency spectral energy seen on all cycles
of the strong PING oscillations. However, in simulations of weak
PING, we observed high gamma frequency (∼106–115 Hz) bouts
that were mechanistically distinct from the artifactual broadband
high frequency activity seen in strong PING (compare spectro-
grams in Figures 2A,B). The epochs were tied to 1–2 cycles of the
weak PING oscillation, were not harmonics of the low gamma
frequency signal, and did not reflect a separate gamma fre-
quency process apart from the dominant lower frequency signal
(Figure 4). Here, we discuss the mechanisms creating these high
gamma frequency epochs.
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FIGURE 4 | High gamma frequency (100–120 Hz) oscillations due to

specific waveform not separate oscillatory process or uncorrelated

spiking. Four epochs (B–E) of an example weak PING simulation (see
text). Mean rate of E cell spikes in this example is 11.7 ± 2.8 Hz. PSTH
�tbin = 1 ms. (A) Weak PING simulation, from top to bottom: spike
rastergram of 100 E cells (black) and 35 I cells (red); current dipole (nAm);
Morlet spectrogram of current dipole. Weak PING oscillation at 52 Hz
(count 26 inhibition-mediated cycles in 500 ms in raster), Morlet spectral
power (PM) of 7.69×10−5 (nAm)2 at 54 Hz in this band. Epochs of high
gamma frequency activity denoted by lines for start times (blue) and end

times (black) for 50 ms interval centered around max. PM. In each of
(B–E), from top to bottom: E cell spike PSTH; spike rastergram for E cells
(black) and I cells (red); current dipole (nAm, blue) and schematic sinusoids
depicting single cycles of high gamma frequency oscillations that emerged
in the spectrograms (dotted red line), with somatic GABAA-mediated
currents (μA, black). (B) Time interval of 54.5–104.5 ms. PM = 4.34×10−5

(nAm)2 at f = 115 Hz at 79.6 ms. (C) 111.9–161.9 ms. PM = 4.22×10−5

(nAm)2 at f = 114 Hz at 136.9 ms. (D) 299.4–349.4 ms.
PM = 3.79×10−5 (nAm)2 at f = 109 Hz at 324.4 ms. (E) 393.4–443.4 ms.
PM = 8.18×10−5 (nAm)2 at f = 106 Hz at 418.4 ms.

Four of the high frequency epochs were examined
(Figures 4B–E). The spiking rastergram, current dipole,
and spectrogram for a simulation of weak PING is shown in
Figure 4A, where the start of each epoch is marked with a blue
line, and the end of the epoch is delineated in black. All of the
high frequency epochs had a characteristic CD waveform consist-
ing of a single (or double, as in Figure 4E) cycle of an oscillation
with a period ranging from 8.7 to 9.4 ms (corresponding to
frequencies from 106 to 115 Hz), marked schematically with a
red dotted sinusoid in panels B–E (summarized in Table 2).

This shape emerged from a consistent pattern of spiking activ-
ity in the underlying E-I network. Specifically, on each bout of
high frequency activity, as the inhibition from the previous cycle
wore off, an initial barrage of E cell spikes emerged, causing a

Table 2 | Epochs of high frequency activity.

tmax (ms) f (Hz) PM[(nAm)
2
] Subfigure

79.6 115 4.34×10−5 B

136.9 114 4.22×10−5 C

324.4 109 3.79×10−5 D

418.4 106 8.18×10−5 E

brief, low amplitude positive deflection in the CD signal caused
by the random E cells spikes. However, the excitation was not suf-
ficient to elicit coordinated I cell spiking. As the prior cycle of
inhibition continued to wear off, additional stochastic excitatory
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input eventually broke through the inhibition and elicited enough
excitatory spikes to create a larger amplitude positive deflection
in the CD signal and drive the next cycle of coordinated inhibi-
tion (spike rasters for the I (red) and E (black) cells are shown
with a peristimulus time histogram (PSTH) of the E cells on
top). In turn, the coordinated inhibition caused a sharp nega-
tive deflection (somatic GABAA-ergic currents are shown in black
on top of blue CDs in Figures 4B–E middle panels). The tem-
poral dynamics of the aggregation of excitation and subsequent
inhibition led to the characteristic high gamma frequency wave-
form, depicted schematically with a red dashed sinusoidal curve
overlaid onto CD waveforms and was reflected by increased high
frequency spectral power consistent with the period of activ-
ity (Figures 4B–E). Most often, these high frequency oscillations
occurred as a single cycle, but sometimes two cycles were formed,
with an increased peak in spectral power directly between the
cycles (Figure 4E).

Such short bouts of high gamma frequency activity were cou-
pled to the ongoing weak PING oscillation and did not reflect
a distinct PING oscillation separate from the lower gamma
frequency rhythm. This high frequency activity was inconsis-
tent with harmonic activity of the lower frequency ∼54 Hz
oscillation seen in Figure 4A, as the high frequency activ-
ity was temporally transient and varied inconsistently in both
spectral power and peak frequency in each bout relative to
the lower gamma oscillation. Spectral power due to unco-
ordinated E cell spiking was ruled out as the source of
these epochs, as the frequency of those events was count-
ably higher than the ∼100 Hz spectral power, and the events
were relatively low amplitude compared to the dominant
oscillation.

