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INTRODUCTION
The realm of numbers constitutes just
one of many fields of mathematical cogni-
tion, but arguably a pivotal one. It is also
among those core domains of knowledge
that—while being prepared for unfolding
in the human species (Feigenson et al.,
2004; Hyde, 2011)—nonetheless requires
cultural mediation to unfold to its full
potential: Not only is the availability
of a conventionalized counting sequence
essential for accurate counting and cal-
culating (Gordon, 2004; Pica et al., 2004;
Frank et al., 2008; Spaepen et al., 2011),
acquiring a counting sequence in the first
place is also crucial in more fundamental
ways: for grasping the concept of precise
quantities, for comprehending the ordi-
nal and cardinal nature of numbers, or
for learning the algorithms of basic arith-
metics that then pave the way for higher
levels of mathematics.

Learning to count also promotes
acquaintance with some of the more
general principles that characterize math-
ematics such as abstractness. In fact, one
of the first principles to be learned in this
process is that numbers are abstract—
all kinds of entities can be counted with
the same number words (Gelman and
Gallistel, 1978; but see also Cohen Kadosh
and Walsh, 2009). But not all counting
sequences seem to reflect this princi-
ple. A substantial number of Oceanic
languages, for instance, have counting
sequences whose usage is restricted to
specific objects, while other objects are
counted otherwise (Bender and Beller,
2006a,b).

This pattern of counting different
things differently seems to directly con-
tradict the abstractness principle and has

thus been taken as an earlier stage in
the evolution of numerical thinking (e.g.,
Klix, 1993). While the latter assumption
was refuted elsewhere (Beller and Bender,
2008), the question remains open of how
(if at all) such apparently non-abstract
counting sequences may foster abstract
numerical cognition. Here, we defend
the position that the Oceanic counting
sequences are not only compatible with an
abstract understanding of numbers, but
may even promote such an understand-
ing. To this end, we propose to conceive
of these sequences as the verbal compo-
nents of the mathematical code, which
provide the symbols that people use to rep-
resent and manipulate abstract mathemat-
ical concepts. Analyzing how the specific
properties of these symbol systems affect
the processing of numerical information
will help us to understand better how
abstract mathematical thinking emerges.

COUNTING SEQUENCES AND THEIR
COGNITIVE IMPLICATIONS
In general, each counting sequence con-
sists of a limited set of symbols for basic
numbers and (optionally) some compo-
sition rules for representing larger num-
bers. These symbols and composition rules
constitute a distinct numeration system,
the properties of which may differ sub-
stantially across languages (Chrisomalis,
2004; Bender and Beller, 2012; Widom and
Schlimm, 2012).

The system’s internal structure, for
instance, depends on its dimensional-
ity (Zhang and Norman, 1995). One-
dimensional systems are unstructured;
they either use the same symbol in a cumu-
lative manner to indicate increasing set size
(as in tallies), or employ specific symbols

distinctively to indicate distinct set sizes
(as with the Arabic digits from 1 through
9). In contrast, two-dimensional systems
like the English number words make use of
a base (in this case: “ten”), which is raised
to various powers (“hundred,” “thousand,”
etc.). Number words in between are com-
posed according to the addition and multi-
plication principle, as in “two hundred and
three.”

Counting sequences are cultural tools,
whose properties may give rise to “repre-
sentational effects” (Zhang and Norman,
1995), that is, they affect how numeri-
cal information is represented and pro-
cessed (Nickerson, 1988; Fuson, 1990;
Miller et al., 1995; Zhang and Wang, 2005;
Schlimm and Neth, 2008; Domahs et al.,
2010; Beller and Bender, 2011; Krajcsi and
Szabo, 2012). An analysis of such repre-
sentational effects will help us to illumi-
nate the cognitive implications of specific
counting systems.

SPECIFIC COUNTING SYSTEMS IN
OCEANIC LANGUAGES
In a large number of Oceanic languages,
two types of verbal systems co-exist: reg-
ular systems for general counting and
systems restricted to counting specific
objects in a particular manner (Bender
and Beller, 2006a,b). For illustration, take
the Polynesian language spoken on Tonga,
an island group in the Western Pacific.

Tongan employs five numeration sys-
tems: a general and four specific ones. All
of them contain primary numerals for the
numbers 1 through 10 and for the powers
of the base up to 105 (Bender and Beller,
2007). The specific systems deviate from
each other and from the general system
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in three ways: They make use of diverg-
ing counting units; they employ distinct
lexemes for some of the powers; and they
are applied to only one kind of object
each. Accordingly, sugar-cane is counted
in pairs, whereas coconuts, pieces of yam
for planting, and fish are counted in pairs
when few, but in scores when numerous.

It was especially the object-specificity of
counting that arrested researchers’ inter-
est early-on and nurtured the assump-
tion that speakers of languages like Tongan
may lack an abstract concept of num-
ber (Klix, 1993). However, viewing this
feature in the context of the other two
peculiarities allows for a more accu-
rate assessment. It reveals that number
word composition in the specific systems
remains highly systematic. In fact, the
rules for composing number words in
the general system require only marginal
modifications (namely acknowledgement
of the counting unit and the specific power
numerals) to generate number words in
the specific systems. This structural align-
ment, together with the older age of the
general system, also suggests that the spe-
cific systems were deliberately developed
out of the general one (Bender and Beller,
2006a,b, 2007).

While the structure of the general
counting sequence was retained, the
counting unit to which its constituents
referred (and hence the value of the
counted set) was increased. This trans-
formation of values follows the same
principle that is inherently instantiated
in two-dimensional systems, namely the
multiplication principle for composing
larger number words. In these systems,
the base and its powers are counted as
if they were objects: “three hundreds” is
similar to “three baskets.” Specific systems
carry this abstraction one step further by
implicating that the “three hundreds” may
refer in fact to “three hundreds of pairs or
scores.”

Adopting the multiplication principle
inherent in power term constructions (like
“three hundreds”) for the creation of spe-
cific counting systems is far from being
trivial. It requires a sophisticated under-
standing of counting insofar, as num-
ber words are used now to count not
just objects, but other numbers and even
abstract counting units. To this end,
countability is defined recursively, and in

doing so, also paves the way for conceiv-
ing of multiplication as an algorithm for
mental arithmetics.

What at first glance may look
laborious—the recursive extraction of
numerical values—can, thus, in fact be
cognitively advantageous: It allows for
more compact representations, which, in
the absence of notation, not only reduces
cognitive load (Beller and Bender, 2008),
but also increases the speed and correct-
ness of mental arithmetic (Lordahl et al.,
1970; Bender and Beller, 2013).

CONCLUSION
With our analysis we hope to have demon-
strated, that the apparently non-abstract
representations in Oceanic counting
systems have indeed fostered abstract
numerical cognition. But beyond this
rehabilitation of the specific systems and
their users, this “exotic” phenomenon is
of more general relevance to the cogni-
tive sciences. It also serves as an instance
of the recursive process in which cultural
tools and cognitive achievements advance
each other and thus as an instance of the
“ratchet effect” (Tomasello, 1999; and see
Wiese, 2003) of culture more generally,
which also highlights the importance of
anthropological insights for cognitive sci-
ence theorizing (Beller et al., 2012). By
their mere existence and usage, cultural
tools may promote cognitive advance-
ment. Designed to serve one purpose,
tools generally have more properties than
only those relevant to the task at hand,
and these properties may then afford
new ways of usage or reasoning (see also
Miller and Paredes, 1996; Coolidge and
Overmann, 2012). It is this extra value of
cultural tools that, in the domain of math-
ematical cognition, promotes abstract
thinking.
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