3.4. CURRENT DIPOLE GAMMA OSCILLATIONS ARE DOMINATED BY L5
ACTIVITY

All of the prior simulations were performed simulating only L5.
Here, we investigated the influence of a weak PING rhythm in L5
along with a simultaneous, independent weak PING rhythm in
L2/3. Like the model of L5, the model of L2/3 also contained pyra-
midal neurons with apical dendrites whose longitudinal intracel-
lular currents were used to calculate the equivalent current dipole
(see Methods). We show that the activity in L5 dominates the net
current dipole masking gamma in L2/3, due to the longer length
of the apical dendrites in L5 pyramidal neurons.

Figure 5 shows independent weak PING rhythms generated
in L2/3 (panel A) and L5 (panel B), and the aggregate sum for
the entire network (panel C). The mechanism generating the
rhythm in L2/3 was analogous to that in L5, with the mean indi-
vidual spiking rate for L2/3 pyramidal cells tuned so that they
were not significantly different from the mean spiking rate in L5
(L2/3: 7.8 ± 1.4 Hz; L5: 8.2 ± 3.3 Hz; gpois of 0.75×10−2 in L5),
and the maximal frequencies in the CD spectrograms were both
near 50 Hz.

The maximal amplitude of the CD in L2/3 (6.0×10−3 nAm)
was 3 times smaller than L5 (19×10−3 nAm), mostly accounted
for by the greater length of the L5 pyramidal cell den-
drites. Thus, the net sum current dipole (shown in black
in Figure 5C) was dominated by the L5 component (blue),

which washed out the contribution from the lower amplitude
L2/3 component (red). The dominance of L5 was fur-
ther corroborated by separate simulations of random, unco-
ordinated excitatory spiking (non-gamma periodic) in L5
that also obscured ongoing weak PING in L2/3 (data not
shown).

3.5. SUBTHRESHOLD 30–100 HZ OSCILLATIONS REQUIRE COHERENT
INPUT AND ARE MECHANISTICALLY DISTINCT FROM WEAK PING

While PING mechanisms are the most commonly cited origin
of gamma frequency rhythms, particularly for the lower band,
many other mechanisms could create gamma periodic activity,
and an important question is whether there are distinguish-
ing features of the signal that can help identify the underlying
mechanisms. Here, we investigated an alternatively proposed
mechanism to PING-type, I cell-mediated gamma rhythms in
neocortex, namely gamma periodic inputs to neocortex from an
exogenous network (e.g. thalamus) (Ribary et al., 1991; Llinás
and Ribary, 1993; Castelo-Branco et al., 1998; Staudigl et al.,
2012). Two specific types of exogenous drive could induce gamma
in neocortex: a proximally-targeting drive from lemniscal thala-
mus and a distally-targeting drive from non-lemniscal thalamus
(Jones, 2001). Here, we investigated the impact of subthreshold
drive—in proximal only and combined proximal and distal pro-
jection patterns—on characteristic features of the CD signal. This
investigation extends prior results suggesting roles of these pro-
jections in the generation of CD signals at lower frequencies than
gamma (Jones et al., 2009). In each case, we found that subthresh-
old driven gamma rhythms required coherent thalamic inputs to
create observable oscillations and had waveform features in the
CD that were distinguishable from weak PING rhythms.

We first investigated gamma periodic drive (50 Hz) of the
L5 pyramidal cells in a proximal only drive pattern, represent-
ing simulated lemniscal thalamic drive (Figure 6). Each cycle of
the input drive consisted of independent bouts of 10 Gaussian
distributed excitatory postsynaptic currents (EPSCs) with the
standard deviation of the drive (σp) on each cycle varied between
2.5 and 7.5 ms (Figure 6, top panel shows PSTHs of the drive,
see Methods for details). This input induced subthreshold cur-
rent flow up the pyramidal neuron dendrites every ∼20 ms that
then decayed to baseline to create an oscillation in the CD sig-
nal with maximal spectral power at 50 Hz (Figure 6A, middle
and bottom panels). As σp was increased from 2.5 to 5.0 ms,
the peak frequency was maintained, but Welch spectral power
was reduced 77%. When σp was further increased to 7.5 ms, the
50 Hz peak was no longer distinguishable from noisy lower fre-
quency activity (Figures 6A–C, bottom panels and Figure 6D).
The dendritic currents creating these subthreshold rhythms were
distinct from the weak PING rhythms shown in Figure 2B. Here,
the subthreshold proximal drive created weak backpropagating
current flow up the pyramidal neuron dendrites initiated by
the synaptic currents that was smaller than currents created by
backpropagation of action potentials caused by E cell spikes in
weak PING rhythms. The amplitude of the subthreshold rhythms
was an order of magnitude smaller than that of the weak PING
rhythm, suggesting 10 times as many neurons would need to
be driven in the subthreshold regime to create oscillations on
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FIGURE 5 | Larger amplitude L5 weak PING rhythms dominate L2 weak

PING rhythms in current dipole due to longer E cell dendrites in L5. From
top to bottom: spike rastergram of E cells (black) and I cells (red); aggregate
GABAA-ergic current contribution to E cell somata (μA, black); net current
dipole for E cells in layer (nAm); Morlet spectrogram of net current dipole
[(nAm)2]; stationary Welch periodogram for net current dipole [(nAm)2].
gpois = 0.75×10−2 mS/cm2. Simulations shown from 50 to 550 ms. (A)

Independent weak PING in L2 shows ∼50 Hz activity in Morlet spectrogram.

Max. PW of 3.4×10−7 (nAm)2 at 48.8 Hz. Max. value in net current dipole for
100 E cells in L2 was 6.0×10−3 nAm. (B) Independent weak PING in L5 also
shows ∼50 Hz activity in Morlet spectrogram. Max. PW of 1.7×10−5 (nAm)2

at 51.2 Hz. Max. value in net current dipole for 100 E cells in L5 was
1.9×10−2 nAm. (C) Aggregate current dipole (black trace, mostly obscured by
L5 current dipole) calculated as linear sum of net current dipoles from L2
(red) and L5 (blue). Morlet spectrogram shows ∼50 Hz spectral power, but
max. PW of 1.7×10−5 at 51.2 Hz, which is same frequency as that in L5.

the same order as weak PING. Specifically, these simulations
predict that on the order of ∼106 neurons would need to be
synchronously driven to create an observable signal on the order
of 10 nAm.

With proximal only inputs, the downward deflections of the
subthreshold rhythms reflected relaxation of the upward current
flow rather than the strong pull of inhibitory somatic currents as
in weak PING, and as a consequence, the downward deflections
were temporally broader. This feature was quantified with slope
ratio (�), as described for weak PING above, with the results
summarized in Figure 9. � was calculated for values of σp at
2.5 and 5.0 ms (1.47 ± 0.07 and 1.57 ± 0.24, respectively) and
were significantly greater than 1 in each case (for each: p < 0.05,
one-sided t-test), demonstrating that the rising phases of the
oscillation were faster than the subsequent decaying phases in
the CD.

We also tested whether subthreshold driven rhythms could be
sustained at higher frequencies of drive, possibly representing an
alternative mechanism to the high frequency (∼100 Hz) oscil-
lations seen in Figure 4. Figure 7 shows panels analogous to
Figure 6, with the frequency of the periodic drive varied between
50, 80, and 100 Hz for a fixed σp of 2.5 ms. As the frequency
increased, the input drive became less coherent (see PSTHs in
the top panel of Figure 7), and the amplitude of the oscillations
decreased. � for the 80 Hz rhythm was also significantly greater
than 1 (1.32 ± 0.09, p < 0.05 one-sided t-test, see raw CD in
Figure 7, for comparison see Figure 9). However, when the input
frequency was 100 Hz, the spectral power decreased to the extent
that the peak was no longer distinguishable from lower frequency
noise (Figure 6D).

In total, the results of the proximal only drive suggest that for
these subthreshold cortical rhythms to be observed, the driving
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FIGURE 6 | Subthreshold oscillations required coherent inputs. 50 Hz
subthreshold oscillations generated by proximal AMPA-ergic EPSPs (see
Methods). Each cycle of inputs comprised of 10 Gaussian distributed events
with mean time corresponding to 20 ms oscillation period (50 Hz) and varying
standard deviation (σp ). From top panel to bottom (A–C): proximal input event
PSTH; current dipole (nAm); Morlet spectrogram ((nAm)2×10−7). (A)

σp = 2.5 ms: Persistent band of activity seen in Morlet spectrogram, max. PW

of 1.4×10−7 (nAm)2 at 50.1 Hz (blue in D). (B) σp = 5.0 ms: Spectral activity
degraded compared to (A) at ∼50 Hz (note different scales in spectrogram),
max. PW of 3.2×10−8 (nAm)2 at 50.1 Hz (green in D). (C) σp = 7.5 ms:
Spectral activity further degraded from (B), no identifiable peak in Welch
spectral power at or around 50 Hz. (D) Welch periodogram of current dipole in
(A) (shown in blue), (B) (green), and (C) (red) demonstrates reduction in PW

at 50 Hz as σp was increased.

FIGURE 7 | Faster subthreshold oscillations break down at fixed

standard deviation. Subthreshold oscillations generated similarly as in
Figure 6. Fixed σp of 2.5 ms. As frequency of input (fprox)
increased, the spectral power decreased. (A) fprox = 50 Hz: Same as
Figure 6A. Max. PW of 1.4×10−7 (nAm)2 (blue in D). (B) fprox =
80 Hz: Less consistent band of activity at 80 Hz, compared to 50 Hz

(A). Max. PW of 3.7×10−8 (nAm)2 at 80.6 Hz (green in D). (C)

fprox = 100 Hz: Less consistent band of activity at 100 Hz, compared
to 50 Hz (A) and 80 Hz (B). PW of 1.3×10−8 (nAm)2 at 100.1 Hz
(red in D). (D) Welch periodogram of current dipole in (A) (shown
in blue), (B) (green), and (C) (red) demonstrates reduction in PW as
fprox was increased.

input must be highly synchronous (less than 7.5 ms variance on
each cycle of the input) and coherent across large volumes of cor-
tex. Specifically, our simulations predict that on the order of ∼106

neurons need to be synchronously driven to create an observable
10 nAm signal.

3.6. PROXIMALLY DRIVEN SUBTHRESHOLD GAMMA ENHANCED BY
COHERENT DISTAL DRIVE

Next, we simulated 50 Hz gamma periodic subthreshold drive
from simultaneous proximal and distal inputs targeting the L5
pyramidal cells. The results showed that ongoing proximally-
driven gamma rhythm can be enhanced by a gamma periodic
distal input, and the ongoing gamma was more robust to changes
in the variance of the distal input on each cycle than to changes in
input variance when only the proximal drive was present.

On each cycle of the oscillation, both proximal and distal
inputs consisted of independent rhythmic bouts of 10 Gaussian
distributed excitatory post synaptic currents with the value of
σp at 2.5 ms (motivated by the proximal drive only results,
see Figure 6A) and values of the standard deviation of inputs
on each cycle of the distal drive (σd) of 2.5, 5.0, and 7.5 ms
(Figure 8 PSTHs in top panels). The mean times for the dis-
tal input on each cycle followed that of the proximal input
by 5 ms. This combination of 50 Hz proximal and 50 Hz distal
inputs created a 50 Hz oscillation in the CD signal generated
by current flow being driven up and subsequently down the
pyramidal neuron dendrites via the proximal and distal synap-
tic drives, respectively (Figure 8A). Compared to proximal only
simulations with the same σp of 2.5 ms, the spectral power
was approximately twice as large here (cf. amplitude of blue
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FIGURE 8 | Proximally driven subthreshold gamma enhanced with

distal gamma periodic input and is robust to distal input noise.

Ongoing 50 Hz proximal input with σp fixed at 2.5 ms provided
rhythmic 50 Hz activity in current dipole. Distal input of 50 Hz (offset
5 ms on each cycle from proximal input, see Methods) with varied
σd at values of 2.5, 5.0, and 7.5 ms. Panel configuration same as
Figures 6, 7. Max. PW values all occurred here at 50.1 Hz. (A)

σd = 2.5 ms: Persistent band of activity seen in Morlet spectrogram,
max. PW of 3×10−7 (nAm)2 (blue trace in D). PW increased
compared to proximal only inputs with σp of 2.5 ms in Figure 6A

(1.4×10−7 (nAm)2). (B) σd = 5.0 ms: Band of activity persistent in
Morlet spectrogram, max. PW decreased to 2×10−7 (nAm)2 (green

trace in D), as compared to (A). Less severe drop in PW occurred
in change to σd with ongoing proximally driven gamma frequency
oscillation (compare to Figure 6). (C) σd = 7.5 ms: Again, persistent
band of activity in Morlet spectrogram. Max. PW decreased to
1.6×10−7 (nAm)2 (red trace in D), but peak still distinguishable,
provided by ongoing proximally driven gamma. (D) Welch periodogram
of current dipole in (A) (shown in blue), (B) (green), and (C) (red)
demonstrates small reduction in PW as σd was increased, during an
ongoing oscillation driven also by the proximal input. Spectral power
in each simulation was evoked by proximally driven gamma, and
reduction in PW with increased σd was less severe than effect of
changing σp in Figure 6.

traces in Figure 8D with Figure 6D). Given that these corti-
cal network oscillations remained in the subthreshold regime,
the amplitude of the oscillations was comparable to the proxi-
mal only case and still an order of magnitude smaller than in
weak PING. As the distribution of the distal inputs on each
cycle became broader (σd = 5.0, 7.5 ms), the maximal spec-
tral power was reduced (Figures 8B,C). The reduction in power
reflected the fact that the oscillations became noisier and less sinu-
soidal, despite being similar in amplitude to oscillations driven
by inputs with σd of 2.5 ms and despite being dominated by the
50 Hz periodicity of the proximal drive. Here, the reduction in
spectral power by changing σd from 2.5 to 5.0 ms was approx-
imately 33% Figures 8A,B, shown in D). This power reduction
was less than that seen for proximal only inputs where σp was
changed from 2.5 to 5.0 ms (Figures 6A,B, shown in D), which
suggested that the influence of broader distal input was less dis-
ruptive with an ongoing, proximal input-driven gamma rhythm
present.

We investigated the impact of the additional distal drive on �.
The addition of distal drive caused a sharper downward deflection
of the subthreshold driven oscillation, in comparison to oscilla-
tions driven with only proximal inputs. However, with σd values
of 2.5, 5.0, and 7.5 ms, � was still significantly greater than 1
(1.1 ± 0.04, 1.5 ± 0.04, and 1.65 ± 0.14, respectively; p < 0.05
one-sided t-test), in contrast to PING rhythms in which strong
somatic inhibitory currents resulted in � significantly less than 1.
These results for � are summarized in Figure 9.

In total, the results of the subthreshold thalamic drive sim-
ulations suggested that, for these rhythms to be observed, the
driving input must be highly synchronous in time (σp and σd

must be less than 7.5 ms on each Gaussian distributed cycle of

the input) and coherent across large volumes of cortex. For an
equivalently sized network, the amplitude of the oscillations cre-
ated by subthreshold oscillations were ∼10 times smaller than the
spiking weak PING rhythms. Further, our results predicted that
the mechanism of observed gamma rhythms in CD signals may
be distinguished by the slope ratio (�) of the oscillations: if � is
significantly less than 1, PING mechanisms may be responsible,
and when � is significantly greater than 1, these results sug-
gest that the rhythm can be generated by subthreshold thalamic
drive.

4. DISCUSSION
In this paper, we used biophysically principled computational
modeling of current dipoles in neocortex to explore for the
first time how mechanisms of gamma frequency rhythms can
be expressed in these macroscopic signals that underlie human
MEG/EEG recordings and estimated from ECoG data (Malmivuo
and Plonsey, 1995). In the spirit of Siegel and König (2003),
our goal was to move beyond the current classification of this
rhythm in humans, which relies on a frequency definition over
a broad frequency range (30–150 Hz), to a mechanistic descrip-
tion. Our results show that alternative mechanisms of gamma
generation create distinguishable features in the current dipole
waveform that can help to disambiguate the underlying cellular
level generators.

Specifically, we found that gamma frequency rhythms cre-
ated by well-established weak PING mechanisms created a cur-
rent dipole waveform that was characterized by sharp down-
ward deflections, due to strong inhibition at the soma. In con-
trast, gamma periodic rhythms created by driven subthresh-
old excitatory synaptic input from upstream sources created a
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FIGURE 9 | Slope ratio (�) significantly less than 1 for current dipole

from weak PING but significantly greater than 1 for subthreshold

(sub.) simulations. � was calculated as mean of the ratio (φi ) of rising
slope to falling slope for each cycle i of CD rhythm (see Methods and
Figure 3). � of 1 signifies that rising slope was equivalent to falling slope.
Error bars represent standard error (s.e.) about the mean. � values
(relevant CD waveform in parentheses) found in: weak PING, 0.61 ± 0.09
(Figure 3); sub. 50 Hz proximal only, 1.47 ± 0.07 (Figure 7A); sub. 80 Hz
proximal only, 1.32 ± 0.09 (Figure 7B); sub. 50 Hz proximal and distal,
σd = 2.5 ms, 1.1 ± 0.04 (Figure 8A); sub. 50 Hz proximal and
distal, σd = 5.0 ms, 1.5 ± 0.04 (Figure 8B); sub. 50 Hz proximal and distal,
σd = 7.5 ms, 1.65 ± 0.14 (Figure 8C).

waveform with a broader rise and fall (Figure 9). Further, our
results predicted that PING mechanisms create larger ampli-
tude signals than subthreshold driven rhythms, due to strong
backpropagation of action potentials in the dendritic currents
of pyramidal neurons that contribute to the current dipole
signals.

Additionally, we showed that the activity of L5 dominates the
current dipole signal and can mask the presence of gamma in
L2/3 (Figure 5). Lastly, our results led to a novel prediction on the
origin of high gamma frequency oscillations (100–150 Hz) in cur-
rent dipole signals. We showed that single cycles of high gamma
periodic oscillations emerged in the current dipole waveform
during some cycles of weak PING oscillations, and these were
created by a narrow (∼5 ms), random barrage of backpropagat-
ing action potentials that initiated the rise of the high frequency
waveform that was followed by the somatic inhibition to pro-
duce the negative deflection of the oscillation (Figure 4C). These
bouts of high gamma frequency activity did not reflect a separate,
ongoing high frequency oscillation, were not due to uncorrelated
spiking, and were also unique from subthreshold oscillations.
Specific frequencies were fixed in some simulations here to com-
pare subthreshold and spiking oscillations, but in general these
networks can exhibit a range of gamma frequencies from PING
mechanisms that are dependent upon the synaptic parameters
and strength of input drive. Though not shown explicitly here,
we would expect that the results derived from the spiking PING
simulations here would be generalizable to networks operating at
other gamma frequencies.

4.1. PRIOR MODELS OF GAMMA OSCILLATIONS HAVE NOT
SIMULATED CURRENT DIPOLE

Many prior modeling studies have investigated features of gamma
rhythms in neocortical networks produced in spiking or simu-
lated LFP signals (Traub et al., 1997; Börgers et al., 2005; Lee
et al., 2009; Vierling-Claassen et al., 2010), as well as in mean
field models (David and Friston, 2003; Deco et al., 2008). To our
knowledge, no prior model of gamma rhythms has ever explic-
itly simulated the cellular level biophysics of macroscopic current
dipole signals, such as those recorded by MEG or EEG. PING
mechanisms, as described in the methods and results, have been
established in many simplified biophysical models that used sin-
gle compartments to represent both excitatory and inhibitory
cells (Börgers et al., 2005; Lee et al., 2009). These minimal mod-
els were sufficient to demonstrate that the time constants of
GABAA-mediated currents can create gamma frequency rhythms.
Other models of gamma rhythms have reached similar conclu-
sions using multi-compartment models of pyramidal neurons
with realistic geometries (Traub et al., 2005; Vierling-Claassen
et al., 2010) but have not explicitly estimated current dipole.

In our results, PING rhythms were also paced by GABAA-
mediated currents, consistent with prior work. By explicitly sim-
ulating current dipole signals, we found that dendritic current
flow can maintain PING-mediated gamma rhythms and enable
direct comparisons to macroscopic current dipole data from
humans. This approach also helped to suggest a novel prediction
on the origin of high frequency gamma epochs that were cou-
pled to the lower frequency PING rhythm (Figure 4), a feature
that would not have been captured without considering cur-
rent dipole. Further, our simulations allowed us to study gamma
rhythms generated by coordinated subthreshold exogenous drive
to distinct neocortical layers.

4.2. IMPORTANCE OF CONSIDERING UNFILTERED TIME COURSES IN
INTERPRETING GAMMA MECHANISMS

Our results suggest that inferences on the underlying cellular
mechanisms of gamma rhythms in human macroscopic signals
can be made by considering features of raw unfiltered signals.
Typically, human imaging data of gamma rhythms is shown after
a frequency filter (e.g. Fourier transform or wavelet transform)
has been performed. Many studies that present time series data
first apply a band pass filter in a gamma band of interest and
often over a broad range. Given that low and high gamma oscil-
lations can emerge from distinct cellular level mechanisms, our
result suggest that, when interpreting the generator of gamma and
its impact in information processing, the frequencies should not
be considered as a single band, and raw signal time series should
be considered in conjunction with frequency analysis and pop-
ulation measures (Lin et al., 2004). Furthermore, investigation
of the unfiltered waveforms can differentiate gamma frequency
activities that emerge as spurious artifacts created by applying
frequency filters to non-oscillatory signals (Kramer et al., 2008;
Buzsáki and Wang, 2012) or as single cycle oscillations embedded
in other rhythms, as shown for high gamma in Figure 4. Several
studies report gamma activity in current source signals (Brookes
et al., 2004; Hoogenboom et al., 2006; Roux et al., 2012). However,
we cannot speculate on how our predictions apply to that data
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since interpretation of the mechanisms identified based on our
results would require raw, unfiltered data.

Whether or not similar features in gamma rhythms as those
described here emerge in MEG/EEG sensor space or surface elec-
trodes before the inverse localization is applied is an important
and open question beyond the scope of the current study. We
conjecture that the strong negative deflection features present in
PING rhythms will persist at the sensor level, particularly in MEG
recordings, which are not distorted by cerebrospinal fluid and the
skull and are less susceptible to source orientation cancellation
effects (Hämäläinen et al., 1993).

4.3. LAMINAR INTERACTIONS OF GAMMA FREQUENCY RHYTHMS
Our results showed gamma frequency activity in L5 networks
dominate net current dipole signals, obscuring simultaneous
gamma (or other activity) in a L2/3 network of the same size, due
to the longer length of L5 pyramidal neuron dendrites (Figure 5).
These results allow us to further predict that L2/3 gamma rhythms
would only be observed in current dipole signals if the size of the
network participating in the rhythms is significantly massive (see
Estimates, below). Differentiation of separable contribution of L5
and L2/3 is not possible with current dipole source data alone and
would require simultaneous laminar recordings.

There are multiple possible modes of gamma related to stimu-
lus processing that may have laminar specificity. Stimulus evoked
gamma activity has been shown to have laminae-specific cortic-
ocortical interaction (Roberts et al., 2013), while gamma related
to attention has been found to be specific to superficial layers in
the ventral visual system (Buffalo et al., 2011). Attention-related
changes in gamma rhythmicity have been suggested to be medi-
ated by cholinergic modulation (Börgers et al., 2005; Deco and
Thiele, 2011), but separate studies using MEG have observed that
gamma oscillations were not increased during cholinergic activa-
tion associated with attention (Bauer et al., 2012). In the latter
study, Bauer et al. suggested that the lack of cholinergic mod-
ulation of gamma power may be related to differential laminar
effects of cholinergic action. Our results may provide support for
this view: if cholinergic modulation affected gamma oscillations
that are primarily localized to superficial layers, our model results
suggest that detection of that activity by MEG may be more dif-
ficult when layer 5 is engaged at a sufficient level. Another study
using MEG has observed gamma band increases due to spatial
attention, in which the authors suggested that their experimental
paradigm was well suited to observe gamma-related attentional
changes specifically (Koelewijn et al., 2013). Our results may
provide a number of possible explanations for why gamma was
observable in this study: strong engagement of superficial gamma
oscillations due to spatial attention may have created a superficial
network that was sufficiently large to be detected by MEG. An
alternative hypothesis that is consistent with our results would
suggest that gamma band increases related to attention may
have increased in deep layers, either directly or via feedforward
drive of deep gamma oscillations from superficial laminar gamma
generators.

A differentiation has been made in the role of evoked (i.e.,
stimulus-locked) vs. induced (not stimulus-locked) gamma activ-
ity. While evoked gamma is by definition created by the stimulus

and drives granular and infragranular layers, induced gamma has
been suggested to be mediated by top down mechanisms (Tallon-
Baudry and Bertrand, 1999; Tallon-Baudry, 2009), which are also
related to modulatory inputs to superficial cortex (Weinberger,
1998; Weinberger et al., 2013). Tallon-Baudry and colleagues have
suggested that early evoked gamma rhythms in human EEG/MEG
are created by current dipoles generated by deep pyramidal neu-
rons with long dendrites, whereas induced gamma rhythms might
be created by more superficial and/or radially oriented sources
(perpendicular to the skull, which are not detected by MEG)
(Tallon-Baudry and Bertrand, 1999; Tallon-Baudry et al., 1999).
These conclusions are based on their observations that evoked
gamma can be recorded at the sensor level with both EEG and
MEG, while induced gamma is not recorded with MEG (Tallon-
Baudry et al., 1997; Uhlhaas et al., 2011). While the observation
that gamma is particularly difficult to detect by MEG can be over-
come by choosing optimized stimulus paradigms (Hoogenboom
et al., 2006), Tallon-Baudry et al. have also proposed a specific
radial source model as a possibility for the origin of their induced
gamma observations (Tallon-Baudry et al., 1999; Tallon-Baudry
and Bertrand, 1999). Our work extends this prediction suggesting
a tangentially oriented L2/3 gamma could be present but masked
in the net current dipole signal that is dominated by L5. The radial
source model (Tallon-Baudry et al., 1999) was also motivated by
the fact that gamma rhythms have been recorded without polarity
reversal in laminar LFP recordings from anesthetized and behav-
ing cats (Steriade and Amzica, 1996; Steriade et al., 1996a,b),
suggesting they may not be created by a single large oscillatory
dipole. However, there may be micro sink and source pairs across
different layers (Tallon-Baudry et al., 1997), and in particular in
L2/3, as has been reported in in vivo current source density signals
from awake macaques (Lakatos et al., 2005).

Laminar recordings from cortical slices have shown that, under
certain pharmacological manipulations, synchronous gamma can
emerge across all layers, but multiple gamma rhythms can also
exist with different frequencies in distinct layers and is dependent
upon interlaminar interactions (Lakatos et al., 2005; Oke et al.,
2010; Ainsworth et al., 2011, 2012). Reciprocal influence between
L2/3 and L5 (Thomson and Bannister, 2003) could also impact
the expressed gamma rhythms in CD signals. Our results sug-
gest that functionally relevant activity in superficial layers may
not be detectable in current source signals. Here, our results did
not account for interlaminar connections, since our goal was to
investigate their differential contribution, but we acknowledge
that further work considering interlaminar interactions may be
critical in connecting the mechanisms of gamma to their role in
information processing.

4.4. PRECISION OF SUBTHRESHOLD INPUTS
In this paper, we simulated subthreshold driven inputs to the cor-
tical networks in proximal or combined proximal and distal input
patterns as an alternative mechanism to PING rhythms. A moti-
vation for this investigation was evidence for the emergence of
cortical gamma rhythms related to gamma periodic activity in the
thalamus (Ribary et al., 1991; Llinás and Ribary, 1993; Castelo-
Branco et al., 1998; Staudigl et al., 2012), which could contact
neocortex at superficial or granular sites (Jones, 2001). Further,
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macroscopic imaging signals can be produced by the subthreshold
synchronous activity of large populations of pyramidal neurons,
in contrast to large populations of synchronously spiking neurons
(Jones et al., 2009; Zhu et al., 2009).

When exogenous drive was applied to the cortical network in
our simulations, the ability of the subthreshold cortical oscilla-
tions to follow the drive demonstrated a trade-off between the
frequency and the variance of the drive. This effect was demon-
strated separately for frequency (Figure 7) and standard deviation
(Figure 6). Our results suggested that with proximal only drive,
the emergence of gamma required tight coherence in the input
on each cycle, such that gamma power was lost when the standard
deviation of the drive was as large as 7.5 ms. Combined proximal
and distal drive induced a gamma rhythm with greater spec-
tral power but also required coherent input on each cycle. With
coherent proximal drive (σp = 2.5 ms), gamma rhythms persisted
for larger variation in the distal coherence (σd = 5.0, 7.5 ms),
suggesting that thalamocortically driven gamma to proximal den-
drites may persist in the CD signal even with less coordinated
distal inputs.

While the proximal drive in our model is most similar to lem-
niscal thalamocortical input, the distal drive could come from
non-lemniscal thalamus or intracortical sources, either of which
could oscillate at gamma. Activity at gamma frequencies has been
observed in many thalamic areas, such as lateral geniculate, cen-
trolateral, and posterior nuclei, simultaneously with gamma in
cortical EEG signals (Ghose and Freeman, 1992; Canu et al.,
1994; Steriade and Amzica, 1996; Steriade et al., 1996b). The data
in these papers suggests a specific phase relationship between
thalamic spiking and cortical gamma on each cycle of the oscil-
lation and a temporal distribution of the thalamic spiking on the
order of 5 ms on each cycle, consistent with our chosen model
parameters.

Recent studies of 60–100 Hz gamma oscillations in motor
cortex have shown coherence with subcortical basal ganglia struc-
tures, with evidence that gamma in basal ganglia may drive corti-
cal gamma, suggesting interactions through the thalamus (Litvak
et al., 2012; Cheyne and Ferrari, 2013; Jenkinson et al., 2013). In
these studies of the motor system, gamma activity is observed in
post-movement periods and is promoted by dopaminergic ther-
apy in Parkinson’s Disease patients with corresponding improve-
ments in motor function (Jenkinson et al., 2013). It has also
been proposed that the long-range gamma coherence from basal
ganglia to cortex is related to arousal and motor vigor (Litvak
et al., 2012), but the mechanisms promoting this coherence are
unknown. Our results suggest possible means to help disam-
biguate cortical gamma driven by basal ganglia-thalamocortical
drive from local PING mechanisms possibly coordinated across
structures by common neuromodulatory influences, such as
acetylcholine, which has been shown to promote transitions to
GABA-mediated gamma rhythms (Pinto et al., 2003).

4.5. ESTIMATES ON THE SPATIAL SCALE OF RECORDABLE GAMMA
RHYTHMS

Historically, gamma rhythms are known to be more difficult to
record in human macroscopic MEG/EEG signals than lower fre-
quency rhythms (Dalal et al., 2009). However, under certain task

conditions and analysis methods, gamma rhythms have been
repeatably recorded at the sensor (Tallon-Baudry et al., 1997;
Hoogenboom et al., 2006) and source localized level (Brookes
et al., 2004; Freunberger et al., 2007; Brookes et al., 2008) and
most commonly in post-stimulus evoked and induced responses
(Tallon-Baudry et al., 1997). The amplitude of these rhythms is
orders of magnitude smaller than lower frequency rhythms, likely
due to the restricted spatial scale over which they emerge (Steriade
et al., 1996b; von Stein and Sarnthein, 2000; Rols et al., 2001)
and cancellation effects that contribute to decreased magnitudes
in macroscopic imaging signals (Hämäläinen et al., 1993).

The biophysically principled design of the model utilized here
allowed us to make predictions on the size of the pyramidal net-
work that would need to be simultaneously activated to create
source localized primary current dipole gamma rhythms of the
specific amplitude in appropriate, observable units (e.g. nAm).
Reported magnitudes of gamma oscillations in current source sig-
nals range from 1 to 30 nAm (Freunberger et al., 2007; Brookes
et al., 2011), and in general for MEG, the minimum for observ-
able stimulus-evoked source signals is on the order of 10 nAm
(Hämäläinen et al., 1993; Murakami and Okada, 2006; Jones et al.,
2007; Nevalainen et al., 2008; Jones et al., 2009, 2010). Our results
predicted gamma rhythms of ∼19 nAm produced by weak PING
mechanisms required participation of a network of ∼105 L5 pyra-
midal neurons with sparse spiking, while subthreshold driven
rhythms required a network an order of magnitude larger to
create comparable signals: ∼106 pyramidal neurons for 10 nAm.
A network in L2/3 producing similar amplitude gamma signals
would have to be approximately 3 times as large as that in L5. The
number of neurons in 1 mm2 cortical area has been estimated to
be ∼105–106 (Rockel et al., 1980; Herculano-Houzel et al., 2008;
Carlo and Stevens, 2013), which may be variable across mam-
malian species (Haug, 1987; Herculano-Houzel et al., 2008) but
of which 75–80% of which are pyramidal neurons (Johansson and
Lansner, 2007). Thus, weak PING mechanisms could coordinate
an observable signal across approximately 0.8 mm of neocortex,
roughly the size of a cortical column (0.5 mm), while subthresh-
old rhythms require approximately 8 mm of synchronous activity,
roughly half the estimated size of the human D3 finger map
[∼16 mm, Sanchez-Panchuelo et al., 2010]. These estimates are
consistent with reports of spatial coherence of gamma activity
from subdural grids in visual cortex of monkeys (Rols et al., 2001)
and somatosensory cortex of humans (Meador et al., 2002).

4.6. COUPLING BETWEEN HIGH GAMMA AND LOWER FREQUENCY
ACTIVITY

Numerous studies have reported that neocortical gamma rhythms
across a range of frequencies are coupled to the phase of lower fre-
quency rhythms, most commonly theta (4–8 Hz) (Lakatos et al.,
2005; Canolty et al., 2006; Doesburg et al., 2012; van der Meij
et al., 2012) or alpha (8–12 Hz) (Palva et al., 2005; Jensen and
Mazaheri, 2010; Voytek et al., 2010; Maris et al., 2011). Our results
give a novel interpretation of the origin of high gamma activity
by showing how single cycles of high gamma can emerge embed-
ded in a slower gamma frequency rhythm but were not a separate
rhythmic process or representative of uncorrelated spiking activ-
ity. Rather, the high frequency activity emerged from the envelope
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of the current dipole signal waveform created by a bout of ∼5 ms
excitatory spiking followed by ∼5 ms somatic inhibition that cre-
ated a single ∼100 Hz positive/negative oscillation (see Figure 4).
In this study, these high gamma bouts were tied to a lower fre-
quency gamma rhythm induced by local weak PING mechanisms,
without external rhythmic drive. However, we conjecture that
analogous bouts of ∼5 ms excitation followed by ∼5 ms inhibi-
tion could be modulated by periodic exogenous excitatory input
at a slower frequency such as alpha or theta. For example, if the
local network received excitatory synaptic drive at an alpha fre-
quency of 10 Hz (i.e. every 100 ms), it is possible that this input
could integrate to create brief bouts of excitatory spiking followed
by inhibition, inducing a high frequency oscillation similar to that
shown in Figure 4. This mechanism would create brief periods
(∼5 ms) of highly synchronous excitation occurring at specific
phases of the alpha oscillation.

Prior theories suggest gamma oscillations coupled to theta
or alpha oscillations involve amplitude modulation of ongoing
gamma rhythms at a broad range of frequencies (as long as the
modulated frequency is higher than the carrier frequency) and
that this is due to periods of increased excitability at peaks of the
carrier cycle (Fries, 2005; Jensen and Colgin, 2007; Lakatos et al.,
2008). Our prediction specifically suggests there are very brief
bouts (∼5 ms) of highly synchronous excitation within the slower
oscillation that would be observed in current source signals as a
high gamma oscillation. However, the proposed mechanism does
not negate the possibility that longer periods around the peak of
the lower frequency cycle could contain smaller sub-assemblies
of heightened excitability, exhibiting a broad range local gamma
rhythms that are not visible in the current source signal, which
would be consistent with the prior theories based on invasive
recordings.

In prior MEG and modeling work, we have shown that low
frequency alpha and beta rhythms in current source signals can
be reproduced by driven subthreshold pyramidal neuron cur-
rent flow induced by interacting 10 Hz proximal and distal drive
(Jones et al., 2009; Ziegler et al., 2010). In those studies, 6×106

synchronous pyramidal neurons created subthreshold oscillations
that were on the order of 100 nAm consistent with recorded low
frequency MEG measured somatosensory rhythms that contained
a complex of alpha and beta referred to as a mu-rhythm (Jones
et al., 2009). An important future extension of this work will be
to use the model to investigate the interaction between large-scale
subthreshold rhythms and smaller sub-assemblies of spiking neu-
rons that may oscillate via weak PING mechanisms or be driven to
create single cycles of high gamma, as described above. However,
the current spatial scale of our model does not allow for sim-
ulations of simultaneous spiking and subthreshold rhythms, as
spiking in any pyramidal neuron will recruit spiking in the major-
ity of neighboring neurons across the entire simulated grid. Thus,
future model expansion will be necessary to investigate large and
small scale interactions.

4.7. CONCLUSIONS
The results from our model simulations suggested that different
mechanisms can produce oscillations in the gamma frequency
band, and the nominal frequency alone was not sufficient to

describe the activity. Based on our model results, we propose that
identification of unique features of the temporal dynamics of the
current dipole waveform can provide evidence to help disam-
biguate the underlying mechanisms. Further, differential expres-
sion of laminar gamma rhythms that may be important in cortical
function may be difficult to assess from current source sig-
nals. Overall, understanding the mechanisms that generate these
gamma frequency rhythms may be critical for a more thorough
understanding of their function in human health and disease.
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